


Also available
Build confidence in a range of key essay writing techniques and skills with this 
practical companion, full of advice and guidance from experienced EE experts.
• Build essay writing techniques and skills through a range of strategies, serving 

as a useful companion throughout the writing process – from the 
development of a research question, critical-thinking, referencing and citation 
to reflecting on the process and final essay.

• Concise, clear explanations help you navigate the IB requirements, including 
advice on assessment objectives and academic honesty.

• Learn what is required to get the best EE grades and write an excellent essay 
with detailed examiner advice and expert tips and hints, including common 
mistakes to avoid.

• Explicit reference to the IB Learner profile and the importance of reflection.

www.hoddereducation.com/ibdiploma

Available for Diploma Core
Theory of Knowledge for the IB Diploma 
Fourth Edition 9781510474314

Confidently navigate the 
Theory of Knowledge Guide 
with a set of rich and 
engaging resources,
grounded in conceptual 
considerations and 
illustrated with real-world 
examples.
• Guide students by 

helping them examine 
the nature of knowledge and their own status 
as a knower.

• Develop diverse and balanced arguments with 
a variety of activities, case studies and Deeper 
Thinking features.

• Aid understanding with in-depth discussions 
of the twelve course concepts and detailed 
definitions of all key terms.

• Provide assessment support with guidance 
relating to the TOK Exhibition and Essay.

www.hoddereducation.com/tok

Theory of Knowledge for the IB Diploma: 
Skills for Success Second Edition 9781510474956

Build confidence in a range 
of key Theory of 
Knowledge skills with this 
practical companion, full of 
advice and guidance from 
an experienced TOK 
expert.
• Learn to apply analytical 

skills with Deeper 
Thinking, showing you 
how to go beyond simply identifying and 
explaining.

• Develop awareness of the practical 
application of knowledge with In Practice 
pointers, offering guidance on how topics can 
be used in TOK activities.

• Improve your ability to respond to knowledge 
questions, a crucial part of assessment 
success.

• Avoid making the mistakes that others make 
in the assessments with TOK Traps that 
highlight common errors and misconceptions.

Carolyn P. Henly
John Sprague

Theory of 
Knowledge

FOURTH 
EDITION

FO
U

R
TH

 
ED

ITIO
N

Theory of K
now

ledge

 Theory of 
Knowledge
Develop knowledge with this thought-provoking 
guide through the core theme, the five optional 
themes and the five areas of knowledge.

n	 Guide students by helping them examine the 
nature of knowledge and their own status  
as knowers.

n	 Develop diverse and balanced arguments with 
a variety of activities, case studies and Deeper 
Thinking features.

n	 Aid understanding with in-depth discussions 
of the twelve course concepts and detailed 
definitions of all key terms.

n	 Provide assessment support with guidance 
relating to the TOK exhibition and essay.

FOR THE
IB DIPLOMA
PROGRAMMEIB

 D
IPLO

M
A

PR
O

G
R

A
M

M
E

FOR THE
IB DIPLOMA
PROGRAMME

FOURTH EDITION

H
enly

Sprague

About the authors

Carolyn P. Henly retired in 
2018 after 33 years of 
teaching, 20 of those in the 
IB Programme teaching 
English HL, Theory of 
Knowledge and Philosophy.

John Sprague currently 
teaches Theory of 
Knowledge, Philosophy and 
Religious Studies at Tanglin 
Trust School, Singapore. He 
was previously Director of IB 
and Head of Theory of 
Knowledge at Sevenoaks 
School in the UK, and Head 
of Theory of Knowledge at 
King’s College School, 
Wimbledon.

This title is also available 
as an eBook with learning 
support.
Visit hoddereducation.com/boost  
to find out more.

978151047314_IB_TheoryKnowl_CV_HHC.indd   1-3978151047314_IB_TheoryKnowl_CV_HHC.indd   1-3 29/03/2021   09:0629/03/2021   09:06

http://www.hoddereducation.com/tok
http://www.hoddereducation.com/ibdiploma


Physics
FOR THE
IB DIPLOMA
PROGRAMME

THIRD EDITION

9781398369917 IB Dip Physics 3e_TD2a_IBicon_tE.indd   19781398369917 IB Dip Physics 3e_TD2a_IBicon_tE.indd   1 03/01/2023   11:1303/01/2023   11:13369917_00_IB_Physics 3rd_Edn_Prelims.indd   1369917_00_IB_Physics 3rd_Edn_Prelims.indd   1 09/01/2023   22:1809/01/2023   22:18



This page intentionally left blank 



John Allum
Paul Morris

Physics
FOR THE
IB DIPLOMA
PROGRAMME

THIRD EDITION

369917_00_IB_Physics 3rd_Edn_Prelims.indd   3369917_00_IB_Physics 3rd_Edn_Prelims.indd   3 09/01/2023   22:1809/01/2023   22:18



Publisher's acknowledgements

IB advisers: The Publishers would like to thank the following for their advice and support in the development of 
this project: Arno Dirks and Aurora Vicens. We would like to offer special thanks to Paul Morris for his invaluable 
review and feedback during the writing process.

The Publishers would also like to thank the  International Baccalaureate Organization for permission to re-use 
their past examination questions in the online materials.

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the 
Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, 
Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is 
sometimes possible to find a relocated web page by typing in the address of the home page for a website in the 
URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood 
grown in well-managed forests and other controlled sources. The logging and manufacturing processes are 
expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, 
OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 
5 p.m., Monday to Friday.  You can also order through our website: www.hoddereducation.com

ISBN: 978 1 3983 6991 7

© John Allum 2023
First published in 2012
Second edition published in 2014
This edition published in 2023 by 
Hodder Education,
An Hachette UK Company 
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10  9  8  7  6  5  4  3  2  1

Year 2027  2026  2025  2024  2023

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be 
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and 
recording, or held within any information storage and retrieval system, without permission in writing from the 
publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for 
reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © salita2010/stock.adobe.com

Illustrations by Aptara Inc., Pantek Media and Barking Dog Art

Typeset in Times 10/14pt by DC Graphic Design Limited, Hextable, Kent

Printed in Bosnia & Herzegovina

A catalogue record for this title is available from the British Library.

369917_00_IB_Physics 3rd_Edn_Prelims.indd   4369917_00_IB_Physics 3rd_Edn_Prelims.indd   4 09/01/2023   22:1809/01/2023   22:18

http://www.hoddereducation.com
http://www.hoddereducation.com
http://www.cla.co.uk
http://stock.adobe.com
mailto:education@hachette.co.uk


     v

Contents

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

Tools and Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

A Space, time and motion
A.1 Kinematics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Forces and momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.3 Work, energy and power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.4 Rigid body mechanics (HL only) . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.5 Relativity (HL only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B The particulate nature of matter
B.1 Thermal energy transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 Greenhouse effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.3 Gas laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.4 Thermodynamics (HL only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

B.5 Current and circuits (includes HL section)  . . . . . . . . . . . . . . . . . . . 281

C Wave behaviour
C.1 Simple harmonic motion (includes HL section) . . . . . . . . . . . . . . . . 313

C.2 Wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

C.3 Wave phenomena (includes HL section) . . . . . . . . . . . . . . . . . . . . . 350

C.4 Standing waves and resonance  . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

C.5 Doppler effect (includes HL section)  . . . . . . . . . . . . . . . . . . . . . . . 400

D Fields
D.1 Gravitational fields (includes HL section) . . . . . . . . . . . . . . . . . . . . 411

D.2 Electric and magnetic fields (includes HL section)  . . . . . . . . . . . . . 442

D.3 Motion in electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . 471

D.4 Induction (HL only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

369917_00_IB_Physics 3rd_Edn_Prelims.indd   5369917_00_IB_Physics 3rd_Edn_Prelims.indd   5 09/01/2023   22:1809/01/2023   22:18



 vi

E Nuclear and quantum
E.1 Structure of the atom (includes HL section)  . . . . . . . . . . . . . . . . . . 507

E.2 Quantum physics (HL only)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

E.3 Radioactive decay (includes HL section)  . . . . . . . . . . . . . . . . . . . . 541

E.4 Fission  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

E.5 Fusion and stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Free online content
Go to our website www.hoddereducation.com/ib-extras for free access to the following:

n Practice exam-style questions for each chapter

n Glossary

n Answers to self-assessment questions and practice exam-style questions

n Tools and Inquiries reference guide

n Internal Assessment – the scientific investigation

369917_00_IB_Physics 3rd_Edn_Prelims.indd   6369917_00_IB_Physics 3rd_Edn_Prelims.indd   6 09/01/2023   22:1809/01/2023   22:18

http://www.hoddereducation.com/ib-extras


     vii

Introduction
Welcome to Physics for the IB Diploma Third Edition, updated and designed to meet the criteria 
of the new International Baccalaureate (IB) Diploma Programme Physics Guide. This coursebook 
provides complete coverage of the new IB Physics Diploma syllabus, with first teaching from 
2023. Differentiated content for SL and HL students is clearly identified throughout.

The aim of this syllabus is to integrate concepts, topic content and the nature of science through 
inquiry. Approaches to learning in the study of physics are integrated with the topics, along with 
key scientific inquiry skills. This book comprises five main themes:
l Theme A: Space, time and motion
l Theme B: The particulate nature of matter
l Theme C: Wave behaviour
l Theme D: Fields
l Theme E: Nuclear and quantum physics

Each theme is divided into syllabus topics.

The book has been written with a sympathetic understanding that English is not the first language 
of many students.

No prior knowledge of physics by students has been assumed, although many will have taken an 
earlier course (and they will find some useful reminders in the content). 

In keeping with the IB philosophy, a wide variety of approaches to teaching and learning has been 
included in the book (not just the core physics syllabus). The intention is to stimulate interest and 
motivate beyond the confines of the basic physics content. However, it is very important students 
know what is the essential knowledge they have to take into the examination room. This is 
provided by the Key information boxes. If this information is well understood, and plenty of self-
assessment questions have been done (and answers checked), then a student will be well-prepared 
for their IB Physics examination.

The online Glossary is another useful resource. It's aim is to list and explain basic terminology 
used in physics, but it is not intended as a list of essential information for students. Many of the 
terms in the Glossary are highlighted in the book as 'Key terms' and also emphasized in the 
nearby margins.

The ‘In cooperation with IB’ logo signifies that this coursebook has been rigorously 
reviewed by the IB to ensure it fully aligns with the current IB curriculum and 
offers high-quality guidance and support for IB teaching and learning.
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How to use this book
The following features will help you consolidate and develop your understanding of physics, 
through concept-based learning.

• There are guiding questions at the start of every chapter, as signposts for inquiry.
• These questions will help you to view the content of the syllabus through the conceptual lenses of 

the themes.

Guiding questions

SYLLABUS CONTENT

 This coursebook follows the order of the contents of the IB Physics Diploma syllabus.
 Syllabus understandings are introduced naturally throughout each topic.

Key information

Throughout the book, you will find some content in pink boxes like this one. These highlight 
the essential Physics knowledge you will need to know when you come to the examination. 
Included in these boxes are the key equations and constants that are also listed in the IBDP 
Physics data booklet for the course.

Tools

The Tools features explore the skills and techniques that you require and are integrated into 
the physics content to be practiced in context. These skills can be assessed through internal 
and external assessment.

Inquiry process

The application and development of the Inquiry process is supported in close association 
with the Tools.

Nature of science
Nature of science (NOS) explores conceptual understandings related to the purpose, features and impact 
of scientific knowledge. It can be examined in Physics papers. NOS explores the scientific process 
itself, and how science is represented and understood by the general public. NOS covers 11 aspects: 
Observations, Patterns and trends, Hypotheses, Experiments, Measurements, Models, Evidence, 
Theories, Falsification, Science as a shared endeavour, and Global impact of science. It also examines the 
way in which science is the basis for technological developments and how these modern technologies, in 
turn, drive developments in science.

Key terms
 ◆ Definitions appear 

throughout the margins 
to provide context and 
help you understand the 
language of physics. There 
is also a glossary of all key 
terms online.

Common 
mistake
These detail 
some common 
misunderstandings and 
typical errors made by 
students, so that you can 
avoid making the same 
mistakes yourself.
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Content from the IBDP Physics data booklet is indicated with this icon and shown in bold. The 
data booklet contains electrical symbols, equations and constants that you need to familiarize 
yourself with as you progress through the course. You will have access to a copy of the data 
booklet during your examination.

Top tip!
This feature includes advice relating to the content being discussed and tips to help you retain the 
knowledge you need.

These provide a step-by-step guide showing you how to answer the kind of quantitative 
and other questions that you might encounter in your studies and in the assessment.

 WORKED EXAMPLE

International mindedness is indicated with this icon. It explores how the exchange of information 
and ideas across national boundaries has been essential to the progress of science and illustrates 
the international aspects of physics.

Self-assessment questions appear throughout the chapters, phrased to assist comprehension and 
recall, but also to help familiarize you with the assessment implications of the command terms. 
These command terms are defined in the online glossary. Practice exam-style questions and 
their answers, together with answers to most self-assessment questions are on the accompanying 
website, IB Extras: www.hoddereducation.com/ib-extras

The IB learner profile icon indicates material that is particularly useful to help you towards 
developing in the following attributes: to be inquirers, knowledgeable, thinkers, communicators, 
principled, open-minded, caring, risk-takers, balanced and reflective. When you see the icon, 
think about what learner profile attribute you might be demonstrating – it could be more than one.

LINKING QUESTIONS

These questions are introduced throughout each topic. They are to strengthen your understanding by 
making connections across the themes. The linking questions encourage you to apply broad, integrating and 
discipline-specific concepts from one topic to another, ideally networking your knowledge. Practise answering 
the linking questions first, on your own or in groups. The links in this coursebook are not exhaustive, you may 
also encounter other connections between concepts, leading you to create your own linking questions.

TOK
Links to Theory of Knowledge (TOK) allow you to develop critical thinking skills and deepen 
scientific understanding by bringing discussions about the subject beyond the scope of the content of 
the curriculum.

DB

TH
E IB LEARNER PRO

FILE

 ATL ACTIVITY 

Approaches to learning 
(ATL) activities, 
including learning 
through inquiry, are 
integral to IB pedagogy. 
These activities are 
contextualized through 
real-world applications 
of physics.
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    Tools and Inquiry xi

Tools and Inquiry

Skills in the study of physics
The skills and techniques you must experience through the course are encompassed within the 
tools. These support the application and development of the inquiry process in the delivery of the 
physics course.

	n Tools
l Tool 1: Experimental techniques
l Tool 2: Technology
l Tool 3: Mathematics

	n Inquiry process
l Inquiry 1: Exploring and designing
l Inquiry 2: Collecting and processing data
l Inquiry 3: Concluding and evaluating

Throughout the programme, you will be given opportunities to encounter and practise the skills; 
and instead of stand-alone topics, they will be integrated into the teaching of the syllabus when 
they are relevant to the syllabus topics being covered. 

You can see what the Tools and Inquiry boxes look like in the How to use this book section on page vi.

The skills in the study of physics can be assessed through internal and external assessment. The 
Approaches to learning provide the framework for the development of these skills.

Thinking skills

Social skills

Communication
skills

Research skills

Self-management
skills

Experimental
techniques Technology Mathematics

Collecting and
processing data

Exploring and
designing

Concluding and
evaluating

	n Figure 0.01 Tools for physics 

Visit the link in the QR code or this website to view the Tools and Inquiry reference guide:  
www.hoddereducation.com/ib-extras
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 xii

Tools

	n Tool 1: Experimental techniques
Skill Description

Addressing safety of self, 
others and the environment

• Recognize and address relevant safety, ethical or environmental issues in an 
investigation.

Measuring variables Understand how to accurately measure the following to an appropriate level of 
precision: 
• Mass
• Time
• Length
• Volume
• Temperature
• Force
• Electric current
• Electric potential difference
• Angle
• Sound and light intensity

	n Tool 2: Technology
Skill Description

Applying technology to collect 
data

• Use sensors.
• Identify and extract data from databases.
• Generate data from models and simulations.
• Carry out image analysis and video analysis of motion.

Applying technology to process 
data

• Use spreadsheets to manipulate data.
• Represent data in a graphical form.
• Use computer modelling.

	n Tool 3: Mathematics
Skill Description

Applying general mathematics • Use basic arithmetic and algebraic calculations to solve problems.
• Calculate areas and volumes for simple shapes. 
• Carry out calculations involving decimals, fractions, percentages, ratios, 

reciprocals, exponents and trigonometric ratios.
• Carry out calculations involving logarithmic and exponential functions.
• Determine rates of change.
• Calculate mean and range.
• Use and interpret scientific notation (for example, 3.5 × 106).
• Select and manipulate equations.
• Derive relationships algebraically.
• Use approximation and estimation.
• Appreciate when some effects can be neglected and why this is useful.
• Compare and quote ratios, values and approximations to the nearest order 

of magnitude.
• Distinguish between continuous and discrete variables.
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    Tools and Inquiry xiii

Skill Description

• Understand direct and inverse proportionality, as well as positive and 
negative relationships or correlations between variables.

• Determine the effect of changes to variables on other variables in 
a relationship.

• Calculate and interpret percentage change and percentage difference.
• Calculate and interpret percentage error and percentage uncertainty.
• Construct and use scale diagrams.
• Identify a quantity as a scalar or vector.
• Draw and label vectors including magnitude, point of application 

and direction.
• Draw and interpret free-body diagrams showing forces at point of 

application or centre of mass as required.
• Add and subtract vectors in the same plane (limited to three vectors).
• Multiply vectors by a scalar.
• Resolve vectors (limited to two perpendicular components).

Using units, symbols and 
numerical values

• Apply and use SI prefixes and units.
• Identify and use symbols stated in the guide and the data booklet.
• Work with fundamental units.
• Use of units (for example, eV, eVc–2, ly, pc, h, day, year) whenever appropriate.
• Express derived units in terms of SI units.
• Check an expression using dimensional analysis of units (the formal process 

of dimensional analysis will not be assessed).
• Express quantities and uncertainties to an appropriate number of significant 

figures or decimal places.

Processing uncertainties • Understand the significance of uncertainties in raw and processed data.
• Record uncertainties in measurements as a range (±) to an appropriate precision.
• Propagate uncertainties in processed data in calculations involving addition, 

subtraction, multiplication, division and raising to a power.
• Express measurement and processed uncertainties—absolute, fractional 

(relative) and percentage—to an appropriate number of significant figures or 
level of precision.

Graphing • Sketch graphs, with labelled but unscaled axes, to qualitatively 
describe trends.

• Construct and interpret tables, charts and graphs for raw and processed data 
including bar charts, histograms, scatter graphs and line and curve graphs.

• Construct and interpret graphs using logarithmic scales. 
• Plot linear and non-linear graphs showing the relationship between two 

variables with appropriate scales and axes.
• Draw lines or curves of best fit.
• Draw and interpret uncertainty bars.
• Extrapolate and interpolate graphs.
• Linearize graphs (only where appropriate).
• On a best-fit linear graph, construct lines of maximum and minimum 

gradients with relative accuracy (by eye) considering all uncertainty bars.
• Determining the uncertainty in gradients and intercepts.
• Interpret features of graphs including gradient, changes in gradient, 

intercepts, maxima and minima, and areas under the graph.
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Inquiry process

	n Inquiry 1: Exploring and designing
Skill Description

Exploring • Demonstrate independent thinking, initiative and insight.
• Consult a variety of sources.
• Select sufficient and relevant sources of information.
• Formulate research questions and hypotheses.
• State and explain predictions using scientific understanding.

Designing • Demonstrate creativity in the designing, implementation and presentation of 
the investigation.

• Develop investigations that involve hands-on laboratory experiments, 
databases, simulations and modelling.

• Identify and justify the choice of dependent, independent and control variables.
• Justify the range and quantity of measurements.
• Design and explain a valid methodology.
• Pilot methodologies.

Controlling variables Appreciate when and how to:
• calibrate measuring apparatus, including sensors
• maintain constant environmental conditions of systems
• insulate against heat loss or gain
• reduce friction
• reduce electrical resistance
• take background radiation into account.

	n Inquiry 2: Collecting and processing data
Skill Description

Collecting data • Identify and record relevant qualitative observations.
• Collect and record sufficient relevant quantitative data.
• Identify and address issues that arise during data collection.

Processing data • Carry out relevant and accurate data processing.

Interpreting results • Interpret qualitative and quantitative data.
• Interpret diagrams, graphs and charts.
• Identify, describe and explain patterns, trends and relationships.
• Identify and justify the removal or inclusion of outliers in data (no 

mathematical processing is required).
• Assess accuracy, precision, reliability and validity.

	n Inquiry 3: Concluding and evaluating
Skill Description

Concluding • Interpret processed data and analysis to draw and justify conclusions.
• Compare the outcomes of an investigation to the accepted scientific context.
• Relate the outcomes of an investigation to the stated research question 

or hypothesis.
• Discuss the impact of uncertainties on the conclusions.

Evaluating • Evaluate hypotheses.
• Identify and discuss sources and impacts of random and systematic errors.
• Evaluate the implications of methodological weaknesses, limitations and 

assumptions on conclusions.
• Explain realistic and relevant improvements to an investigation.
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A.1   Kinematics 1

KinematicsA.1

• How can the motion of a body be described quantitatively and qualitatively?
• How can the position of a body in space and time be predicted?
• How can the analysis of motion in one and two dimensions be used to solve real-life problems?

Guiding questions

Kinematics is the study of moving objects. In this topic we will describe motion by using 
graphs and equations, but the causes of motion (forces) will be covered in the next topic, 
A.2 Forces and Momentum. The ideas of classical physics presented in this chapter can 
be applied to the movement of all masses, from the very small (freely moving atomic 
particles) to the very large (stars).

To completely describe the motion of an object at any one moment we need to state its 
position, how fast it is moving, the direction in which it is moving and whether its motion 
is changing. For example, we might observe that a car is 20 m to the west of an observer 
and moving northeast with a constant (uniform) velocity of 8 m s−1. See Figure A1.1.

Of course, any or all, of these quantities might be changing. In real life the movement of 
many objects can be complicated; they do not often move in straight lines and they might 
even rotate or have different parts moving in different directions.

In this chapter we will develop an understanding of the basic principles of kinematics by dealing 
first with objects moving in straight lines, and calculations will be confined to those objects that 
have a uniform (unchanging) motion.

Tool 3: Mathematics

Identify a quantity as a scalar or a vector

Everything that we measure has a magnitude and a unit. 
For example, we might measure the mass of a book 
to be 640 g. Here, 640 g is the magnitude (size) of the 
measurement, but mass has no direction.

Quantities that have only magnitude, and no direction, 
are called scalars.

All physical quantities can be described as scalars or vectors.

Quantities that have both magnitude and direction are 
called vectors.

For example, force is a vector quantity because the 
direction in which a force acts is important.

Most quantities are scalars. Some common examples of 
scalars used in physics are mass, length, time, energy, 
temperature and speed.

However, when using the following quantities, we need to 
know both the magnitude and the direction in which they 
are acting, so they are vectors:
l displacement (distance in a specified direction)
l velocity (speed in a given direction)
l force (including weight)
l acceleration
l momentum and impulse
l field strength (gravitational, electric and magnetic).

In diagrams, all vectors are shown with straight arrows, 
pointing in a certain direction from the correct point 
of application.

The lengths of the arrows are proportional to the 
magnitudes of the vectors.

 ◆ Kinematics Study of motion.
 ◆ Classical physics Physics theories 

that pre-dated the paradigm shifts 
introduced by quantum physics and 
relativity.

 ◆ Uniform Unchanging.
 ◆ Magnitude Size.
 ◆ Scalars  Quantities that have only 

magnitude (no direction). 
 ◆ Vector A quantity that has both 

magnitude and direction.

20 m

8 m s–1

N

W E

S
stationary
observer

velocity,

car

	■ Figure A1.1 Describing the 
position and motion of a car
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2 Theme A: Space, time and motion

Distance and displacement

SYLLABUS CONTENT

 The motion of bodies through space and time can be described and analysed in terms of position, 
velocity and acceleration.

 The change in position is the displacement.
 The difference between distance and displacement.

The term distance can be used in different ways, for example we might say that the distance 
between New York City and Boston is 300 km, meaning that a straight line between the two cities 
has a length of 300 km. Or, we might say that the (travel) distance was 348 km, meaning the length 
of the road between the cities.

We will define distance as follows:

Distance (of travel) is the total length of a specified path between two points. SI unit: metre, m  

In physics, displacement (change of position) is often more important than distance:

The displacement of an object is the distance in a straight line from a fixed reference point in a 
specified direction.

Continuing the example given above, if a girl travels from 
New York to Boston, her displacement will be 300 km to the 
northeast (see Figure A1.2).

Both distance and displacement are given the symbol s and 
the SI unit metres, m. Kilometres, km, centimetres, cm, and 
millimetres, mm, are also in widespread use. We often use 
the symbol h for heights and x for small displacements.

Figure A1.3 shows the route of some people walking around a 
park. The total distance walked was 4 km, but the displacement 
from the reference point varied and is shown every few 
minutes by the vector arrows (a–e). The final displacement was 
zero because the walkers returned to their starting place.

 ◆ Distance Total length 
travelled, without 
consideration of directions. 

 ◆ Displacement, linear 
Distance in a straight line 
from a fixed reference 
point in a specified 
direction.

 ◆ Metre, m SI unit of 
length (fundamental).

South Station,
Boston, MA

Port Authority Bus Terminal,
New York

384km

300km

	■ Figure A1.2 Boston is a travel distance of 384 km and a 
displacement of 300 km northeast from New York City

a

b

c

d

e

start and
end here

	■ Figure A1.3 A walk in the park

Speed and velocity

SYLLABUS CONTENT

 Velocity is the rate of change of position.
 The difference between instantaneous and average values of velocity, speed and 

acceleration, and how to determine them.

	■ Speed
The displacement of Wellington from Auckland, New Zealand, is 494 km south 
(Figure A1.4). The road distance is 642 km and it is predicted that a car journey 
between the two cities will take 9.0 hours.
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A.1   Kinematics 3

If we divide the total distance by the total time (642 / 9.0) we 
determine a speed of 71 km h−1. In this example it should be 
obvious that the speed will have changed during the journey 
and the calculated result is just an average speed for the 
whole trip. The value seen on the speedometer of the car is 
the speed at any particular moment, called the 
instantaneous speed.

 ◆ Speed, v Average speed = distance travelled/time taken. 
Instantaneous speed is determined over a very short time interval, 
during which it is assumed that the speed does not change. 

 ◆ Reaction time The time delay between an event occurring and a 
response. For example, the delay that occurs when using a stopwatch. 

 ◆ Sensor An electrical component that responds to a change in 
a physical property with a corresponding change in an electrical 
property (usually resistance). Also called a transducer.

 ◆ Light gate Electronic sensor used to detect motion when an object 
interrupts a beam of light.

Tool 1: Experimental techniques

Understand how to accurately measure quantities to an appropriate level of precision: time

Accurate time measuring instruments are common, but the 
problem with obtaining accurate measurements of time is 
starting and stopping the timers at exactly the right moments.

Whenever we use stopwatches or timers operated by hand, 
the results will have an unavoidable and variable uncertainty 
because of the delays between seeing an event and pressing 
a button to start or stop the timer. The delay between seeing 
something happen and responding with some kind of action 
is known as reaction time. For example, for car drivers it 
is usually assumed that a driver takes about 0.7 s to press 
the brake pedal after they have seen a problem. (But some 
drivers will be able to react quicker than this.) A car will 
travel about 14 m in this time if it is moving at 50 km h−1. 
Reaction times will increase if the driver is distracted, tired, 
or under the influence of any type of drug, such as alcohol.

A simple way of determining a person’s reaction time 
is by measuring how far a metre ruler falls before it can 
be caught between thumb and finger (see Figure A1.5). 
The time, t, can then be calculated using the equation for 
distance, s = 5t2 (explained later in this topic).

If the distance the ruler falls s = 0.30

Rearranging for t, t = 
s
5  

= 
0.30

5
So, reaction time t = 0.25 s.

Under these conditions a typical reaction time is about 
0.25 s, but it can vary considerably depending on the 
conditions involved. The measurement can be repeated 
with the person tested being blindfolded to see if the 
reaction time changes if the stimulus (to catch the ruler) is 
either sound or touch, rather than sight.

In science experiments it is sensible to make time 
measurements as long as possible to decrease the effect of 
this problem. (This reduces the percentage uncertainty.) 
Repeating measurements and calculating an average will 
also reduce the effect of random uncertainties. If a stopwatch 
is started late because of the user’s reaction time, it may be 
offset by also stopping the stopwatch late for the same reason.

Electronics sensors, such as light gates, are very useful in 
obtaining accurate time measurements. See below.

	■ Figure A1.5 Determining reaction time

Auckland

494km 642km

Wellington

	■ Figure A1.4 Distance and displacement from Auckland to Wellington
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4 Theme A: Space, time and motion

There are a number of different methods in which speed can be measured in a school or college 
laboratory. Figure A1.6 shows one possibility, in which a glider is moving on a frictionless air 
track at a constant velocity. The time taken for a card of known length (on the glider) to pass 
through the light gate is measured and its speed can be calculated from length of card / time taken.

air track

light gate

glider

Tool 2: Technology

Use sensors

An electronic sensor is an electronic device used to convert a physical 
quantity into an electrical signal. The most common sensors respond 
to changes in light level, sound level, temperature or pressure.

A light gate contains a source of light that produces a narrow beam 
of light directed towards a sensor on the other side of a gap. When 
an object passes across the light beam, the unit behaves as a switch 
which turns a timer on or off very quickly.

Tool 3: Mathematics

Determine rates of change

The Greek capital letter delta, Δ, is widely 
used in physics and mathematics to 
represent a change in the value of a quantity.

For example, Δx = (x2 – x1), where x2 and x1 
are two different values of the variable x.

The change involved is often considered to 
be relatively small.

Most methods of determining speed involve measuring the small amount of time (Δt) taken to 
travel a certain distance (Δs). The SI unit for time is the second, s.

speed = 
distance travelled

time taken  
(SI unit m s–1)

This calculation determines an average speed during time Δt, but if Δt is small enough, we may 
assume that the calculated value is a good approximation to an instantaneous speed.

Speed is a scalar quantity. Speed is given the same symbol, (v), as velocity.

	■ Figure A1.7 The peregrine falcon is reported to be the world’s fastest animal (speeds measured up to 390 km h−1)

	■ Figure A1.6 Measuring 
speed in a laboratory

 ◆ Second, s SI unit of time 
(fundamental).
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A.1   Kinematics 5

Nature of science: Observations

Objects at rest

It is common in physics for people to refer to an object being at rest, meaning that it is not moving. But 
this is not as simple as it may seem. A stone may be at rest on the ground, meaning that it is not moving 
when compared with the ground: it appears to us to have no velocity and no acceleration. However, when 
the same stone is thrown upwards, at the top of its path its instantaneous speed may be zero, but it has an 
acceleration downwards.

We cannot assume that an object which is at rest has no acceleration; its velocity may be changing – 
either in magnitude, in direction, or both.

We may prefer to refer to an object being stationary, suggesting that an object is not moving over a 
period of time.

Of course, the surface of the Earth is moving, the Earth is orbiting the Sun, which orbits the centre 
of the Milky Way galaxy, which itself exists in an expanding universe. So, at a deeper level, we must 
understand that all motion is relative and nowhere is truly stationary. This is the starting point for the 
study of Relativity (Topic A.5).

 ◆ At rest Stays stationary 
in the same position.

 ◆ Milky Way The galaxy 
in which our Solar System 
is located.

	■ Velocity
Velocity, v, is the rate of change of position. It may be considered to be speed in a specified direction.

velocity, v = 
displacement

time taken
 = 

Δs
Δt 

(SI unit m s–1)

The symbol Δs represents a change of position (displacement).

Velocity is a vector quantity. 12 m s−1 is a speed. 12 m s−1 to the south is a velocity. We use positive 
and negative signs to represent velocities in opposite directions. For example, +12 m s−1 may 
represent a velocity upwards, while −12 m s−1 represents the same speed downwards, but we may 
choose to reverse the signs used.

Speed and velocity are both represented by the same symbol (v) and their magnitudes are 

calculated in the same way (v = 
Δs
Δt) with the same units. It is not surprising that these two terms 

are sometimes used interchangeably and this can cause confusion. For this reason, it may be better 
to define these two quantities in words, rather than symbols.

As with speed, we may need to distinguish between average velocity over a time interval, or 
instantaneous velocity at a particular moment. As we shall see, the value of an instantaneous 
velocity can be determined from the gradient of a displacement–time graph.

Top tip!
When a direction of motion is clearly stated (such as ‘up’, ‘to the north’, ‘to the right’ and so on), it is 
very clear that a velocity is being discussed. However, we may commonly refer to the ‘velocity’ of a 
car, for example, without stating a direction. Although this is casual, it is usually acceptable because 
an unchanging direction is implied, even if it is not specified. For example, we may assume that the 
direction of the car is along a straight road.

 ◆ Velocity, v Rate of 
change of position.

369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   5369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   5 04/01/2023   19:2904/01/2023   19:29



6 Theme A: Space, time and motion

A satellite moves in circles along the same path around 
the Earth at a constant distance of 6.7 × 103 km from the 
Earth’s centre. Each orbit takes a time of 90 minutes.
a Calculate the average speed of the satellite.
b Describe the instantaneous velocity of the satellite.
c Determine its displacement from the centre of the 

Earth after
i 360 minutes
ii 405 minutes.

Answer

a v = 
circumference
time for orbit  

= 
2πr
Δt

 = 
(2 × π × 6.7 × 106)

(90 × 60)
 = 7.8 × 103 m s–1

b The velocity also has a constant magnitude of 
7.8 × 103 m s−1, but its direction is continuously changing. 
Its instantaneous velocity is always directed along a 
tangent to its circular orbit. See Figure A1.8.

v

	■ Figure A1.8 Satellite’s instantaneous velocity

c i 360 minutes is the time for four complete orbits. 
The satellite will have returned to the same place. 
Its displacement from the centre of the Earth 
compared to 360 minutes earlier will be the same. 
(But the Earth will have rotated.)

ii In the extra 45 minutes the satellite will have 
travelled half of its orbit. It will be on the opposite 
side of the Earth’s centre, but at the same distance. 
We could represent this as −6.7 × 103 km from the 
Earth’s centre.

WORKED EXAMPLE A1.1

 ◆ Orbit The curved 
path (may be circular) of 
a mass around a larger 
central mass.

 ◆ Tangent Line which 
touches a given curve at a 
single point.

1 Calculate the average speed (m s−1) of an athlete who 
can run a marathon (42.2 km) in 2 hours, 1 minute and 9 
seconds. (The men’s world record at the time of writing.)

    

	■ Figure A1.9  
Eliud Kipchoge, 
world record 
holder for the 
men’s marathon

2 A small ball dropped from a height of 2.0 m takes 0.72 s 
to reach the ground.

a Calculate 
2.0
0.72

b What does your answer represent?
c The speed of the ball just before it hits the ground is 

5.3 m s−1. This is an instantaneous speed. Distinguish 
between an instantaneous value and an average value.

d State the instantaneous velocity of the ball just before 
it hits the ground.

e After bouncing, the ball only rises to a lower height. 
Give a rough estimate of the instantaneous velocity of 
the ball as it leaves the ground.

3 A magnetic field surrounds the Earth and it can be 
detected by a compass. State whether it is a scalar or a 
vector quantity. Explain your answer.

4 On a flight from Rome to London, a figure of 900 km h−1 
is displayed on the screen.
a State whether this is a speed or a velocity.
b Is it an average or instantaneous value?
c Convert the value to m s−1.
d Calculate how long it will take the aircraft to travel a 

distance of 100 m.
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A.1   Kinematics 7

Acceleration

SYLLABUS CONTENT

 Acceleration is the rate of change of velocity.
 Motion with uniform and non-uniform acceleration.

Any variation from moving at a constant speed in a straight line is described as an acceleration.

Going faster, going slower and/or changing direction are all different kinds of acceleration 
(changing velocities).

When the velocity (or speed) of an object changes during a certain time, the symbol u is used 
for the initial velocity and the symbol v is used for the final velocity. These velocities are not 
necessarily the beginning and end of the entire motion, just the velocities at the start and end of 
the period of time that is being considered.

Acceleration, a, is defined as the rate of change of velocity with time:

a = 
Δv
Δt 

= 
(v – u)

t  
(SI unit m s–2)

One way to determine an acceleration is to measure two velocities and the time between the 
measurements. Figure A1.10 shows an example.

air track

light gate

glider

	■ Figure A1.10 Measuring two velocities to determine an acceleration

Acceleration is a vector quantity. For a typical motion in which displacement and velocity are both 
given positive values, a positive acceleration means increasing speed in the same direction (+Δv), 
while a negative acceleration means decreasing speed in the same direction (−Δv). In everyday 
speech, a reducing speed is often called a deceleration.

For a motion in which displacement and velocity are given negative values, a positive acceleration 
means a decreasing speed. For example, a velocity change from –6 m s−1 to –4 m s−1 in 0.5 s 
corresponds to an acceleration:

a = 
Δv
Δt

 = 
([–4]–[–6])

0.5
 = + 4 ms–2

As with speed and velocity, we may need to distinguish between average acceleration over a time 
interval, or instantaneous acceleration at a particular moment.

 ◆ Acceleration, a Rate 
of change of velocity with 
time. Acceleration is a 
vector quantity.

 ◆ Deceleration Term 
commonly used to describe 
a decreasing speed. 
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8 Theme A: Space, time and motion

A high-speed train travelling with a velocity of 84 m s−1 needs to slow down and stop in a 
time of one minute.
a Determine the necessary average acceleration.
b Calculate the distance that the train will travel in this time assuming that the 

acceleration is uniform.

Answer

a a = 
Δv
Δt 

= 
(0 – 84)

60  = –1.4 m s–2

 The acceleration is negative. The negative sign shows that the velocity is decreasing.

b average speed = 
(84 – 0)

2  = 42 m s–1

 distance = average speed × time = 42 × 60 = 2.5 × 103 m

 WORKED EXAMPLE A1.2

5 A car moving at 12.5 m s−1 accelerates uniformly on a straight road at a rate of 0.850 m s−2.
a Calculate its velocity after 4.60 s.
b What uniform rate of acceleration will reduce the speed to 5.0 m s−1 in a further 12 s?

6 An athlete accelerates uniformly from rest at the start of a race at a rate of 4.3 m s−2. How 
much time is needed before her speed has reached 8.0 m s−1?

7 A trolley takes 3.62 s to accelerate from rest uniformly down a slope at a rate of 0.16 m s−2. A 
light gate at the bottom of the slope records a velocity of 0.58 m s−1. What was the speed about 
halfway down the slope, 1.2 s earlier?

Inquiry 1: Exploring and designing

Designing

Suppose that the Principal of your school or college is worried 
about safety from traffic on the nearby road. He has asked your 
physics class to collect evidence that he can take to the police. 
He is concerned that the traffic travels too fast and that the 
vehicles do not slow down as they approach the school.
1 Using a team of students, working over a period of one 

week, with tape measures and stop watches, develop an 
investigation which will produce sufficient and accurate data 
that can be given in a report to the Principal. Explain how you 
would ensure that the investigation was carried out safely.

2 What is the best way of presenting a summary of this data?

TH
E IB LEARNER PRO

FILE

Tool 3: Mathematics

Interpret features of graphs

In order to analyse and predict motions we 
have two methods: graphical and algebraic. 
Firstly, we will look at how motion can be 
represented graphically.

Graphs can be drawn to represent any motion 
and they provide extra understanding and insight 
(at a glance) that very few of us can get from 
written descriptions or equations. Furthermore, 
the gradients of graphs and the areas under graphs 
often provide additional useful information.

	■ Displacement–time graphs and distance–time graphs
Displacement–time graphs, similar to those shown in Figure A1.11, show how the displacements 
of objects from a known reference point vary with time. All the examples shown in Figure A1.11 
are straight lines and are representing linear relationships and constant velocities.
l Line A represents an object moving away from the reference point (zero displacement) such 

that equal displacements occur in equal times. That is, the object has a constant velocity.  

 ◆ Linear relationship 
One which produces a 
straight line graph. 
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A.1   Kinematics 9

Any linear displacement–time graph represents a constant velocity (it does not need to start or 
end at the origin).

l Line B represents an object moving with a greater velocity than A.
l Line C represents an object that is moving back towards the reference point.
l Line D represents an object that is stationary (at rest). It has zero velocity and stays at the same 

distance from the reference point.

Figure A1.12 shows how we can represent displacements in opposite directions from the same 
reference point.

The solid line represents the motion of an object moving with a constant (positive) velocity. The 
object moves towards a reference point (where the displacement is zero), passes it, and then moves 
away from the reference point with the same velocity. The dotted line represents an identical speed 
in the opposite direction (or it could also represent the original motion if the directions chosen to 
be positive and negative were reversed).

Any curved (non-linear) line on a displacement–time graph represents a changing velocity, in 
other words, an acceleration. This is illustrated in Figure A1.13.
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	■ Figure A1.12 Motion in opposite directions 
represented on a displacement–time graph
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	■ Figure A1.13 Accelerations on displacement–time graphs

Figure A1.13a shows motion away from a reference point. Line A represents an object 
accelerating. Line B represents an object decelerating. Figure A1.13b shows motion towards a 
reference point. Line C represents an object accelerating. Line D represents an object decelerating. 
The values of the accelerations represented by these graphs may, or may not, be constant. (This 
cannot be determined without a more detailed analysis.)

In physics, we are usually more concerned with displacement–time graphs than distance–time 
graphs. In order to explain the difference, consider Figure A1.14.

Figure A1.14a shows a displacement–time graph for an object thrown vertically upwards with an 
initial speed of 20 m s−1 (without air resistance). It takes 2 s to reach a maximum height of 20 m. At 
that point it has an instantaneous velocity of zero, before returning to where it began after 4 s and 
regaining its initial speed. Figure A1.14b is a less commonly used graph showing how the same 
motion would appear on an overall distance–time graph.

Tool 3: Mathematics

Interpret features of graphs: gradient

In this topic we will need to repeatedly use the following information:
l The gradient of a displacement–time graph equals velocity.
l The gradient of a velocity–time graph equals acceleration.

In the following section we will explore how to measure and interpret gradients.

00
0

0
0 0

C

D

s

t Time, t Time, t

D
is

pl
ac

em
en

t,
 s

D
is

pl
ac

em
en

t,
 s

equal time intervals

eq
ua

l c
ha

ng
es

 in
di

sp
la

ce
m

en
t

A
B

00
0

0
0 0

C

D

s

t Time, t Time, t

D
is

pl
ac

em
en

t,
 s

D
is

pl
ac

em
en

t,
 s

equal time intervals

eq
ua

l c
ha

ng
es

 in
di

sp
la

ce
m

en
t

A
B

00
0

0
0 0

C

D

s

t Time, t Time, t

D
is

pl
ac

em
en

t,
 s

D
is

pl
ac

em
en

t,
 s

equal time intervals

eq
ua

l c
ha

ng
es

 in
di

sp
la

ce
m

en
t

A
B

	■ Figure A1.11 
Constant velocities on 
displacement–time graphs
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	■ Figure A1.14 
a Displacement–time and 
b distance–time graphs for an 
object moving up and then down
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10 Theme A: Space, time and motion

	■ Gradients of displacement–time graphs
Consider the motion at constant velocity represented by Figure A1.15.

The gradient of the graph = 
Δs
Δt

, which is the velocity of the object. A downwards sloping 

graph would have a negative gradient (velocity).

In this example,

constant velocity, v = 
Δs
Δt

 = 
(20 – 8.0)
(8.0 – 2.0)

 = 2.0 m s–1

Figure A1.16 represents the motion of an object with a changing velocity, 
that is, an accelerating object.

The gradient of this graph varies, but at any point it is still equal to the 
velocity of the object at that moment, that is, the instantaneous velocity.

The gradient (velocity) can be determined at any time by drawing a 
tangent to the curve, as shown.

The triangle used to calculate the gradient should be large, in order to 
make this process as accurate as possible. In this example:

velocity at time t2 = 
(18 – 3.0)
(23 – 5.0)

 = 0.83 m s–1

A tangent drawn at time t1 would have a smaller gradient and represent 
a smaller velocity. A tangent drawn at time t3 would represent a 
larger velocity.
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	■ Figure A1.16 Finding an instantaneous velocity 
from a curved displacement–time graph

 ◆ Gradient The rate 
at which one physical 
quantity changes in 
response to changes in 
another physical quantity. 
Commonly, for an y–x 

graph, gradient  = 
Δy
Δx

. 
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	■ Figure A1.15 Finding 
a constant velocity from a 
displacement–time graph

We have been referring to the object's displacement and velocity, although no direction has been 
stated. This is acceptable because that information would be included when the origin of the graph 
was explained. If information was presented in the form of a distance–time graph, the gradient 
would represent the speed.

In summary:

The gradient of a displacement–time graph represents velocity.

The gradient of a distance–time graph represents speed.

Figure A1.17 represents the motion of a train on a straight track between two stations.
a Describe the motion. b State the distance 

between the two stations.
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	■ Figure A1.17 Distance–time graph for train on a straight track

c Calculate the maximum 
speed of the train.

d Determine the average 
speed of the train.

Answer
a The train started from rest. For the first 90 s the train 

was accelerating. It then travelled with a constant 
speed until a time of 200 s. After that, its speed 
decreased to become zero after 280 s.

b 3500 m
c From the steepest, straight section of the graph:

 v = 
Δs
Δt = 

(3000 – 800)
(200 – 90)  = 20 m s–1

d average speed = 
total distance travelled

time taken  = 
3500
300  = 11.7 m s–1

WORKED EXAMPLE A1.3

369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   10369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   10 04/01/2023   19:2904/01/2023   19:29



A.1   Kinematics 11

8 Draw a displacement–time graph for a swimmer 
swimming a total distance of 100 m at a constant speed of 
1.0 m s−1 in a swimming pool of length 50 m.

9 Describe the motion of a runner as shown by the graph in 
Figure A1.18.
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	■ Figure A1.18 Displacement–time graph for a runner

10 Sketch a displacement–time graph for the following 
motion: a stationary car is 25 m away; 2 s later it starts 
to move further away in a straight line from you with a 
constant acceleration of 1.5 m s−2 for 4 s; then it continues 
with a constant velocity for another 8 s.

11 Figure A1.19 is a displacement–time graph for an object.
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	■ Figure A1.19 A displacement–time graph for an object

a Describe the motion represented by the graph in 
Figure A1.19.

b Compare the velocities at points A and B.
c When is the object moving with its maximum and 

minimum velocities?
d Estimate values for the maximum and minimum 

velocities.
e Suggest what kind of object could move in this way.

	■ Velocity–time graphs and speed–time graphs
Figure A1.20, shows how the velocity of four objects changed with time. Any straight (linear) line 
on any velocity–time graph shows that equal changes of velocity occur in equal times – that is, it 
represents constant acceleration.
l Line A shows an object that has a constant positive acceleration.
l Line B represents an object moving with a greater positive acceleration than A.
l Line C represents an object that has a negative acceleration.
l Line D represents an object moving with a constant velocity – that is, it has zero acceleration.

Curved lines on velocity–time graphs represent changing accelerations.

Velocities in opposite directions are represented by positive and negative values.

We will return to the example shown in Figure A1.14 to illustrate the difference between 
velocity–time and speed–time graphs. Figure A1.21a shows how the speed of an object changes 
as it is thrown up in the air (without air resistance), reaches its highest point, where its speed has 
reduced to zero, and then returns downwards. Figure A1.21b shows the same information in terms 
of velocity. Positive velocity represents motion upwards, negative velocity represents motion 
downwards. In most cases, the velocity graph is preferred to the speed graph.0
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	■ Figure A1.21 a Speed–time and b velocity–time  
graphs for an object thrown upwards.
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	■ Figure A1.20 
Constant accelerations on 
velocity–time graphs
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12 Theme A: Space, time and motion

Gradients of velocity–time graphs

Consider the motion at constant acceleration shown by the straight line in Figure A1.22.
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	■ Figure A1.22 Finding the gradient of a velocity–time graph

The gradient of the graph = 
Δv
Δt

, which is equal to the acceleration of the object.

In this example, the constant acceleration:

a = 
Δv
Δt

 = 
(12.0 – 7.0)
(9.0 – 4.0)

 = + 1.0 m s–2

The acceleration of an object is equal to the gradient of the velocity–time graph.

A changing acceleration will appear as a curved line on a velocity–time graph. A numerical value 
for the acceleration at any time can be determined from the gradient of the graph at that moment. 
See Worked example A1.4.

The red line in Figure A1.23 shows an object decelerating (a decreasing negative 
acceleration). Use the graph to determine the instantaneous acceleration at a time of 10.0 s.
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	■ Figure A1.23 Finding an instantaneous acceleration from a velocity–time graph

Answer
Using a tangent to the curve drawn at t = 10 s.

Acceleration, a = 
Δv
Δt = 

(0 – 12)
(22 – 0) = –0.55 m s–2

The negative sign indicates a deceleration. In this example the large triangle used to determine 
the gradient accurately was drawn by extending the tangent to the axes for convenience.

 WORKED EXAMPLE A1.4
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A.1   Kinematics 13

Tool 3: Mathematics

Interpret features of graphs: areas under 
the graph

The area under many graphs has a physical meaning. As 
an example, consider Figure A1.24a, which shows part of 
a speed–time graph for a vehicle moving with constant 
acceleration. The area under the graph (the shaded area) 
can be calculated from the average speed, given by 
(v1 + v2)

2 , multiplied by the time, Δt.

The area under the graph is therefore equal to the distance 
travelled in time Δt. In Figure A1.24b a vehicle is moving 
with a changing (decreasing) acceleration, so that the 
graph is curved, but the same rule applies – the area under 
the graph (shaded) represents the distance travelled in 
time Δt.

The area in Figure A1.24b can be estimated in a number 
of different ways, for example by counting small squares, 
or by drawing a rectangle that appears (as judged by 
eye) to have the same area. (If the equation of the line 
is known, it can be calculated using the process of 
integration, but this is not required in the IB course.)

In the following section, we will show how a change in 
displacement can be calculated from a velocity–time graph.

0
0

a

Δt

v1

v2

Time, t

Sp
ee

d,
 v

0
0

b

Δt Time, t

Sp
ee

d,
 v

 

0
0

a

Δt

v1

v2

Time, t

Sp
ee

d,
 v

0
0

b

Δt Time, t

Sp
ee

d,
 v

	■ Figure A1.24 Area under a speed–time graph for 
a constant acceleration and b changing acceleration

	■ Areas under velocity–time and speed–time graphs
As an example, consider again Figure A1.22. The change of displacement, Δs, between the fourth 
and ninth seconds can be found from (average velocity) × time.

Δs =  
(12.0 + 7.0)

2
 × (9.0 – 4.0) = 47.5 m

This is numerically equal to the area under the line between t = 4.0 s and t = 9.0 s (as shaded in 
Figure A1.22). This is always true, whatever the shape of the line.

The area under a velocity–time graph is always equal to the change of displacement.

The area under a speed–time graph is always equal to the distance travelled.

As an example, consider Figure A1.21a. The two areas under the speed–time graph are equal and 
they are both positive. Each area equals the vertical height travelled by the object. The total area = 
total distance = twice the height. Each area under the velocity graph also represents the height, but 
the total area is zero because the areas above and below the time axis are equal, indicating that the 
final displacement is zero – the object has returned to where it started.

 ◆ Integration 
Mathematical process used 
to determine the area under 
a graph.
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14 Theme A: Space, time and motion

Figure A1.25 shows a velocity–time graph for an athlete running 100 m in 10.0 s. The 
area under the curve is equal to 100 m and it equals the area under the dotted line. (The 
two shaded areas are judged by sight to be equal.) The initial acceleration of the athlete 
is very important, and in this example, it is about 5 m s−2.

    

	■ Figure A1.26 Elaine 
Thompson-Herah (Jamaica) 
won the women’s 100 m 
in the Tokyo Olympics in 
2021 in a time of 10.54 s

12 Look at the graph in Figure A1.27.
a Describe the straight-line motion represented by 

the graph.
b Calculate accelerations for the three parts of the journey.
c What was the total distance travelled?
d What was the average velocity?
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	■ Figure A1.27 

Velocity–time graph

13 The velocity of a car was read from its speedometer 
at the moment it started and every 2 s afterwards. The 
successive values (converted to m s−1) were: 0, 1.1, 2.4, 
6.9, 12.2, 18.0, 19.9, 21.3 and 21.9.
a Draw a graph of these readings.
b Use the graph to estimate

i the maximum acceleration
ii the distance covered in 16 s.

14 Look at the graph in Figure A1.28.
a Describe the straight-line motion of the object 

represented by the graph.
b Calculate the acceleration during the first 8 s.
c What was the total distance travelled in 12 s?
d What was the total displacement after 12 s?
e What was the average velocity during the 12 s interval?
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	■ Figure A1.28 

Velocity–time graph

15 Sketch a velocity–time graph of the following motion: 
a car is 100 m away and travelling along a straight 
road towards you at a constant velocity of 25 m s−1. 
Two seconds after passing you, the driver decelerates 
uniformly and the car stops 62.5 m away from you.

16 Figure A1.29 shows how the velocity of a car, moving in 
a straight line, changed in the first 5 s after starting.

 Use the area under the graph to show that the distance 
travelled was about 40 m.
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	■ Figure A1.29 
Determining the 
displacement of a car 
during acceleration
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	■ Figure A1.25 Velocity–time 
graph for an athlete running 100 m
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A.1   Kinematics 15

Tool 2: Technology

Use spreadsheets to manipulate data

Figure A1.30 represents how the velocities of two identical 
cars changed from the moment that their drivers saw 
danger in front of them and tried to stop their cars as 
quickly as possible. It has been assumed that both drivers 
have the same reaction time (0.7 s) and both cars decelerate 
at the same rate (−5.0 m s−2).

The distance travelled at constant velocity before the 
driver reacts and depresses the brake pedal is known 
as the ‘thinking distance’. The distance travelled while 
decelerating is called the ‘braking distance’. The total 
stopping distance is the sum of these two distances.

Car B, travelling at twice the velocity of car A, has twice 
the thinking distance. That is, the thinking distance is 
proportional to the velocity of the car. The distance travelled 
when braking, however, is proportional to the velocity 
squared. This can be confirmed from the areas under the 
v–t graphs. The area under graph B is four times the area 
under graph A (during the deceleration). This has important 
implications for road safety and most countries make sure 
that people learning to drive must understand how stopping 
distances change with the vehicle’s velocity. Some countries 
measure the reaction times of people before they are given a 
driving licence.

Set up a spreadsheet that will calculate the total 
stopping distance for cars travelling at initial speeds, u, 
between 0 and 40 m s−1 with a deceleration of −6.5 m s−2. 
(Make calculations every 2 m s−1.) The thinking distance 
can be calculated from st = 0.7u (reaction time 0.7 s).

In this example the braking time can be calculated from:

tb = 
u

6.5

and the braking distance can be calculated from:

sb = (u2)tb

Use the data produced to plot a computer-generated graph 
of stopping distance (y-axis) against initial speed (x-axis).
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 ◆ Spreadsheet (computer) 
Electronic document in 
which data is arranged 
in the rows and columns 
of a grid, and can be 
manipulated and used 
in calculations.

	■ Figure A1.30 Velocity–time 
graphs for two cars braking

	■ Acceleration–time graphs
In this topic, we are mostly concerned with constant accelerations. The graphs in Figure A1.31 
show five straight lines representing constant accelerations. A changing acceleration would be 
represented by a curved line on the graph.
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	■ Figure A1.31 Graphs of constant acceleration

l Line A shows zero acceleration, constant velocity.
l Line B shows a constant positive acceleration (uniformly increasing velocity).
l Line C shows the constant negative acceleration (deceleration) of an object that is slowing 

down at a uniform rate.
l Line D shows a (linearly) increasing positive acceleration.
l Line E shows an object that is accelerating positively, but at a (linearly) decreasing rate.
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16 Theme A: Space, time and motion

Areas under acceleration–time graphs

Figure A1.32 shows the constant acceleration of a moving car.

Using a = 
Δv
Δt

, between the fifth and thirteenth seconds, the velocity of the car 
increased by:

Δv = aΔt = 1.5 × (13.0 – 5.0) = 12 m s−1

The change in velocity is numerically equal to the area under the line between t = 5 s and t = 
13 s (the shaded area in Figure A1.32). This is always true, whatever the shape of the line.

The area under an acceleration–time graph is equal to the change of velocity.
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	■ Figure A1.32 Calculating change of 
velocity from an acceleration–time graph

17 Draw an acceleration–time graph for a car that starts from rest, accelerates 
at 2 m s−2 for 5 s, then travels at constant velocity for 8 s, before decelerating 
uniformly to rest again in a further 2 s.

18 Figure A1.33 shows how the acceleration of a car changed during a 6 s interval.
 If the car was travelling at 2 m s−1 after 1 s, estimate a suitable area under 

the graph and use it to determine the approximate speed of the car after 
another 5 s.

19 Sketch displacement–time, velocity–time and acceleration–time graphs for a 
bouncing ball that was dropped from rest.

 Continue the sketches until the third time that the ball contacts the ground.

1.0

0

2.0

3.0

4.0

5.0

A
cc

el
er

at
io

n/
m

 s
–2

0 2 4 6
Time/s

	■ Figure A1.33 Acceleration–time 
graph for an accelerating car

TOK

Mathematics and the arts
l Why is mathematics so important in some areas of knowledge, particularly the natural sciences?

If you study Mathematics: Analysis and Approaches (SL or HL) or Mathematics: Applications and 
Interpretations (HL) you will explore how calculus is used to mathematically describe changing 
functions. The gradient of a function is found using the process of differentiation and the area under a 
curve is found using the process of integration. The mathematical procedures for calculus were developed 
by Isaac Newton and he first published his ‘method of fluxions’ as an appendix to his book Opticks 
in 1704. Newton is usually therefore credited with the ‘invention’ of calculus – although historians of 
science point to the earlier work of Gottfried Wilhelm Leibniz, published in 1684. Newton accused 
Leibniz of plagiarism, even though Leibniz’s work was published first! In fact, it is Leibniz’s notation 
that we still use today. So, who invented calculus?

 ◆ Calculus Branch of 
mathematics which deals 
with continuous change. 

 ◆ Differentiate 
Mathematically determine 
an equation for a rate 
of change.

TH
E IB LEARNER PRO

FILE
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A.1   Kinematics 17

Equations of motion for uniformly 
accelerated motion

SYLLABUS CONTENT

 The equations of motion for solving problems with uniformly accelerated motion as given by:

 s = 
(u + v)

2 t

 v = u + at

 s = ut + 
1
2at2

 v2 = u2 + 2as

The five quantities u, v, a, s and t are all that is needed to fully describe the motion of an object 
that is moving with uniform acceleration.
l u = velocity (speed) at the start of time t
l v = velocity (speed) at the end of time t
l a = acceleration (constant)
l s = displacement occurring in time t
l t = time taken for velocity (speed) to change from u to v and to travel a distance s.

If any three of the quantities are known, the other two can be calculated using the first two 
equations highlighted below.

If we know the initial velocity u and the uniform acceleration a of an object, then we can 
determine its final velocity v after a time t by rearranging the equation used to define acceleration:

a = 
(v – u)

t
 

This gives:

v = u + at

If an object moving with velocity u accelerates uniformly to a velocity v, then its average velocity is:

(u + v)
2

 

Then, since distance = average velocity × time:

s = 
(u + v)

2
t

These two equations can be combined mathematically to give two further equations, shown below. 
These very useful equations do not involve any further physics theory, they just express the same 
physics principles in a different way.

s = ut + 
1
2
 at2

v2 = u2 + 2as

DB

DBLINKING QUESTION
l How are the 

equations for 
rotational motion 
related to those for 
linear motion?

This question links 
to understandings in 
Topic A.4.

DB

 ◆ Equations of motion 
Equations that can be used 
to make calculations about 
objects that are moving 
with uniform acceleration. 
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18 Theme A: Space, time and motion

A Formula One racing car (see Figure A1.34) accelerates 
from rest at 18 m s−2.

	■ Figure A1.34 Formula One racing cars at the starting grid

a Calculate its speed after 3.0 s.
b Calculate how far it travels in this time.
c If it continues to accelerate at the same rate, determine 

its velocity after it has travelled 200 m from the start.

Answer
a  v = u + at = 0 + (18 × 3.0) = 54 m s−1

b  s = 
(u + v)

2 t = 
(0 + 54)

2  × 30 = 81 m 

 But note that the distance can be calculated directly, 
without first calculating the final velocity, as follows:

  s = ut + 
1
2at2 = (0 × 3.0) + (0.5 × 18 × 3.02) = 81 m

c  v2 = u2 + 2as = 02 + (2 × 18 × 200) = 7200
  v = 85 m s−1

 WORKED EXAMPLE A1.5

A train travelling at 50 m s−1 (180 km h−1) needs 
to decelerate uniformly so that it stops at a station 
2.0 kilometres away.
a Determine the necessary deceleration.
b Calculate the time needed to stop the train.

Answer
a  v2 = u2 + 2as
  02 = 502 + (2 × a × 2000)
  a = −0.63 m s−2

b  v = u + at 
  0 = 50 + (−0.63) × t
  t = 80 s
 Alternatively, you could use s = 

(u + v)
2 t

 WORKED EXAMPLE A1.6

In the following questions, assume that all accelerations 
are uniform.

20 A ball rolling down a slope passes a point P with a 
velocity of 1.2 m s−1. A short time later it passes point Q 
with a velocity of 2.6 m s−1.
a What was its average velocity between P and Q?
b If it took 1.4 s to go from P to Q, determine the 

distance PQ.
c Calculate the acceleration of the ball.

21 An aircraft accelerates from rest along a runway and 
takes off with a velocity of 86.0 m s−1. Its acceleration 
during this time is 2.40 m s−2.
a Calculate the distance along the runway that the 

aircraft needs to travel before take-off.
b Predict how long after starting its acceleration the 

aircraft takes off.
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A.1   Kinematics 19

22 An ocean-going cruiser can decelerate no quicker than 
0.0032 m s−2.

	■ Figure A1.35 Ocean-going cruise liner

a Determine the minimum distance needed to stop if 
the ship is travelling at 10 knots. (1 knot = 0.514 m s−1)

b How much time does this deceleration require?

23 An advertisement for a new car states that it can travel 
100 m from rest in 8.2 s.
a  Discuss why the car manufacturers express the 

acceleration in this way (or the time needed to reach a 
certain speed).

b  Calculate the average acceleration. 
c  Calculate the velocity of the car after this time.

24 A car travelling at a constant velocity of 21 m s−1 (faster than 
the speed limit of 50 km h−1) passes a stationary police car.

 The police car accelerates after the other car at 4.0 m s−2 
for 8.0 s and then continues with the same velocity until it 
overtakes the other car.
a When did the two cars have the same velocity?
b Determine if the police car has overtaken the other 

car after 10 s.
c By equating two equations for the same distance at 

the same time, determine exactly when the police car 
overtakes the other car.

25 A car brakes suddenly and stops 2.4 s later, after 
travelling a distance of 38 m.
a Calculate its deceleration.
b What was the velocity of the car before braking?

26 A spacecraft travelling at 8.00 km s−1 accelerates at 
2.00 × 10−3 m s−2 for 100 hours.
a How far does it travel during this acceleration?
b What is its final velocity?

27 Combine the first two equations of motion (given on 
page 17) to derive the second two equations:

 v2 = u2 + 2as

 s = ut + 
1
2
at2

Acceleration due to gravity
The motions of objects through the air are common 
events and deserve special attention.

At the start, we will consider only objects that are moving 
vertically up, or down, under the effects of gravity 
only. That is, we will assume (to begin with) that air 
resistance has no significant effect.

When an object held up in the air is released from rest, it 
will accelerate downwards because of the force of gravity. 
Figure A1.36 shows a possible experimental arrangement 
that could be used to determine a value for this acceleration.

Inquiry 2: Collecting and processing data

Collecting data

Figure A1.36 shows how the time for a steel ball to fall a certain distance can be 
determined experimentally.

Describe how this apparatus can be used to collect and record sufficient, relevant 
quantitative data which will enable an accurate value for the acceleration of free fall to be 
determined from a suitable graph.

s

ruler

electromagnet
steel ball

timer

trapdoor

	■ Figure A1.36 An experiment to 
measure the acceleration due to gravity

 ◆ Air resistance Resistive 
force opposing the motion 
of an object through air. 
A type of drag force.
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20 Theme A: Space, time and motion

In the absence of air resistance, all objects (close to the Earth’s surface) fall towards the Earth 
with the same acceleration, g = 9.8 m s−2

g is known as the acceleration of free fall due to gravity (sometimes called acceleration due to 
free fall).

g is not a true constant. Its value varies very slightly at different locations around the world. 
Although, to 2 significant figures (9.8) it has the same value everywhere on the Earth’s surface. 
A convenient value of g = 10 m s−2 is commonly used in introductory physics courses.

The acceleration of free fall (g) reduces with distance from the Earth. (For example, at a height 
of 100 km above the Earth’s surface the value of g is 9.5 m s−2.) We will return to this subject in 
Topic D.1.

A ball is dropped vertically from a height of 18.3 m. Assuming that the acceleration of free 
fall is 9.81 m s−2 and air resistance is negligible, calculate:
a its velocity after 1.70 s
b its height after 1.70 s
c its velocity when it hits the ground
d the time for the ball to reach the ground.

Answer
a  v = u + at = 0 + (9.81 × 1.70) = 16.7 m s–1

b  s = ut + 
1
2at2 = 0 + (12 × 9.81 × 1.702) = 14.2 m

 So, height above ground = (18.3 – 14.2) = 4.1 m
c  v2 = u2 + 2as = 02 + (2 × 9.81 × 18.3) = 359
  v = 18.9 m s−1

d  v = u + at
 18.9 = 0 + (9.81 × t)
  t = 1.93 s

 WORKED EXAMPLE A1.7

Tool 3: Mathematics

Appreciate when some effects can be neglected and why this is useful

When studying physics, you may be advised to make 
assumptions when answering numerical questions. For 
example: ‘assume that air resistance is negligible / is 
insignificant’. It is possible that this is a true statement, for 
example, air resistance will have no noticeable effect on 
a solid rubber ball falling 50 cm to the ground. However, 
the usual reason for advising you to ignore an effect is to 
make the calculation simpler, and not go beyond what is 
required in your course.

Calculating the time for a table-tennis ball dropped 
50 cm to the ground will result in an underestimate if air 
resistance is ignored, but the answer can be interpreted as 
a lower limit to the time taken, and you may be questioned 
on your understanding of that.

Other examples will be found in all topics. Examples 
include: assuming friction between surfaces is negligible 
(Topic A.2); assuming thermal energy losses are 
negligible (Topic B.1); assuming the internal resistance of 
a battery is negligible (Topic B.5).

 ◆ Acceleration due to 
gravity, g Acceleration 
of a mass falling freely 
towards Earth. On, or 
near the Earth’s surface, 
g = 9.8 ≈ 10 m s−2. Also 
called acceleration of 
free fall.

 ◆ Free fall Motion 
through the air under 
the effects of gravity but 
without air resistance. 

 ◆ Negligible Too small to 
be significant.

DB
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A.1   Kinematics 21

	■ Moving up and down

If gravity is the only force acting, all objects close to the Earth's surface have the same 
acceleration (9.8 m s−2 downwards), whatever their mass and whether they are moving down, 
moving up or moving sideways.

The velocity of an object moving freely vertically downwards will increase by 9.8 m s−1 every 
second. The velocity of an object moving freely vertically upwards will decrease by 9.8 m s−1 
every second.

Top tip!
Displacement, velocity and acceleration are 
all vector quantities and the signs used for 
motions up and down can be confusing.

If displacement measured up from the 
ground is considered to be positive, then 
the acceleration due to gravity is always 
negative. Velocity upwards is positive, 
while velocity downwards is negative.

If displacement measured down from the 
highest point is considered to be positive, 
then the acceleration due to gravity is always 
positive. Velocity upwards is negative, while 
velocity downwards is positive.

positive
velocity

negative
velocity

displacement
positive

acceleration
negative

acceleration
positive

displacement
positive

greatest
height

velocity
positive

velocity
negative

OR

	■ Figure A1.37 Directions of vectors

A ball is thrown vertically upwards and reaches a maximum height of 21.4 m. For the 
following questions, assume that g = 9.81 m s–2.
a Calculate the speed with which the ball was released.
b State any assumption that you made in answering a.
c Determine where the ball will be 3.05 s after it was released.
d Calculate its velocity at this time.

Answer
a  v2 = u2 + 2as
  02 = u2 + (2 × [−9.81] × 21.4)
  u2 = 419.9
  u = 20.5 m s−1

 In this example, the vector quantities directed upwards (u, v, s) are considered positive 
and the quantity directed downwards (a) is negative. The same answer would be 
obtained by reversing all the signs.

b It was assumed that there was no air resistance.

c  s = ut + 
1
2at2 = (20.5 × 3.05) + (12 × [–9.81] × 3.052)

  s = +16.9 m (above the ground)
d  v = u + at = 20.5 + (−9.81 × 3.05)
   = −9.42 m s−1 (moving downwards)

 WORKED EXAMPLE A1.8
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22 Theme A: Space, time and motion

In the following questions, ignore the possible effects of 
air resistance.

Use g = 9.81 m s−2.

28 Discuss possible reasons why the acceleration due to 
gravity is not exactly the same everywhere on or near the 
Earth’s surface.

29 a How long does it take a stone dropped from rest from 
a height of 2.1 m to reach the ground?

b If the stone was thrown downwards with an initial 
velocity of 4.4 m s−1, calculate the speed with which it 
hits the ground.

c If the stone was thrown vertically upwards with an 
initial velocity of 4.4 m s−1, with what speed would it 
hit the ground?

30 A small rock is thrown vertically upwards with an initial 
velocity of 22 m s−1.
a Calculate when its velocity will be 10 m s−1.
b  Explain why there are two possible answers to a.

31 A falling ball has a velocity of 12.7 m s−1 as it passes a 
window 4.81 m above the ground.

 Predict when the ball will hit the ground.

32 A ball is thrown vertically upwards with a velocity of 
18.5 m s−1 from a window that is 12.5 m above the ground.
a Determine when it will pass the same point 

moving down.
b With what velocity will it hit the ground?
c Calculate how far above the ground the ball was after 

exactly 2.00 s.

33 Two balls are dropped from rest from the same height. 
If the second ball is released 0.750 s after the first, and 
assuming they do not hit the ground, calculate the 
distance between the balls:
a 3.00 s after the second ball was dropped
b 2.00 s later.

34 A stone is dropped from rest from a height of 34 m. 
Another stone is thrown downwards 0.5 s later.

 If they both hit the ground at the same time, show that 
the second stone was thrown with a velocity of 5.5 m s−1.

Projectile motion

SYLLABUS CONTENT

 The behaviour of projectiles in the absence of fluid resistance, and the application of the equations of 
motion resolved into vertical and horizontal components.

 The qualitative effect of fluid resistance on projectiles, including time of flight, trajectory, velocity, 
acceleration, range and terminal speed.

In our discussion of objects moving through the air, we have so far only considered motion 
vertically up or down. Now we will extend that work to cover objects moving in any direction. 
A projectile is an object that has been projected through the air (for example: fired, launched, 
thrown, kicked or hit) and which then moves only under the action of the force of gravity (and air 
resistance, if significant). A projectile has no ability to power or control its own motion.

Tool 3: Mathematics

Resolve vectors

This process occurs in several places during the course, but the most prominent examples 
are resolving velocities (as below) and forces.

	■ Components of a projectile’s velocity
The instantaneous velocity of a projectile at any time can conveniently be resolved into vertical 
and horizontal components, vV and vH, as shown in Figure A1.38.

 ◆ Projectile An object 
that has been projected 
through the air and which 
then moves only under 
the action of the forces of 
gravity and air resistance. 

 ◆ Resolve (a vector) To 
express a single vector 
as components (usually 
two components which 
are perpendicular to each 
other). 
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velocity of
projectile, v

horizontal
component
of velocity

vH = v cos θ

vertical
component
of velocity
vV = v sin θ

θ

   	■ Figure A1.38 Vertical and horizontal components of velocity

Vertical and horizontal components of velocity, v:

vV = v sin θ

vH = v cos θ

A tennis player strikes the ball so that it leaves the racket with 
a velocity of 64.0 m s−1 at an angle of 6.0° below the horizontal. 
Calculate the vertical and horizontal components of this velocity.

Answer
vH = v cos θ = 64.0 × cos 6.0 = 64 m s−1 (63.649... seen on calculator display)
vV = v sin θ = 64.0 × sin 6.0 = 6.7 m s−1 downwards

 WORKED EXAMPLE A1.9

	■ Figure A1.39 A tennis 
player serving a ball

Components perpendicular to each other can be analysed separately

The vertical and horizontal components of velocity can be treated separately (independently) 
in calculations.

l Earlier in this topic, we stated that any object (close to the Earth's surface) which is affected 
only by gravity (no air resistance) will accelerate towards the Earth with an acceleration of 
9.8 m s−2. This remains true even if the object is projected sideways (so that its velocity has a 
horizontal component).

l If there is no air resistance, the horizontal component of a projectile’s velocity will remain 
constant (until it comes into contact with something else).

Figure A1.40 shows a stroboscopic picture of a bouncing 
ball. The time intervals between each image of the ball are all 
the same.

The horizontal separations of successive images of the 
ball are all the same because the horizontal component of 
velocity is constant. The vertical separations of successive 
images of the ball increase as the ball accelerates as it falls, 
and the separations decrease as the ball decelerates as it 
moves upwards after bouncing on the ground.

The path followed by a projectile (as seen in Figure A1.40) 
is called its trajectory. The typical shape of a freely moving 
projectile is parabolic. The horizontal distance covered is 
called the range of the projectile.

Common 
mistake
When using these 
equations make sure that 
the angle θ is the angle 
between the velocity and 
the horizontal.

DB

	■ Figure A1.40 Parabolic trajectory of a bouncing ball

 ◆ Stroboscope Apparatus 
used for observing rapid 
motions. It produces 
regular flashes of light at 
an appropriate frequency 
chosen by the user.

 ◆ Trajectory Path 
followed by a projectile.

 ◆ Parabolic In the 
shape of a parabola. The 
trajectory of a projectile is 
parabolic in a gravitational 
field if air resistance 
is negligible. 

 ◆ Range (of a projectile) 
Horizontal distance 
travelled before impact 
with the ground.
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24 Theme A: Space, time and motion

Figure A1.41 compares the trajectory of an object dropped vertically to the trajectory of an 
object projected horizontally at the same time. Note that both objects fall equal distances in 
the same time. This is true whatever the horizontal component of velocity (assuming 
negligible air resistance)

Object projected horizontally
A bullet was fired horizontally with a speed of 524 m s−1 from a height of 22.0 m 
above the ground. Calculate where it hit the ground. Assume that air resistance was 
negligible.

Answer
First, we need to calculate how long the bullet is in the air. We can do this by finding 
the time that the same bullet would have taken to fall to the ground if it had been 
dropped vertically from rest (so u = 0):

 s = ut + 
1
2at2

22.0 = 0 + (0.5 × 9.81 × t2)
 t = 2.12 s
Without air resistance the bullet will continue to travel with the same horizontal 
component of velocity (524 m s−1) until it hits the ground 2.12 s later. Therefore:
horizontal distance travelled = horizontal velocity × time
horizontal distance = 524 × 2.12 = 1.11 × 103 m (1.11 km)

 WORKED EXAMPLE A1.10

 ATL A1A: Thinking skills 

Providing a reasoned argument to 
support conclusions
Figure A1.42 shows an experimental arrangement in which a 
steel ball can be projected horizontally from a table top.

Sketch a graph to show the pattern of results that you would 
expect to see when the range x was measured for different 
heights, h. Explain your reasoning.

table top
h

x

projectile path

	■ Figure A1.42 Investigating range, x, travelled by a projectile

Object projected at an angle to the horizontal
A stone was thrown upwards from a height 1.60 m above the ground with a speed of 18.0 m s−1 
at an angle of 52.0° to the horizontal. Assuming that air resistance is negligible, calculate:
a its maximum height
b the vertical component of velocity when it hits the ground
c the time taken to reach the ground
d the horizontal distance to the point where it hits the ground
e the velocity of impact.

 ◆ Impact Collision 
involving relatively large 
forces over a short time. 

 WORKED EXAMPLE A1.11

initial horizontal velocity

object
projected

horizontally

object dropped
vertically

	■ Figure A1.41 The parabolic 
trajectory of an object projected 
horizontally compared with an 
object dropped vertically
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A.1   Kinematics 25

Answer

First, we need to know the two components of the initial velocity:
vV= v sin θ = 18.0 sin 52.0° = 14.2 m s−1

vH= v cos θ = 18.0 cos 52.0° = 11.1 m s−1

a Using v2 = u2 + 2as for the upwards vertical motion (with directions upwards 
considered to be positive), and remembering that at the maximum height v = 0, we get:

  0 = 14.22 + [2 × (−9.81) × s]
  s = +10.3 m above the point from which it was released; a total height of 11.9 m.
b Using v2 = u2 + 2as for the complete motion gives:
  v2 = 14.22 + [2 × (−9.81) × (−1.60)]
  v = 15.27 = 15.3 m s−1 downwards
c Using v = u + at gives:
  –15.27 = 14.2 + (−9.81)t
  t = 3.00 s
d Using s = vt with the horizontal component of velocity gives:
  s = 11.1 × 3.00 = 33.3 m
e Figure A1.43 illustrates the information we have so far, and the unknown angle, θ, and 

velocity, vi.

52°
θ11.1 m s–1

33.3 m

10.3 m

11.1 m s–1

15.3 m s–1

vi
18.0 m s–1

14.2 m s–1

1.6 m

	■ Figure A1.43 Object projected at an angle to the horizontal

 From looking at the diagram (Figure A1.43), we can use Pythagoras’s theorem to 
calculate the velocity of impact.

 (velocity of impact)2 = (horizontal component)2 + (vertical component)2

  vi
2 = 11.12 + 15.32

  vi = 18.9 m s−1

 The angle of impact with the horizontal, θ, can be found using trigonometry:

 tan θ = 
15.3
11.1

 θ = 54.0°

Top tip!
If we know the 
velocity and position 
of a projectile, we can 
always use its vertical 
component of velocity 
to determine:
l the time taken 

before it reaches its 
maximum height, 
and the time before 
it hits the ground

l the maximum height 
reached (assuming 
its velocity has 
an upwards 
component).

The horizontal 
component can then 
be used to determine 
the range.
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26 Theme A: Space, time and motion

TOK

The natural sciences
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?

The independence of horizontal and vertical motion in projectile motion may seem unexpected and 
counterintuitive. It requires imagination (some would say genius) to propose ideas and theories which are 
contrary to accepted wisdom and ‘common sense’. This is especially true in understanding the worlds of 
relativity and quantum physics, where relying on everyday experiences for inspiration is of little or no use.

It is worth remembering that many of the well-established concepts and theories of classical physics that 
are taught now in introductory physics lessons would have seemed improbable to many people at the time 
they were first proposed. For example, many people would say (incorrectly) that a force is needed to keep 
an object moving at constant speed (see Topic A.2).

	■ Fluid resistance and terminal speed
So far, we have only considered projectile motion in which air resistance is negligible. We will 
now broaden the discussion.

As any object moves through air, the air is forced to move out of the path of the object. This causes 
a force opposing the motion called air resistance, also known as drag. Drag forces will oppose the 
motion of an object moving in any direction through any gas or liquid. (Gases and liquids are both 
described as fluids because they can flow.) Such forces opposing motion are generally described 
as fluid resistance.

Figure A1.44 gives a visual impression of air resistance. It shows the movement of air (marked by 
streamers) past a model of a car. (The picture was taken in a wind tunnel, in which moving air was 
directed towards the vehicle.)

	■ Figure A1.44 Air flow over a clay aerodynamic model of a high-performance sports vehicle

 ◆ Drag Force(s) opposing 
motion through a fluid; 
sometimes called fluid 
resistance. 

 ◆ Fluid Liquid or gas.
 ◆ Fluid resistance 

(friction) Force(s) opposing 
motion through a fluid; 
sometimes called drag.

 ◆ Imagination Formation 
of new ideas that are not 
related to direct sense 
perception or experimental 
results.

 ◆ Intuition Immediate 
understanding, without 
reasoning.

 ◆ Inspiration Stimulation 
(usually to be creative).

369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   26369917_01_IB_Physics 3rd_Edn_SEC_A_1.indd   26 04/01/2023   19:2904/01/2023   19:29



A.1   Kinematics 27

The value of an object’s terminal speed will depend on its cross-sectional area, shape and weight, 
as discussed in Topic A.2. The terminal speed of skydivers (Figure A1.46) is usually quoted at 
about 200 km h−1 (56 m s−1).

Terminal speed also depends on the density of the air. In October 2012 Felix Baumgartner (Figure 
A1.47), an Austrian skydiver, reached a world record speed of 1358 km h−1 by starting his jump 
from a height of about 39 km above the Earth’s surface, where the density of air is about 250 times 
less than near the Earth’s surface. In 2014 Alan Eustace completed a jump from greater altitude, 
but at 1323 km h−1 he did not break Baumgartner’s speed record.

Top tip!
The concept of a top 
(terminal) speed can 
also be applied to the 
horizontal motion of 
vehicles, like trains, cars 
and aircraft. As they 
travel faster, increasing 
air resistance reduces 
their acceleration 
to zero.

	■ Figure A1.46 Skydivers at their terminal speed 	■ Figure A1.47 Felix Baumgartner about 
to jump from a height of 39 km

Effect of fluid (air) resistance on projectiles

Without air resistance we assume that the horizontal component of a 
projectile’s velocity is constant, but with air resistance it decreases. Without 
air resistance the vertical motion always has a downwards acceleration of 
9.8 m s−2, but with air resistance the acceleration will be reduced for falling 
objects and the deceleration increased for objects moving upwards.

Figure A1.48 shows typical trajectories with and without air resistance (for 
the same initial velocity).

Air resistance reduces the range of a projectile and its trajectory will not 
be parabolic.

without air
resistance

with air
resistance

	■ Figure A1.48 Effect of air resistance 
on the trajectory of a projectile

Figure A1.45 represents the motion of an object falling towards Earth.

Line A shows the motion without air resistance and with a constant acceleration of 
9.8 m s−2 (≈ 10). Line B shows the motion more realistically, with air resistance.

When any object first starts to fall, there is no air resistance. As the object falls 
faster, the air resistance increases, so that the rate of increase in velocity becomes 
less. This is shown in the Figure A1.45 by line B becoming less steep. Eventually 
the object reaches a constant, maximum speed known as the terminal speed or 
terminal velocity (‘terminal’ means final).

Objects falling through fluids (such as air) have a maximum speed, called 
terminal speed, which occurs when their acceleration has reduced to zero 
because of increasing fluid resistance (as their velocity increases).
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	■ Figure A1.45 An example of a graph 
of velocity against time for an object 
falling under the effect of gravity, with 
(B) and without (A) air resistance

 ◆ Terminal speed 
(velocity) The greatest 
downwards speed of 
a falling object that is 
experiencing resistive 
forces (for example, air 
resistance). It occurs when 
the object’s weight is equal 
to the sum of resistive 
forces (+ upthrust).
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28 Theme A: Space, time and motion

Tool 2: Technology

Carry out image analysis and video analysis of motion

Video-capture technology is used in sports, such as tennis and soccer. Capturing the 
trajectory of a projectile on video allows us to analyse its motion frame-by-frame. For 
example, the cameras used in VAR in football usually capture 50 frames per second, so the 
motion of the projectile (the ball) can be observed at time intervals of 0.02 s.

Explain how you could use video analysis of motion to investigate the motion of a 
shuttlecock in a game of badminton.

	■ Figure A1.49 Consider how video analysis could be used to investigate the motion of a badminton shuttlecock.

TH
E IB LEARNER PRO

FILE
In the following questions, ignore the possible effects of air 
resistance. Use g = 9.81 m s−2.

35 At an indoor rifle range, a bullet was fired horizontally 
at the centre of a target 36 m away. If the speed of the 
bullet was 310 m s−1, predict where the bullet will strike 
the target.

36 Repeat Worked example A1.11 for a stone thrown with 
a velocity of 26 m s−1 at an angle of 38° to the horizontal 
from a cliff top. The point of release was 33 m vertically 
above the sea.

37 It can be shown that the maximum theoretical range of 
a projectile occurs when it is projected at an angle of 
45° to the ground (once again, ignoring the effects of air 
resistance). Calculate the maximum distance a golf ball 
will travel before hitting the ground if its initial velocity is 
72 m s−1. (Because you need to assume that there is no air 
resistance, your answer should be much higher than the 
actual ranges achieved by top-class golfers. Research to 
determine the actual ranges achieved in competition golf.)

38 A jet of water from a hose is aimed directly at the base of 
a flower, as shown in Figure A1.50. The water emerges 
from the hose with a speed of 3.8 m s−1.
a Calculate the vertical and horizontal components of 

the initial velocity of the water.
b How far away from the base of the plant does the 

water hit the ground?

0.84 m

θ

2.0 m

	■ Figure A1.50 Water from a hose aimed at the base of a flower

39 If the maximum distance a man can throw a ball is 
78 m, what is the minimum speed of release of the ball? 
(Assume that the ball lands at the same height from 
which it was thrown and that the greatest range for a 
given speed is when the angle is 45°.)

 ◆ Video analysis Analysis 
of motion by freeze-frame 
or slow-motion video 
replay.
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40  Figure A1.51 shows a player making a basketball shot.

	■ Figure A1.51 Basketball player making a shot

a In practice, air resistance can be considered negligible 
for a basketball. Suggest a reason why.

b Make a copy of the figure and add to it two other 
possible trajectories which will result in the ball 
arriving at the basket.

c Suggest which trajectory is best and explain 
your reasoning.

d Add to your drawing a possible trajectory that would 
enable a light-weight sponge ball to reach the basket.

Nature of science: Models
The motions of all projectiles are affected – often considerably – by air resistance. But the mathematics 
we have used to make predictions has assumed that air resistance is negligible. This is a recurring theme 
in physics: when theories are first developed, or when you are first introduced to a topic, the ideas are 
simplified. A ‘complete’ understanding of projectile motion may be expected at university level, but the 
topic is important enough that you should be introduced to the basic ideas at an earlier age.

In Worked example A1.10, the calculated answer predicts that a bullet will travel 1.1 km before striking 
the ground, although we should stress that this ‘assumes that there is no air resistance’. In reality, it 
should be well understood that air resistance cannot be ignored, and the bullet will not travel as far as 
calculated. This should not suggest that the calculation was not useful.

As your knowledge and experience increase, mathematical theories of projectile motion can be expanded 
to include the effects of air resistance – but this is beyond the limits of the IB Course. Similar comments 
can be applied to all areas of physics. This simplifying approach to gaining knowledge is not unique to 
physics but it is, perhaps, most obvious in the sciences.

LINKING QUESTION
l How does the 

motion of an object 
change within a 
gravitational field?

This question links 
to understandings in 
Topics A.3 and D.1.

Ballistics
The study of the use of projectiles is known as ballistics. Because of its close links to hunting and 
fighting, this is an area of science with a long history, going all the way back to spears, and bows 
and arrows. Figure A1.52 shows a common medieval misconception about the motion of cannon 
balls: they were thought to travel straight until they ran out of energy.

	■ Figure A1.52 Trajectories of cannon balls were commonly misunderstood
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30 Theme A: Space, time and motion

Photographs taken in quick succession became useful in analysing many types of motion in 
the nineteenth century, but the trajectories of very rapidly moving projectiles were difficult to 
determine until they could be filmed or illuminated by lights flashing very quickly (stroboscopes). 
The photograph of the bullet from a gun shown in Figure A1.53 required high technology, such 
as a very high-speed flash and very sensitive image recorders, in order to ‘freeze’ the projectile 
(bullet) in its rapid motion (more than 500 m s−1).

	■ Figure A1.53 A bullet ‘frozen’ by high-speed photography

‘Newton’s cannonball’ is a famous thought experiment concerning projectiles, in which Newton 
imagined what would happen to a cannonball fired (projected) horizontally at various very high 
speeds from the top of a very high mountain (in the absence of air resistance). See Figure A1.54.

The balls labelled A and B will follow parabolic paths to the Earth’s surface. B has a greater range 
than A because it was fired with greater velocity. Cannonball C has exactly the correct velocity 
that it never falls back to the Earth’s surface and never moves further away from the Earth. (The 
required velocity would be about 7 km s−1, but remember that we are assuming that there is no air 
resistance.) These ideas are developed further in Topic D.1.

Nature of science: Models
In a thought experiment, we use our imagination to answer 
scientific ‘what if…?’ type questions. Known principles or 
a possible theory are applied to a precise scenario, and the 
consequences thought through in detail. Usually, but not always, 
it would not be possible to actually carry out the experiment.

At the time of ‘Newton’s cannonball’ thought experiment 
(published in 1728) it would have been impossible to make any 
object move at 7 km s−1 and, even if that had been possible, air 
resistance would have quickly reduced its speed. Nevertheless, 
the thought processes involved advanced understanding and led to 
ideas of satellite motion. The first satellite to orbit the Earth was 
the Russian Sputnik 1 in 1957, which had a maximum speed of 
about 8 km s−1 and avoided air resistance by being above most of 
the Earth’s atmosphere.

Another (possible) thought experiment connected to this topic, 
and involving an assumption of no air resistance, is the dropping 
of two spheres of different masses from the same height on the 
Tower of Pisa. See Figure A1.55. Most historians doubt if there 
was an actual experiment at the Tower of Pisa that confirmed 
Galileo’s theory that both masses would fall at the same rate.

	■ Figure A1.55 Galileo’s famous experiment to 
demonstrate acceleration due to gravity

Two further famous thought experiments in physics are Maxwell’s 
demon and Schrödinger’s cat. Research online to find out how 
these thought experiments prompted new hypotheses and theories 
in physics.

A
B

C

	■ Figure A1.54 
Newton’s cannonball 
thought experiment

 ◆ Thought experiment 
An experiment that is 
carried out in the mind, 
rather than actually being 
done, normally because it 
is otherwise impossible.
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Forces and momentumA.2

• How can we represent the forces acting on a system both visually and algebraically?
• How can Newton’s laws be modelled mathematically?
• How can knowledge of forces and momentum be used to predict the behaviour of interacting bodies?

Guiding questions

The nature of force

SYLLABUS CONTENT

 Forces as interactions between bodies.

In everyday life we may describe a force as a push or a pull but, more generally, a force can be 
considered to be any type of interaction / influence on an object which will tend to make it start 
moving or change its motion if it is already moving (assuming that the force is unopposed). Many 
forces do not cause changes of motion, simply because the objects on which they are acting are not 
able to move freely. Forces also change the shapes of objects.

Scientists refer to forces ‘acting’ on objects, ‘exerting’ forces on objects and ‘applying’ forces to 
objects. If objects ‘interact’, this means there are forces between them.

The size of a force is measured in the SI unit newton, N. The direction in which a force acts on an 
object is important:

Forces, F, are vector quantities and are represented in drawings by arrows of scaled length, 
direction and point of application. All forces should be labelled with commonly accepted 
symbols, or names.

friction

weight

push upwards
from ground

chair

2F F

	■ Figure A2.2 Representing the 
forces in Figure A2.1

 ◆ Interaction Any event 
in which two or more 
objects exert forces on 
each other.

 ◆ Newton, N Derived 
SI unit of force.  
1 N = 1 kg m s−2.

(The vectors displacement, velocity and acceleration were introduced in Topic A.1.)

Most situations, such as the two boys moving a chair in Figure A2.1, involve several forces, 
not just the obvious forces arising from the boys’ actions.

Figure A2.2 shows all the forces acting on the chair. These include the weight of the chair, the 
friction opposing its movement and the push upwards from the floor which is supporting the 
chair. The boy on the left is pushing the chair with a force which is twice the size of the force, 
F, that the boy on the right is using.

We will return to force diagrams later, but first we need to identify and explain different types 
of force.

	■ Different types of force
In general, we can classify all forces as one of two kinds.
l Forces that involve physical contact. Examples include everyday pushes and pulls, friction 

and air resistance.

	■ Figure A2.1 Pushing and 
pulling a chair
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32 Theme A: Space, time and motion

l Forces that act ‘at a distance’ across empty space. Examples include magnetic forces and 
the force of gravity. These forces are more difficult to understand and can be described as 
‘field forces’.

We will now explore some important types of force in greater detail.

Weight

SYLLABUS CONTENT

 Gravitational force Fg as the weight of the body and calculated as given by: Fg = mg

The mass of an object may be considered to be a measure of the quantity of matter it contains. 
Mass has the SI unit kilogramme, kg. Mass does not change with location. This definition may 
seem rather vague, but this is because mass is such a fundamental concept it is difficult to explain 
in terms of other things. However, later in this topic we will provide an improved definition.

The weight, Fg, of a mass, m, is the gravitational force that pulls it towards the centre of the Earth 
(or any other planet). Weight and mass are connected by the simple relationship:

weight, Fg = mg 

Where g is the weight : mass ratio, which is called the gravitational field strength. It has the 
units N kg−1. 

g is numerically equal to the acceleration due to gravity (see Topic A.1). An explanation is given 
later in this topic.

Clearly, in principle, the weight of an object is not constant, but varies with location (where the 
value of g changes). The value of g varies with a planet’s or a moon’s mass and radius, and with 
distance from the planet’s centre of mass. For example, it has a value of 9.8 N kg–1 on the Earth’s 
surface, 1.6 N kg−1 on the surface of the Moon and 3.7 N kg−1 on Mars.

Weight is represented in a diagram by a vector arrow vertically downwards from the centre of 
mass of the object. See Figure A2.3. When an object is subjected to forces, it will behave as if 
all of its mass was at a single point: its centre of mass. (In a gravitational field, the same point is 
sometimes called its ‘centre of gravity’.)

An astronaut has a mass of 58.6 kg. Calculate her weight using data from the 
preceding paragraphs:
a on the Earth’s surface
b in a satellite 250 km above the surface (g = 9.1 N kg–1)
c on the surface of the Moon
d on the surface of Mars
e in ‘deep space’, a very long way from any planet or star.

Answer
a Fg = mg = 58.6 × 9.8 = 5.7 × 102 N
b Fg = mg = 58.6 × 9.1 = 5.3 × 102 N, which is only 7% lower than on the Earth’s surface
c Fg = mg = 58.6 × 1.6 = 94 N
d Fg = mg = 58.6 × 3.7 = 217 N
e 0 N, truly weightless

WORKED EXAMPLE A2.1

 ◆ Mass A measure of an 
object’s resistance to a 
change of motion (inertia). 

 ◆ Kilogramme, kg SI unit 
of mass (fundamental).

 ◆ Weight, Fg Gravitational 
force acting on a mass. 
Fg = mg.

 ◆ Gravitational 
field strength, g The 
gravitational force per 
unit mass (that would be 
experienced by a small test 
mass placed at that point). 

g = Fg/m (SI unit: N kg−1). 

Numerically equal to the 
acceleration due to gravity.

mass 65 kg

weight, 637N

weight, 147N

mass
15 kg

	■ Figure A2.3 Weight acts 
downwards from the centre 
of mass

DB

 ◆ Centre of mass Average 
position of all the mass of 
an object. The mass of an 
object is distributed evenly 
either side of any plane 
through its centre of mass. 
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1 Calculate the weight of the following objects on the 
surface of the Earth:
a a car of mass 1250 kg
b a new-born baby of mass 3240 g
c one pin in a pile of 500 pins that has a total mass 

of 124 g.

2 It is said that ‘an A380 airplane has a maximum take-off 
weight of 570 tonnes’ (Figure A2.4). A tonne is the name 
given to a mass of 1000 kg.
a What is the maximum weight of the aircraft (in 

newtons) during take off?
b The aircraft can take a maximum of about 850 

passengers. Estimate the total mass of all the 
passengers and crew.

c What percentage is this of the total mass of the 
airplane on take off?

d The maximum landing weight is ‘390 tonnes’. 
Suggest a reason why the aircraft needs to be less 
massive when landing than when taking off.

e Calculate the difference in mass and explain where 
the ‘missing’ mass has gone.

	■ Figure A2.4 The Airbus A380 is the largest passenger airplane in 
the world

3 A mass of 50 kg would have a weight of 445 N on the 
planet Venus. What is the strength of the gravitational 
field there? Compare it with the value of g on Earth.

4 Consider two solid spheres made of the same metal. 
Sphere A has twice the radius of sphere B. Calculate the 
ratio of the two spheres’ circumferences, surface areas, 
volumes, masses and weights.

 ◆ Force meter Instrument used to measure forces. Also sometimes 
called a newton meter or a spring balance.

 ◆ Calibrate Put numbered divisions on a scale.

 ◆ Weigh Determine the weight of an object. In everyday use the word 
‘weighing’ usually means quoting the result as the equivalent mass: 
‘my weight is 60 kg’ actually means I have the weight of a 60 kg mass 
(about 590 N).

Tool 1: Experimental techniques

Understand how to accurately 
measure quantities to an 
appropriate level of precision: force, 
weight and mass 

Forces are easily measured by the changes 
in length they produce when they squash or 
stretch a spring (or something similar). Such 
instruments are called force meters (also 
called newton meters or spring balances) – 
see Figure A2.5. In this type of instrument, 
the spring usually has a change of length 
proportional to the applied force. The length 
of the spring is shown on a linear scale, which 
can be calibrated (marked in newtons). The 
spring goes back to its original 
shape after it has measured 
the force.

Such instruments can be used for measuring forces acting 
in any direction, but they are also widely used for the 

measurement of the downwards force of weight. The other 
common way of measuring weight is with some kind of 
‘balance’ (scales). In an equal-arm balance, as shown in 
Figure A2.6, the beam will only balance if the two weights 
are equal. That is, the unknown weight equals the known 
weight. (Larger weights can be measured by positioning the 
pivot closer to the unknown weight and using the ‘principle 
of moments’ – mentioned in Topic A.4.)

Either of these methods can be used to determine (weigh) an 
unknown weight (N) and they rely on the force of gravity to 
do this, but such instruments may be calibrated to indicate 
mass (in kg or g) rather than weight. This is because we are 
usually more concerned with the quantity of something, rather 
than the effects of gravity on it. We usually assume that:

mass (kg) = 
weight (N)

9.8

anywhere on Earth because any variations in the 
acceleration due to gravity, g, are insignificant for most, 
but not all, purposes.

0
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100

	■ Figure A2.5 
A spring balance 
force meter

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   33369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   33 04/01/2023   20:1204/01/2023   20:12



34 Theme A: Space, time and motion

known
weight

unknown
weight

pivot

equal distances

	■ Figure A2.6 An equal-arm balance

Determining a mass without using its weight (gravity) is 
not so easy. Two ways we can do this are:
l If it is a solid and all the same material, its volume can 

be measured, then mass = volume × density (assuming 
that its density is known.)

l As we will see in Topic A.2, resultant force, mass and 
acceleration are connected by the equation F = ma, so 
that, if the acceleration produced by a known force can 
be measured, then the mass can be calculated.

Nature of science: Science as a shared endeavour
Science is a collaborative activity – scientists work together across the world to confirm (or dispute) 
findings by repeating experiments. Scientists review each other’s work (peer review) to make sure 
that it is reliable before it is published. Communication is an essential part of science, and precision 
in communication is very important. Scientists must agree to use specific terminology, which is why 
scientific terminology sometimes differs from everyday use of the same words.

Contact forces

Apart from obvious everyday pushes and pulls, the following terms should be understood:

Tension: pulling forces are acting tending to cause stretching.

Compression: forces are pushing inwards on an object (See Figure A2.7).

Both of these types of force will tend to change the shape of an object (deformation).

In the following sections we will discuss the following contact forces in more detail: normal 
forces, buoyancy forces, elastic restoring forces, surface friction and fluid friction.

Normal forces

SYLLABUS CONTENT

 Normal force FN is the component of the contact force acting perpendicular to the surface that 
counteracts the body.

When two objects come in contact, they will exert forces on each other. This is because the 
particles in the surfaces resist getting closer together. A simple example is a book on a table, as 
shown in Figure A2.8. The book presses down on the table with its weight, and the table pushes up 
on the book with an equal force (so that the book is stationary). This force from the table is called 
a normal force, FN. ‘Normal’ in this sense means that it is perpendicular to the surface. 

weight, mg

normal force, FN

	■ Figure A2.8 Normal force acting upwards on a book

If a force acts on a surface, the surface 
pushes back. The component of that force 
which is perpendicular to the surface is 
called a normal force.

 ◆ Peer review Evaluation 
of scientific work by 
experts in the same field 
of study.

 ◆ Tension (force) Force 
that tries to stretch an 
object or material.

 ◆ Compression (force) 
Force that tries to squash 
an object or material.

 ◆ Deformation Change 
of shape.

 ◆ Normal Perpendicular 
to a surface.

tension

FF

compression

FF

a

b

	■ Figure A2.7 Object under 
a tension and b compression
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Top tip!
Many students find the idea that solid and hard objects like walls, tables and floors can exert forces, 
difficult to comprehend, whereas forces from cushions, or trampolines, are easier to visualize and 
understand. Remember that solid materials will resist any deformation and push back, even if the change 
of shape is very, very small and not noticeable.

A normal force does not need to be vertical, nor equal to weight, as the two examples in 
Figure A2.9 illustrate.

normal force

normal force

weight

FN

	■ Figure A2.9 Other examples of normal forces

Buoyancy forces

SYLLABUS CONTENT

 Buoyancy force, Fb, acting on a body due to the displacement of the fluid as given by: Fb= ρVg, where 
V is the volume of fluid displaced.

We have discussed the normal contact forces which act upwards on objects placed on solid 
horizontal surfaces. Liquids also provide vertical forces upwards on objects placed in, or on them. 
Gases, too, provide some support, although it is often insignificant.

Buoyancy is the ability of any fluid (liquid or gas) to provide a vertical upwards force on an 
object placed in, or on it. This force is sometimes called upthrust. (Buoyancy can be explained 
by considering the difference in fluid pressures on the upper and lower surfaces of the object. 
Pressure is explained in Topic B.3.)

The magnitude of an upthrust will be greater in fluids of greater density.

Density is a concept with which you may be familiar, although it is not introduced in this course 
until Topic B.1.

density (SI unit: kg m−3) = 
mass

volume 
ρ = 

m
V

g cm−3 is also widely used as a unit for density. A density of 1000 kg m−3 (the density of pure water 
at 0 °C) is equivalent to 1.000 g cm−3. It is also useful to know that one litre (1l) of water has a 
volume of 1000 cm3 and has a mass of 1.00 kg.

 ◆ Buoyancy force Vertical 
upwards force on an 
object placed in or on a 
fluid. Sometimes called 
upthrust. 

 ◆ Density 
mass

volume
. 
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36 Theme A: Space, time and motion

Figure A2.10 shows two forces acting on a rock immersed in water. Its weight is greater than the 
buoyancy force, so it is sinking.

weight, mg

buoyancy force, Fb
	■ Figure A2.10 Forces on an 

object immersed in a fluid

This area of classical physics was first studied more than 2250 years ago in Syracuse, Italy by 
Archimedes (from Greece, who identified the following principle, which still bears his name):

When an object is wholly or partially immersed in a fluid, it experiences a buoyancy force, Fb, 

equal to the weight of the fluid displaced. Since weight = mg, and density, ρ = 
m
V

: 

Fb = ρVg

TOK

The natural sciences
l What is the role of imagination in the natural sciences?

Myths, stories and science

The story of Archimedes’ discovery of the principle of 
displacement is well known. The story is that Archimedes was 
asked by the king of Syracuse, Hiero, to check whether his 
goldsmith was trying to cheat him by mixing cheaper metals with 
the gold of a wreath in honour of the gods. Archimedes accepted 
the challenge, although was uncertain how to establish the true 
composition of the wreath crown. Reputedly, the idea came to him 
while sitting in the bath: if the wreath contained other metals, it 
would be less dense than gold, and as such would need to have a 
greater volume to achieve the same weight. Archimedes saw that 
he could test the composition of the wreath by measuring how 
much water was displaced by it, so measuring its volume and so 
allowing him to compare its density to that of gold. As the story 
relates, when Archimedes discovered this he shouted ‘I have found 
it!’ or ‘Eureka!’ in Greek and ran naked through the streets of 
Syracuse to give Hiero the news!

In fact, this story was never recorded by Archimedes himself and 
is found in the writings of a Roman architect from much later in 
the first century BCE called Vitruvius. Many who heard the story 
doubted it – including Galileo Galilei, who pointed out in his 
work ‘The Little Balance’ that Archimedes could have achieved 
a more precise result using a balance and the law of buoyancy he 
already knew. But the story persists, perhaps because it is a great 
way to visualize and so understand the concepts of displacement 
and density.

	■ Figure A2.11 A statue of Archimedes in a bathtub demonstrates the 
principle of the buoyant force. Located at Madatech, Israel’s National 
Museum of Science, Technology and Space in Haifa

Consider: In what ways does the story of Archimedes resemble 
a thought experiment (see Topic A.1)? Do myths and stories 
serve always to obscure or confuse scientific truths? Can they 
sometimes enlighten us, too?

TH
E IB LEARNER PRO

FILE

 ◆ Archimedes’ principle 
When an object is wholly 
or partially immersed 
in a fluid, it experiences  
buoyancy force equal to 
the weight of the fluid 
displaced.

DB
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A piece of wood has a volume of 34 cm3 and a mass of 29 g.
a Calculate its weight.
b Determine the volume of water that it will displace if it is completely under water.
c What buoyancy force will it experience while under water?  

(Assume density of water = 1000 kg m−3.)
d What resultant force will act on the wood?
e State what will happen to the wood if it is free to move.
f  Repeat a–e for the same piece of wood when it is surrounded by air (density 

1.3 kg m−3).

Answer
a weight = mg = (29 × 10−3) × 9.8 = 0.28 N downwards
b 34 cm3

c Weight of water displaced = mg = Vρg = (34 × 10−6) × 1000 × 9.8 = 0.33 N upwards
d 0.33 − 0.28 = 0.05 N upwards
e It will move (accelerate) up to the surface, where it will float.
f (see a–e below)
a Weight = 0.28 N downwards, as before
b 34 cm3 as before
c Weight of air displaced = mg = Vρg = (34 × 10–6) × 1.3 × 9.8 = 4.3 × 10−4 N upwards. 

Which is very small!
d 0.28 – (4.3 × 10–4) ≈ 0.28 N downwards. The buoyancy force in air has an insignificant 

effect on the wood.
e It will move (accelerate) down towards the Earth.

WORKED EXAMPLE A2.2

Floating
An object placed on the surface of water (or any other liquid) will move lower until it displaces its 
own weight of water. See Figure A2.12. Then there will be no overall force acting on it, because 
the buoyancy force upwards (upthrust) will be equal to its weight downwards. If that is not 
possible, it will sink.

Continuing the numerical Worked example A2.2:

The wood has a weight of 0.28 N, so when floating it will displace water of this weight. Density of 
pure water = 1000 kg m−3.

Weight = 0.28 = Vρg = V × 1000 × 9.8

V = 2.9 × 10−5 m3. That is, 29 cm3. The wood will float with 29 cm3 below the water surface and 
5 cm3 above the surface, as shown in Figure A2.13.

W

Fb

	■ Figure A2.12 A floating 
object

5 cm3

29 cm3

buoyancy force = 0.284 N

weight = 0.284 N

	■ Figure A2.13 Floating 
wood
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5 a Calculate the buoyancy force acting on a boy of mass 
60 kg and volume 0.0590 m3 (use g = 9.81 N kg–1)
i in water of density 1000 kg m−3

ii in air of density 1.29 kg m−3.
b Will the boy sink or float in water? Explain 

your answer.
c Suggest why he would float easily if he was in the 

Dead Sea. See Figure A2.14.

	■ Figure A2.14 Floating in the Dead Sea

d Calculate a value for the ratio: boy’s weight / 
buoyancy force in air.

6 A wooden cube with a density of 880 kg m−3 is floating 
on water (density 1000 kg m−3). If the sides of the cube 
are 5.5 cm long and the cube is floating with a surface 
parallel to the water’s surface, show that the depth of 
wood below the surface is 4.8 cm.

7 After the rock shown in Figure A2.10 begins to move 
downwards (sink) another force will act on it. State the 
name of that force.

8 Outline the reasons why a balloon filled with helium will 
rise (in air), while a balloon filled with air will fall.

9 Learning to scuba dive involves being able to remain 
‘neutrally buoyant’, so that the diver stays at the same 
level under water. Explain why breathing in and out 
affects the buoyancy of a diver.

    

	■ Figure A2.15 How 
much of an iceberg is 
submerged?

10 It is commonly said that about 10% of an iceberg is above 
the surface of the sea (Figure A2.15). Use this figure to 
estimate a value for the density of sea ice. Assume the 
density of sea water is 1025 kg m−3.

Elastic restoring forces

SYLLABUS CONTENT

 Elastic restoring force, FH, following Hooke’s law as given by: FH = – kx, where k is the spring constant.

When a force acts on an object it can change its shape: then we say that there is a deformation. 
Sometimes the deformation will be obvious, such as when someone sits on a sofa; sometimes the 
deformation will be too small to be seen, such as when we stand on the floor.

If an object returns to its original shape after the force has been removed, we say that the 
deformation was elastic. We hope and expect that most of the objects we use in everyday life 
behave elastically, because after we use them, we want them to return to the same condition as 
before their use. If they do not, we say that they have passed their elastic limit. 

 ◆ Elastic behaviour A 
material regains its original 
shape after a force causing 
deformation has been 
removed.

 ◆ Elastic limit The 
maximum force and/
or extension that a 
material, or spring, can 
sustain before it becomes 
permanently deformed.
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Common mistake
Rubber bands behave elastically and they are useful because they can stretch a lot and exert inwards 
forces on the objects they are wrapped around. Because of this behaviour, the word ‘elastic’ in common 
usage has also come to mean ‘easy to stretch’ – which is different from its true meaning in science. Most 
people would be surprised to learn that steel usually behaves elastically.

How deformation depends on force
How any object, or material, responds when forces act on them is obviously very important 
information when considering their use in practical situations.

The deformation of a steel spring is a common starting investigation because it is easy to measure 
and it will usually stretch regularly and elastically (unless over-stretched). See Figure A2.16.

Figure A2.17 shows typical results. The weights provide the downwards force, F. In this case the 
deformation is called the extension of the spring, x, and it is usually plotted on the horizontal axis 
of graphs.
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	■ Figure A2.16 Steel spring investigation
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Limit of
proportionality

	■ Figure A2.17 Results of stretching a steel spring

Most of the graph is a straight line passing through the origin. (The coils of the spring should not 
be touching each other at the beginning.) The conclusion is that the force, F, and the extension, x, 
are proportional to each other, up to a limit (as shown on the graph). The graph also shows that the 
spring gets easier to stretch after the limit of proportionality has been passed. For the linear part of 
the graph, starting at the origin: F ∝ x.

The constant of proportionality is given the symbol k: F = kx.

k is a measure of the ‘stiffness’ of the spring and is commonly called the spring constant (or the 
force constant). It can be determined from the gradient of the graph:

k = 
ΔF
Δx

 

k has the SI units N m–1. (N cm–1 is also widely used.)

Hooke’s law
In the seventeenth century, Robert Hooke was famously the first to publish a quantitative study of 
springs. The physics law that describes his results is still used widely and bears his name:

Hooke’s law for elastic stretching: restoring force, FH = –kx 

Top tip!
No material will behave 
elastically under all 
conditions. They all 
have their limits: elastic 
limits. For this reason, it 
is probably sensible not 
to describe a material 
as being ‘elastic’. It 
is better to say that 
it behaved elastically 
under the conditions at 
that time.

 ◆ Extension Displacement 
of the end of an object that 
is being stretched. 

DB

 ◆ Spring constant, k 
The constant seen 
in Hooke’s law that 
represents the stiffness of a 
spring (or other material).
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40 Theme A: Space, time and motion

This is essentially the same as the equation F = kx, but the symbol FH has been used for the force 
(to show that it is Hooke’s law stretching), and the force refers to the restoring force within 
the spring, tending to return it to its original shape – this force is equal in size but opposite in 
direction to the externally applied force from the weights. The negative sign has been included to 
indicate that the restoring force acts in the opposite direction to increasing extension.

Nature of science: Models

Obeying the law

Sometimes, everyday language differs from scientific terminology (for example, when speaking about 
‘weight’). So, what are ‘laws’ in science? If the extension of a stretched material is proportional to the force, 
we describe it as ‘obeying’ Hooke’s law. In what way is that similar / different to ‘obeying’ a legal law?

Archimedes’ description of buoyancy forces is described as a ‘principle’. How are scientific ‘principles’ 
different from scientific ‘laws’?

Research this online using search terms such as ‘difference scientific principle and law’.

How might these concepts relate to theories and models in science?

TH
E IB LEARNER PRO

FILE

Tool 3: Mathematics

Extrapolate and interpolate graphs

A curve of best fit is usually drawn to cover a specific 
range of measurements recorded in an experiment, as 
shown in Figure A2.18. The diagram indicates how values 
for y can be determined for a chosen values of x. If we want 
to predict other values within that range, we can usually do 
that with confidence. This is called interpolation.

x0

extrapolation

interpolation

extrapolation 

range of
experimental

results

0

y

	■ Figure A2.18 Interpolating and extrapolating to find values on the 
y-axis

If we want to predict what would happen outside the range 
of measurements (extrapolation) we need to extend the 

line of best fit. Lines are often extrapolated to see if they 
pass through the origin, or to find an intercept, as shown 
in Figure A2.18.

Predictions made by extrapolation should be treated 
with care, because it may be wrong to assume that the 
behaviour seen within the range of measurements also 
applies outside that range.
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	■ Figure A2.19 F–x graph for stretching a spring

Force–extension graphs, such as seen in Figure A2.19, are 
an interesting example.
a Use the graph to determine values for extensions when 

the force was 25 N, 10 N and 35 N.
b Use the graph to determine a possible value for the 

intercept on the force axis, and explain what it represents.
c Comment on your answers.

 ◆ Interpolate Estimate a value 
within a known data range.

 ◆ Extrapolate Predict 
behaviour that it outside of the 
range of available data.

LINKING QUESTION
l How does the 

application of a 
restoring force 
acting on a particle 
result in simple 
harmonic motion?

This question links 
to understandings in 
Topic C.1.

 ◆ Restoring force Force 
acting in the opposite 
direction to displacement, 
returning an object to its 
equilibrium position. 
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A.2   Forces and momentum 41

When a weight of 12.7 N was applied to a spring its length 
was 15.1 cm. When the force increased to 18.3 N, the 
length increased to 18.1 cm because the extension was 
proportional to the force.
a Determine the spring constant.
b Calculate the length of the spring when the force 

was 15.0 N.
c Explain why it is impossible to be sure what the length 

of the spring would be if the force was 25 N.

Answer

a k = 
ΔF
Δx  = 

(18.3 – 12.7)
(18.1 – 15.1) = 1.87 N cm−1. Which is the 

same as 187 N m−1.

b Consider the extension from a length of 15.1 cm:

 Δx = 
ΔF
k  = 

(15.0 – 12.7)
1.87  = 1.23 cm

 So that, length = 15.1 + 1.23 = 16.3 cm
c  The spring may have passed its limit of proportionality.

 WORKED EXAMPLE A2.3

The results shown in Figure A2.19 were probably taken as the spring was loaded (as the weight 
was increased). If the extension is measured as the weight is reduced the results will be similar, 
but only if the elastic limit has not been exceeded.

The elastic limit of the spring is not shown on the graph, but it is often assumed to be close to, or 
the same as, the limit of proportionality. In other words, when a spring stretches, such as its 
extension is proportional to the force, we assume that it is behaving elastically. That may or may 
not be true for other materials.

Force–extension graphs and the concepts of elastic limits and ‘spring constants’ are not 
restricted to describing springs. They are widely used to represent the behaviour of many 
materials. Figure A2.20 shows a typical graph obtained when a metal wire is stretched and 
then the load is removed.

The force is proportional to the extension up until point P. During this time the particles in the 
metal are being pulled slightly further apart and we may assume that the metal is behaving 
elastically. But when the force is increased further, the wire begins to stretch more easily, 
the elastic limit is passed and a permanent deformation occurs. When the wire is unloaded 
the atoms move back closer together, so that the gradient of the graph is the same as for the 
loading graph, but the wire has a permanent deformation after all force has been removed.

11 A spring has a spring constant of 125 N m−1 and will 
become permanently deformed if its extension is greater 
than 20 cm.
a Assuming that it behaves elastically, what extension 

results from a tensile force of 18.0 N?
b What is the maximum force that should be used with 

this spring?

12 When a mass of 200 g was hung on a spring its length 
increased from 4.7 cm to 5.3 cm.
a Assuming that it obeyed Hooke’s law, what was its 

spring constant?
b The spring behaves elastically if the force does not 

exceed 10 N. What is the length of the spring with 
that force?

13 Figure A2.21 shows a force–extension graph for a piece 
of rubber which was first loaded, then unloaded.
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	■ Figure A2.21 Stretching rubber

a Does the rubber behave elastically? Explain 
your answer.

b Does the rubber obey Hooke’s law under the 
circumstances shown by the graph? Explain 
your answer.
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loading

	■ Figure A2.20 Stretching a 
metal wire
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42 Theme A: Space, time and motion

Surface friction

SYLLABUS CONTENT

 Surface frictional force, Ff, acting in a direction parallel to the plane of contact between a body and a 
surface, on a stationary body as given by: Ff  μsFN, or a body in motion as given by: Ff = μdFN, where 
μs and μd are the coefficients of static and dynamic friction respectively.

When we move an object over another surface (or try to move it), forces parallel to the surfaces 
will resist the movement. Collectively, these forces are known as surface friction. The causes of 
friction can be various, and it is well known that friction can often be difficult to analyse or predict. 
Figure A2.22 shows a typical simple frictional force diagram. (The frictional force acting on the 
ground is not shown.) The block is moving to the right and the frictional force is acting to the left.

frictional force
on block

tension in rope

	■ Figure A2.22 Frictional force on a block opposing its 
motion to the right

frictional
force acting

on the ground

frictional
force acting

on shoe

	■ Figure A2.23 We need friction to walk

Friction is very useful: without friction we would not be able to walk. Similarly, a car’s wheels 
would just spin on the same spot if there was no friction. Figure A2.23 explains why (the vertical 
forces are not shown). Because of friction, the shoe is able to push backwards, to the left, parallel 
to the ground, at the same time an equal frictional force pushes the shoe forward, to the right. 
(This is an example of Newton’s third law of motion, which is discussed later in this topic.)

The roughness of both surfaces (see Figure A2.24) is certainly an important factor in producing 
friction: rougher surfaces generally increase friction, but this is not always true. For example, 
there may be considerable friction between very flat and smooth surfaces, like two sheets of glass. 
Friction can often be reduced by placing a lubricant, such as oil or water, between the surfaces.

Figure A2.25 shows a basic laboratory investigation of the frictional forces between a wooden 
block and a horizontal table top.

F

Ff

wooden block force meter
pullA

B

	■ Figure A2.26 Variation of friction with 
applied force
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	■ Figure A2.24 Even smooth 
surfaces have irregularities

	■ Figure A2.25 A simple experiment to measure frictional forces

 ◆ Friction Resistive 
forces opposing relative 
motion. Occurs between 
solid surfaces, but also 
with fluids. Static friction 
prevents movement, 
whereas dynamic friction 
occurs when there is 
already motion.
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A.2   Forces and momentum 43

As the applied force (pull) is increased, the block will remain stationary until the force reaches a 
certain value, Fmax. The block then starts to move, but after that, a steady force, which is less than 
Fmax, will maintain a motion at constant speed. See Figure A2.26.

While the block is stationary (static) the force of friction adjusts, keeping equal to any applied 
force, but in the opposite direction. Under these circumstances the friction is called static friction. 
The size of the static friction force can increase from zero to a maximum value, Fmax. Once an 
object is moving, the reduced friction is called dynamic friction, and its value is approximately 
constant at different speeds.

Figure A2.27 illustrates how frictional forces can change as a pulling force is increased.
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	■ Figure A2.27 How frictional forces change as the force applied increases

The arrangement shown in Figure A2.25 can also be used to investigate how the 
maximum value of static friction depends on the force pushing the surfaces together: 
weights can be added on top of the block to increase the normal contact force, FN. 
Figure A2.28 shows some typical results.

The graph shows that there is more static friction when there is a greater force 
pushing the surfaces together. In fact, frictional forces, Ff, are proportional to the 
normal contact forces, FN. (Ff ∝ FN) The constant of proportionality equals the 
gradient of the graph and is called the coefficient of friction, μ (no units)

Just before motion begins: Ff = Fmax = μsFN, where μs is the coefficient of 
static friction.

When there is no movement, static frictional force: Ff  μsFN.

Table A2.1 shows some typical values for the coefficient of static friction between 
different materials. ◆ Coefficient of friction, μ  

Constants used to represent 
the amount of friction 
between two different 
surfaces. Maybe static 
or dynamic.
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	■ Figure A2.28 Typical variation of 
maximum static frictional force with 
normal force (a similar pattern of results 
will be obtained for dynamic friction)
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44 Theme A: Space, time and motion

	■ Table A2.1 Approximate values for coefficients of static friction

Materials Approximate coefficients of static friction, μs

steel ice 0.03

ski dry snow 0.04

TeflonTM steel 0.05

graphite steel 0.1

wood concrete 0.3

wood metal 0.4

rubber tyre grass 0.4

rubber tyre road surface (wet) 0.5

glass metal 0.6

rubber tyre road surface (dry) 0.8

steel steel 0.8

glass glass 0.9

skin metal 0.9

When there is movement, dynamic frictional force, Ff = μdFN, where μd is the coefficient of 
dynamic friction.

Tool 3: Mathematics

Applying general mathematics: constants

A number which is assumed to be constant always has the same value under the specified 
circumstances. For example, the spring constant described earlier in this topic represents 
the properties of a spring, but only up to its limit of proportionality. In Topic A.1, the 
acceleration due to gravity was assumed to be constant at 9.8 m s−2, but only if we limit 
precision to 2 significant figures and only apply it to situations close to the Earth’s surface.

However, there are a few constants which are believed to have exactly the same value in all 
locations and for all time. They are called the fundamental constants, or universal constants. 
Two examples are the speed of light and the charge on an electron.

In general, a coefficient is a number (usually a constant) placed before a variable in an 
algebraic expression. For example, in the expression 5a − 2 = 8, the number 5 is described 
as a coefficient. In physics, a coefficient is used to characterize a physical process under 
certain specified conditions.

We have seen that: dynamic frictional force, Ff = coefficient of dynamic friction × FN

Another example (which is not in the IB course): when a metal rod is heated it expands so 
that increase in length for each 1 °C temperature rise  
= coefficient of thermal expansion × original length.

 ◆ Constant A number 
which is assumed to have 
the same numerical value 
under a specified range 
of circumstances. 

 ◆ Fundamental constants 
Numbers which are 
assumed to have exactly 
the same numerical values 
under all circumstances 
and all times. 

 ◆ Coefficient A 
multiplying constant 
placed before a 
variable, indicating a 
physical property. 

Objects also experience friction when they move through liquids and gases (fluids). This is 
discussed in the next section.

DB
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A.2   Forces and momentum 45

 ATL A2A: Research skills 

Using search engines and libraries effectively

Tyres and road safety

Much of road safety is dependent on the nature of road surfaces 
and the tyres on vehicles. Friction between the road and a vehicle 
provides the forces needed for any change of velocity – speeding 
up, slowing down, and changing direction. Smooth tyres will 
usually have the most friction in dry conditions, but when the 
roads are wet, ridges and grooves in the tyres are needed to 
disperse the water (Figure A2.29).

To make sure that road surfaces produce enough friction, they 
cannot be allowed to become too smooth and they may need to 
be resurfaced every few years. This is especially important on 
sharp corners and hills. Anything that gets between the tyres 
and the road surface – for example, oil, water, soil, ice and snow 
– is likely to affect friction and may have a significant effect on 
road safety. Increasing the area of tyres on a vehicle will change 
the pressure underneath them and this may alter the nature of 
the contact between the surfaces. For example, a farm tractor 
may have a problem about sinking into soft ground, and such a 

situation is more complicated than simple friction between two 
surfaces. Vehicles that travel over soft ground need tyres with 
large areas to help avoid this problem.

Using a search engine, research online to find what materials are 
used in the construction of tyres and road surfaces to produce 
high coefficients of friction. Organize your data in a table, 
making sure to credit your sources using a recognized, standard 
method of referencing and citation.

	■ Figure A2.29 Tread on a car tyre
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a Determine the coefficient of friction for the two surfaces represented in the graph 
shown in Figure A2.28.

b Assuming the results were obtained for apparatus like that shown in Figure A2.25, 
calculate the minimum force that would be needed to move a block of total mass:
i 200 g
ii 2000 g.
iii Suggest why the answer to part ii is unreliable.

c Estimate a value for the dynamic frictional force acting on a mass of 200 g with the 
same apparatus:
i for movement at 1.0 m s−1

ii for movement at 2.0 m s−1.

Answer

a μs =  
Fmax

FN
 = 

4.0
10.0 = 0.40 (This is equal to the gradient of the graph.)

b i Ff = μsFN = μsmg = 0.40 × 0.200 × 9.8 = 0.78 N
ii 0.40 × 2.000 × 9.8 = 7.8 N
iii Because the answer is extrapolated from well outside the range of experimental 

results shown on the graph.
c i We would expect the dynamic frictional force to be a little less than the static 

frictional force, say about 0.6 N instead of 0.78 N.
ii The dynamic frictional force is usually assumed to be independent of speed, so the 

force would still be about 0.6 N at the greater speed.

 WORKED EXAMPLE A2.4

Common 
mistake
Many students expect 
that, if the block in 
Figure A2.25 was 
rotated so that side B 
was in contact with the 
table (instead of the 
side parallel to A), there 
would be more friction 
because of the greater 
area of contact. However, 
the frictional force will 
remain (approximately) 
the same, because if, 
for example, the area 
doubles, the force acting 
down on each cm2 
will halve.
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46 Theme A: Space, time and motion

Use data from Table A2.1 where necessary.

14 If dynamic friction is 85% of the maximum static friction, 
estimate the frictional force acting on the steel skates of a 
47 kg ice-skater moving across the ice.

15 A 54 kg wooden box is on a horizontal concrete floor.
a Estimate the minimum force required to start it 

sliding sideways.
b  Suggest why your answer to part a may not 

be reliable.
c If a force of 120 N keeps the box moving at a constant 

speed, what is the coefficient of dynamic friction?
d What will happen to the box if the applied force 

increases above 120 N?

16 a Predict the maximum frictional force possible 
between a dry road surface and each tyre of a 
stationary, 1500 kg four-wheeled family car. 

b Why will the force be less if the road is wet or icy?
c Discuss how roads can be made safer under 

icy conditions.

17 Figure A2.30 shows the front of a Formula One racing 
car. Suggest how this design helps to increase the friction 
between the tyre and the race track.

	■ Figure A2.30 Front of a Formula One racing car

18 A book of mass 720 g is being held in place next to a 
vertical wall as shown in Figure A2.31.
a State the weight of the book.
b Suggest an approximate value for the coefficient of 

static friction between the book and the wall.
c Use your answer to part b to estimate the minimum 

force needed to keep the book stationary against 
the wall.

	■ Figure A2.31 Book being held next to a vertical wall

Friction of objects with air and liquids

SYLLABUS COVERAGE

 Viscous drag force, Fd, acting on a small sphere opposing its motion through a fluid as given by:
 Fd = 6πηrv, where η is the fluid viscosity, r is the radius of the sphere and v is the velocity of the 

sphere through the fluid.

Air resistance was briefly discussed in Topic A.1. The word drag is widely used to describe 
friction in air and liquids. We will use the symbol Fd for this type of force.
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There are a great number of applications of this subject, including moving 
vehicles, sports and falling objects. Wind tunnels are useful in the study 
of drag: the object is kept stationary while the speed of air flowing past it 
is varied. The flow of the air can be marked as shown in Figure A2.32.

Drag can be a complicated subject because the amount of drag 
experienced by an object moving through air, or a liquid, depends on 
many factors, including the object’s size and shape, the nature of its 
surface, its speed v, and the nature of the fluid. Drag will also depend on 
the cross-sectional area of the object (perpendicular to its movement).

Typically, for small objects moving slowly Fd ∝ v.

But for larger objects, moving more quickly, Fd ∝ v2.

	■ Viscosity and Stokes’s law
When an object moves through a fluid it has to push the fluid out of its path. A fluid’s resistance 
to such movement is called its viscosity. Clearly, greater viscosity will tend to increase drag, and 
when this is the dominant factor, we refer to viscous drag.

Viscosity is given the symbol η (eta) and has the SI unit of Pa s (kg m−1 s−1). Some typical values at 
20 °C are given in Table A2.2. Viscosities of liquids can be very dependent on temperature.
	■ Table A2.2 Viscosities of some fluids

Fluid Viscosity η/Pa s

‘heavy’ oil 0.7

‘light’ oil 0.1

water 1 × 10−3

human blood 4 × 10−3

gasoline (petrol) 6 × 10−4

air 1.8 × 10−5

In order to understand this further, we start by simplifying the situation, as is common in physics: 
by considering a smooth spherical object, of radius r, moving at a speed v, which is not great 
enough to cause turbulence (irregular movements) in the fluid.

Under these circumstances, the viscous drag, Fd, can be determined from the following equation 
(known as Stokes’s law):

viscous drag Fd = 6πηrv

Dropping small spheres through fluids is a widely used method for determining their viscosities 
and how they may depend on temperature. A method is shown in Figure A2.33, in which an 
electronic timer is started and stopped as the metal ball passes through the two light gates.

Inquiry 1: Exploring and designing

Designing

Look at the apparatus setup in Figure A2.33. Apply what you know about terminal 
speed (Topic A.1) and viscous fluid flow to design and explain a valid methodology for 
an experiment to obtain a single set of measurements. Include an explanation of:
1 why the metal ball is released such that it passes through some oil before reaching 

the first timing gate
2 why the tube should be as wide as possible.

	■ Figure A2.32 Flow of air past a tennis ball in a wind tunnel.

 ◆ Viscosity Resistance of 
a fluid to movement. 

 ◆ Viscous drag The drag 
force acting on a moving 
object due to the viscosity 
of the fluid through which 
it is moving. 

 ◆ Turbulence Flow of a 
fluid which is erratic and 
unpredictable. 

 ◆ Stokes’s law Equation 
for the viscous drag acting 
on a smooth, spherical 
object undergoing 
non-turbulent motion. 

DB
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oil

	■ Figure A2.33 Experiment to 
determine the viscosity of a liquid

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   47369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   47 04/01/2023   20:1204/01/2023   20:12



48 Theme A: Space, time and motion

If a sphere of mass m and radius r is moving with a constant terminal speed, vt, then the upwards 
and downwards forces on it are balanced, as shown in Figure A2.34.

viscous drag, Fd + buoyancy force, Fb = weight, mg:

6πηrv + ρVg = mg

but:

V = 
4
3

πr3

so:

6πηrv + 
4
3

ρgπr3 = mg

If the mass and radius of the sphere are measured and the terminal speed determined as shown in 
Figure A2.33, then this equation can be used to determine a value for the viscosity of the liquid, 
assuming that its density is known.

Inquiry 3: Concluding and evaluating

Evaluating

The experimental determination of a viscosity discussed above involved just one set of 
measurements and a calculation.

Explain improvements to increase the accuracy of the determination of the viscosity of a 
liquid by collecting sufficient data to enable a graph of the results to be drawn.

Calculate the force of viscous drag on a sphere of radius 1.0 mm moving at 1.0 cm s−1 

through ‘heavy’ oil.

Answer
Fd = 6π × η × r × v = 6 × 3.14 × 0.7 × (1.0 × 10–3) × (1.0 × 10–2) = 1.3 × 10–4 N

 WORKED EXAMPLE A2.5

19 The air resistance acting on a car moving at 5.0 m s−1 
was 120 N.

 Assuming that this force was proportional to the speed 
squared, what was the air resistance when the car’s speed 
increased to:
a 10 m s−1 b 15 m s−1?

20 Show that the units of viscosity are Pa s.

21 Calculate the viscous drag force acting on a small metal 
sphere of radius 1.3 mm falling through oil of viscosity 
0.43 Pa s at a speed of 7.6 cm s−1.

22 A drop of water in a cloud had a mass of 0.52 g and 
radius of 0.50 mm (and volume of 0.52 mm3). 
a Assuming that the density of the surrounding air is 

1.3 kg m−3, calculate and compare the size of the three 

forces acting on the drop if it has just started to fall 
with a speed of 5.0 cm s−1.

b  Draw an annotated diagram to display your answers.
c  Determine the subsequent movement of the drop.

23 In an experiment similar to that shown in Figure A2.33, 
a sphere of radius 8.9 mm and mass 3.1 g reached a 
terminal speed of 7.6 cm s−1 when falling through an oil of 
density 842 kg m−3.

 Determine a value for the viscosity of the liquid.

24 Use the internet to find out how the design of golf balls 
reduces drag forces in flight. Write a 100 word summary 
of your findings.

mg

Fd

Fb

	■ Figure A2.34 Forces 
on a sphere falling with 
terminal speed

DB
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 ATL A2B: Thinking skills 

Evaluating and defending ethical positions

Air travel
Aircraft use a lot of fuel moving passengers and goods from place 
to place quickly, but we are all becoming more aware of the effects 
of planes on global warming and air pollution. Some people think 
that governments should put higher taxes on the use of planes to 
discourage people from using them too much. Improving railway 
systems, especially by operating trains at higher speeds, will also 
attract some passengers away from air travel. Of course, engineers 
try to make planes more efficient so that they use less fuel, but the 
laws of physics cannot be broken and jet engines, like all other heat 
engines, cannot be made much more efficient than they are already.
Planes will use a lower fuel if there is a lower air resistance 
acting on them. This can be achieved by designing planes with 
streamlined shapes, and also by flying at greater heights where 
the air is less dense. Flying more slowly than their maximum 
speed can also reduce the amount of fuel used for a particular 
trip, as it does with cars, but people generally want to spend as 
little time travelling as possible.
The pressure of the air outside an aircraft at its typical cruising 
height is far too low for the comfort and health of the passengers 
and crew, so the air pressure has to be increased inside the 
airplane, but this is still much lower than the air pressure near 
the Earth’s surface. The difference in air pressure between the 
inside and outside of the aircraft would cause problems if the 
airplane had not been designed to withstand the extra forces.

Aircraft generally carry a large mass of fuel, and the weight of 
an aircraft decreases during a journey as the fuel is used up. 
The upwards force supporting the weight of an aircraft in flight 
comes from the air that it is flying through and will vary with 
the speed of the airplane and the density of the air. When the 
aircraft is lighter towards the end of its journey it can travel 
higher, where it will experience less air resistance.
Debate the issue in class. Break into groups. One group can 
represent the airline operators, another group can represent 
passengers, a third group can represent an environmental 
campaign group, while a fourth group could represent the 
government. In your groups, allocate roles for researchers 
and a spokesperson. Using the information above and your 
understanding of air resistance prepare a proposal from the point 
of view of your assigned group detailing different ways in which 
we can reduce the environmental impact of air travel.
To help your research and calculations, refer to the following 
guiding questions:
l How do airlines hope that in the future they can become 

‘carbon neutral’. What is ‘SAF’?
l Find out how much fuel is used on a long-haul flight of, say, 

12 hours.
l Compare your answer with the capacity of the fuel tank on an 

average sized car.
l On a short-haul flight it is often claimed that as much of 50% 

of an aircraft’s fuel might be used for taxiing, taking off, 
climbing and landing, but on longer flights this can reduce to 
under 15%. Explain the difference.

 ◆ Streamlined Having a 
shape that reduces the drag 
forces acting on an object 
that is moving through 
a fluid.

 ◆ Field (gravitational, 
electric or magnetic) 
A region of space in which 
a mass (or a charge, or 
a current) experiences a 
force due to the presence of 
one or more other masses 
(charges, or currents – 
moving charges).

Field forces

SYLLABUS CONTENT

 The nature and use of the following field forces.
– Gravitational force, Fg, as the weight of the body and calculated as given by: Fg = mg
– Electric force Fe

– Magnetic force Fm

These three forces are very important in the study of physics but, apart from the gravitational 
force of weight, knowledge about them is not required in this topic.

These forces can act across empty space, without the need for any material in between. This can 
be difficult for the human mind to accept. One way of increasing our understanding is to develop 
the concept of force fields surrounding masses (gravitational fields), charges (electric fields) and 
magnets / electric currents (magnetic fields). Using this concept, we can give numerical values 
to points in space, for example, by stating that the gravitational field strength at the height of a 
particular satellite’s orbit is 8.86 N kg−1.

LINKING QUESTION
l How can knowledge 

of electrical and 
magnetic forces allow 
the prediction of 
changes to the motion 
of charged particles?

This question links 
to understandings in 
Topic D.3.
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Free-body diagrams

SYLLABUS CONTENT

 Forces acting on a body can be represented in a free-body diagram.

Even the simplest of force diagrams can get confusing if all the forces are shown. To make the 
diagrams simpler we usually draw only one object and show only the forces acting on that one 
object. These drawings are called free-body diagrams. (Physicists use the words ‘body’ and 
‘object’ interchangeably.) Some simple examples are shown in Figure A2.35.

weight

weight

tension

weight

friction pulling force

Earth

force of
gravity

normal force

normal force

a  A box on the ground

c  A swinging pendulum d  A box pulled along the ground
    (at constant speed)

b  The Moon orbiting the Earth

Moon

	■ Figure A2.35 Free-body diagrams; the object has a solid outline and the forces are shown in red

The diagrams are often further simplified by representing the object as a small square, or circle, 
and considering it to be a point particle / mass.

Nature of science: Models

Point objects, particles and masses

A point particle is an idealized, simplified representation of any object, whatever its actual size and 
shape. As the name suggests, a point particle does not have any dimensions, or occupy any space. 
Typically, the ‘point’ will be located at the centre of mass of the object.

When the concept is used, we do not need to consider the complications and variations that are involved 
with extended objects. For example, if we consider an object as a point particle, all forces act through the 
same point and analysis can ignore any possible rotational effects caused by the forces acting on it.

 ◆ Free-body diagram 
Diagram showing all the 
forces acting on a single 
object, and no other forces.

 ◆ Point particle, mass or 
charge Theoretical concept 
used to simplify the 
discussion of forces acting 
on objects (especially 
in gravitational and 
electric fields).
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A.2   Forces and momentum 51

	■ Resultant forces and components

SYLLABUS CONTENT

 Free-body diagrams can be analysed to find the resultant force on a system.

Tool 3: Mathematics

Add and subtract vectors in the 
same plane

Vector addition is an important mathematical 
skill that occurs in several places in the IB 
Physics course, but the addition of forces is 
the most common application. Figure A2.36 
shows an example of how to find the 
resultant of two force vectors.

A resultant force is represented in size 
and direction by the diagonal of the 
parallelogram (or rectangle) which has the 
two original force vectors as adjacent sides.

R2

R1

resultant
force, R1 + R2

	■ Figure A2.36 Adding two forces to determine 
a resultant

Tool 3: Mathematics

Resolve vectors

As we have seen, two forces can be 
combined to determine a single resultant. 
The ‘opposite’ process is very useful: a 
single force, F, can be considered as being 
equivalent to two smaller forces at right 
angles to each other. The two separate 
forces are called components.

This process is called resolving a force into 
two components. It can be used when the 
original force is not acting in a direction which 
is convenient for analysis. Because the two 
components are perpendicular to each other 
their effects can be considered separately. 
Figure A2.37 shows how a force can be 
resolved into two perpendicular components.

F cos θ

F 
si

n 
θ F

θ

	■ Figure A2.37 Force, F, resolved into two components

Any force, F, can be resolved into two 
independent components which are 
perpendicular to each other:

Fsin θ and Fcos θ

 ◆ Resultant force The 
vector sum of the forces 
acting on an object, 
sometimes called the 
unbalanced or net force.

 ◆ Resultant The single 
vector that has the same 
effect as the combination 
of two or more 
separate vectors.

 ◆ Components (of a 
vector) Any single vector 
can be considered as having 
the same effect as two parts 
(components) perpendicular 
to each other.

 ◆ Inclined plane Flat 
surface at an angle to 
the horizontal (but not 
perpendicular). A simple 
device that can be used to 
reduce the force needed 
to raise a load; sometimes 
called a ramp. 
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a Draw a free-body diagram for an object which is 
stationary on a slope (inclined plane) which makes an 
angle of 35° with the horizontal.

b The object has a mass of 12.7 kg and just begins 
to slide down the slope if the angle is 35°. Using 
g = 9.81 N kg–1, calculate the component of the weight 
for this angle:
i down the slope
ii perpendicular into the slope.

c State values of the frictional force and the normal 
force acting on the object.

d Determine the coefficient of static friction in 
this situation.

Answer
a See Figure A2.38, which represents the object as 

a point. The resultant contact force from the slope 
on the object must be equal and opposite to the 
weight, Fg. The 
contact force can 
be considered as 
the combination of 
two perpendicular 
components: FN 
perpendicular to 
the slope, and Ff, 
the frictional force 
stopping the object 
from sliding down 
the slope.

 Sometimes it is preferred to represent the object 
as more than just a point. See Figure A2.39 for an 
example. However, this may cause confusion about 
exactly where the forces act.

b See Figure A2.39.
 Component down slope mg sin 35° = 12.7 × 9.81 × 0.574 

= 71.5 N
 Component into slope = mg cos 35° = 12.7 × 9.81 × 0.819 

= 102 N

35°

mg cos35°
mg

mg sin35°

	■ Figure A2.39 Components of weight

c Frictional force equals component down the slope, but 
in the opposite direction = 71.5 N up the slope.

 Normal force equals component into the slope, but in 
the opposite direction = 102 N upwards.

d Ff = μsFN

 μs =  
Ff

FN
 = 

71.5
102 = 0.70 (which is equal to tan θ)Ff

Fg

resultant
contact
force

object

FN

35°

	■ Figure A2.38 Free-body 
diagram for an object on a slope

WORKED EXAMPLE A2.6

25 Draw fully labelled free-body diagrams for:
a a car moving horizontally with a constant velocity
b an aircraft moving horizontally at constant velocity
c a boat decelerating after the engine has been 

switched off
d a car accelerating up a hill.

26 A wooden block of mass 2.7 kg rests on a slope which is 
inclined at 22° to the horizontal.
a Make calculations which will enable you to draw 

a free-body diagram, similar to Figure A2.38, but 
giving numerical values for the forces.

b If the angle is increased, the block will slide down the 
slope. Calculate the coefficient of friction.

c State whether your answer to part b is for static or 
kinetic friction.

27 A pendulum on the end of a string has a mass of 158 g.
a Draw a free-body diagram representing the situation 

when the string is making an angle of 20° to 
the vertical.

b By adding components of weight to your diagram, 
show that the tension in the string is 1.5 N.

c What effect does the other component (mg sin θ) have 
on the pendulum?

d Discuss how the tension in the string changes while 
the pendulum is swinging from side to side.
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28 Parallel forces of 1 N, 2 N and 3 N can act on an object 
at the same time. State the values of all the possible 
resultant forces.

29 Calculate the resultant force (size and direction) of 4.7 N 
and 5.9 N which are perpendicular to each other and 
acting away from a point mass.

30 Show that a mass on an inclined plane will just begin to 
slip down the slope when the tangent of the angle to the 
horizontal equals the coefficient of static friction.

31 Determine by 
scale drawing or 
calculation the 
size and direction 
of the resultant 
force acting on 
the hook shown in 
Figure A2.40.

25°
200 N

500 N

45°

	■ Figure A2.40

Newton’s laws of motion

SYLLABUS CONTENT

 Newton’s three laws of motion.

Newton’s three laws of motion are among the most famous in classical physics. They describe 
the relationships between force and motion. Although they were first stated more than three 
hundred years ago, they are equally important today and are essential for an understanding of all 
motion (except when a speed of motion is close to the speed of light, as discussed in Topic A.5).

	■ Newton’s first law of motion

Newton’s first law of motion states that an object will remain at rest or continue to move in a 
straight line at a constant speed, unless a resultant force acts on it.

In other words, a resultant force will produce an acceleration (change in velocity).

When the influences on any system are balanced, so that the system does not change, we describe 
it as being in equilibrium. (As another example, if an object stays at the same temperature, we say 
that it is in thermal equilibrium.)

When there is no resultant force on an object, we say that it is in translational equilibrium.

The term translational refers to movement from place to place. An object is in translational 
equilibrium if it remains at rest or continues to move with a constant velocity (in a straight line at a 
constant speed), as described by Newton’s first law.

In passing, it should be noted that, if equal forces act in opposite directions, an object will be in 
translational equilibrium, but if the forces are not aligned (see Figure A2.41) then the object may 
start to rotate, so it will not be in rotational equilibrium. The subject of rotational dynamics is 
covered in Topic A.4.

 ◆ Newton’s laws of 
motion First law: an 
object will remain at rest, 
or continue to move in a 
straight line at a constant 
speed, unless a resultant 
force acts on it; Second 
law: acceleration is 
proportional to resultant 
force; Third law: 
whenever one body exerts 
a force on another body, 
the second body exerts 
exactly same force on 
the first body, but in the 
opposite direction.

 ◆ Balanced forces If an 
object is in mechanical 
equilibrium, we describe 
the forces acting on it 
as ‘balanced’.

 ◆ Equilibrium An object 
is in equilibrium if it is 
unchanging under the action 
of two or more influences 
(e.g. forces). Different types 
of equilibrium include 
translational, rotational 
and thermal.

 ◆ Translational Changing 
position.

F

F

	■ Figure A2.41 The object 
is in translational equilibrium, 
but not in rotational 
equilibrium
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54 Theme A: Space, time and motion

Nature of science: Observations

Natural philosophy

‘Forces are needed to keep an object moving and, without those forces, movement will stop.’ This 
accepted ‘fact’ is not true, but it is still widely believed. It was the basis of theories of motion from 
the time of Aristotle (about 2350 years ago) until the seventeenth century, when scientists began to 
understand that the forces of friction were responsible for stopping movement.

Aristotle is one of the most respected figures in the early development of human thought. He 
appreciated the need for wide-ranging explanations of natural phenomena but the ‘science’ of 
that time – called natural philosophy – did not involve careful observations, measurements, 
mathematics or experiments.

Aristotle believed that everything in the world was made of a combination of the four elements 
of earth, fire, air and water. The Earth was the centre of everything and each of the four Earthly 
elements had its natural place. When something was not in its natural place, then it would tend to 
return – in this way he explained why rain falls, and why flames and bubbles rise, for example.

Modern science (characterized by experimentation and the development of unbiased, testable 
theories) began in the seventeenth century. It includes the work of famous physicists mentioned 
in this topic: Hooke, Galileo and Newton.

	■ Figure A2.42 A representation of 
Aristotle

Examples of translational equilibrium

Because all objects on Earth have weight, it is not possible for an object to be in equilibrium 
because there are no forces acting on it. So, all translational equilibrium arises when two or more 
forces are balanced.

air resistance / drag, Fd

normal contact
forcenormal contact

force

force from
road

weight

	■ Figure A2.43 A cyclist moving at constant speed in translational 
equilibrium

l A book on a horizontal table (Figure A2.8) is in 
equilibrium because its downwards weight is balanced by 
the upwards normal contact force.

l A stationary block on a slope (Figures A2.38 and A2.39) is 
in equilibrium because the component of its weight down 
the slope is balanced by surface friction up the slope and 
the component of its weight into the slope is balanced by 
the normal component of the contact force.

l A cyclist moving with constant speed (Figure A2.43) is in 
equilibrium because their weight is balanced by the sum 
of the two normal contact forces and the frictional force 
from the road is balanced by the drag.

Falling through the air at terminal speed
Figure A2.44 shows three positions of a falling ball. In part a the ball is just starting to move 
and there is no air resistance / drag. In part b the ball has accelerated and has some air resistance 
acting against its motion, but there is still a resultant force and an acceleration downwards. In 
part c the speed of the falling ball has increased to the point where the increasing air resistance 
has become equal and opposite to the weight. There is then no resultant force and the ball is in 
translational equilibrium, falling with a constant velocity called its terminal velocity or terminal 
speed. (Any buoyancy forces are considered to be negligible under these circumstances.) Terminal 
speed was introduced in Topic A.1.

weight
weight

air
resistance

air
resistance

weight

a b c

weight
weight

air
resistance

air
resistance

weight

a b c

	■ Figure A2.44 The resultant 
force on a falling object 
changes as it gains speed

 ◆ Natural philosophy 
The name used to describe 
the (philosophical) study 
of nature and the universe 
before modern science.
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A.2   Forces and momentum 55

Three forces in equilibrium
If two forces are acting on an object such that it is not in equilibrium, then to produce equilibrium 
a third force can be added that is equal in size to the resultant of the other two, but in the opposite 
direction. All three forces must act through the same point. For example, Figure A2.45 shows a 
free-body diagram of a ball on the end of a piece of string kept in equilibrium by a sideways pull 
that is equal in magnitude to the resultant of the weight and the tension in the string.

The translational equilibrium of three forces can be investigated in the laboratory simply by 
connecting three force meters together with string just above a horizontal surface, as shown in 
Figure A2.46. The three forces and the angles between them can be measured for a wide variety of 
different values, each of which maintains the system stationary.

pull – this force
can keep the ball

in equilibrium

resultant of
tension and weight

tension

weight

F1

F2

F3

	■ Figure A2.45 Three forces keeping a suspended ball in equilibrium 	■ Figure A2.46 Investigating three forces in equilibrium

A ladder is leaning against a wall, as shown 
in Figure A2.47. Friction at point P is 
stopping the ladder from slipping, but there 
is no need for any friction acting at point Q.

Q

P
    

	■ Figure 
A2.47 A ladder 
leaning against 
a wall

a Draw a free-body diagram of the ladder, 
including its weight and the normal 
force from the wall.

b The resultant force on the ladder from 
the ground must be directed at the point 
where the lines of action of the other 
two forces intersect. Add this line to 
your diagram.

c Complete the diagram by adding the 
two perpendicular components of the 
force from the ground on the ladder.

Answer

F N

F N

F f

F g

resultant force
of FN and Ff from

ground

	■ Figure A2.48

 WORKED EXAMPLE A2.7
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56 Theme A: Space, time and motion

32 Under what circumstances will a moving car be in translational equilibrium?

33 If you are in an elevator (lift) without windows discuss whether it is possible to 
know if you are moving up, moving down or stationary. 

34 Figure A2.49 shows a mountain climber who, at that moment, is stationary. 
a Draw a free-body diagram that shows that he is in equilibrium.
b  Outline the features of your diagram which show that the climber is 

in equilibrium.

35 Can the Moon be described as being in translational equilibrium? Explain 
your answer.

	■ Figure A2.49

	■ Newton’s second law of motion
We have seen that Newton’s first law establishes that there is a connection between resultant 
force and acceleration. Newton’s second law takes this further and states the mathematical 
connection: when a resultant force acts on a (constant) mass, the acceleration is proportional to the 
resultant force: a ∝ F.

Both force and acceleration are vector quantities and the acceleration is in the same direction as 
the force.

Investigating the effects of different forces and different masses on the accelerations that they 
produce is an important part of most physics courses, although reducing the effects of friction is 
essential for consistent results.

Inquiry 1: Exploring and designing

Exploring

Aristotle’s understanding of motion was formed through making observations of the 
behaviour of objects in motion, but without any deep understanding of the concept of 
force he was unable to account for the effects of friction or air resistance. What methods 
are available for reducing friction in investigations into the effects of different forces and 
masses on an object’s acceleration?

In groups, brainstorm how experiments can be designed to reduce or to cancel the effects 
of frictional forces. Decide on a selection of search terms or phrases that can be used by 
individual students for internet research. Use your research to formulate a research question 
and hypothesis.

Such experiments also show that when the same resultant force is applied to different masses, the 
acceleration produced is inversely proportional to the mass, m: a ∝ 1/m

Combining these results, we see that acceleration, a ∝ 
F
m

.

Newton’s second law can be written as: F ∝ ma

If we define the SI unit of force, the newton, to be the force that accelerates 1 kg by 1 m s−2, then 
we can write: force (N) = mass (kg) × acceleration (m s−2)

Newton’s second law of motion: resultant force, F = ma
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A.2   Forces and momentum 57

This version of Newton’s second law assumes that the mass of the object is constant. We will see 
later in this topic that there is an alternative version which allows for changing mass.

When discussing a gravitational force, weight, we have used the symbol Fg and the acceleration 
involved is g, the acceleration of free fall.

So, the equation F = ma becomes the familiar:

Fg = mg

Tool 3: Mathematics

On a best-fit linear graph, construct lines of maximum and minimum gradients with relative 
accuracy (by eye) considering all uncertainty bars

Many basic physics experiments are aimed at 
investigating if there is a proportional relationship 
between two variables, and this is usually best checked by 
drawing a graph.

If two variables are (directly) proportional, then their 
graph will be a straight line passing through the origin

Figure A2.50 represents a proportional relationship. It is 
important to stress that a linear graph that does not pass 
through the origin does not represent proportionality 
(Figure A2.51).

x

gradient =

0
0

Δx

Δy

Δy
Δx

y

	■ Figure A2.50 A proportional relationship

x0
0

y

    

	■ Figure A2.51 A linear 
relationship that is not 
proportional does not pass 
through the origin. See 
also Tool 3: Mathematics 
(Understand direct and 
inverse proportionality) 
on page 129.

Uncertainty in gradients and intercepts

It is often possible to draw a range of different straight 
lines, all of which pass through the uncertainty bars 
representing experimental data.

We usually assume that the line of best fit is midway 
between the lines of maximum possible gradient and 
minimum possible gradient. Figure A2.52 shows an 
example (for simplicity, only the first and last error bars 
are shown, but in practice all the error bars need to be 
considered when drawing the lines).

0 1
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N
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greatest possible gradient

least possible
gradient

line of best fit

0
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32 4 5 6 7 8

	■ Figure A2.52 Finding maximum and minimum gradients for a 
spring-stretching experiment

 ◆ Proportional 
relationship Two variables 
are (directly) proportional 
to each other if they always 
have the same ratio.

 ◆ Uncertainty bars 
Vertical and horizontal 
lines drawn through 
data points on a graph to 
represent the uncertainties 
in the two values.
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Figure A2.52 shows how the length of a metal spring 
changed as the force applied was increased. We know 
that the measurements were not very precise because the 
uncertainty bars are large. The line of best fit has been 
drawn midway between the other two. This is a linear 
graph (a straight line) and it is known that the gradient of 
the graph represents the force constant (stiffness) of the 
spring and the horizontal intercept represents the original 
length of the spring. Taking measurements from the line 
of best fit, we can make the following calculations:

force constant = gradient = 
(90 – 0)

(6.6 – 1.9)
 = 19 Ncm−1

original length = horizontal intercept = 1.9 cm

To determine the uncertainty in the calculations of gradient 
and intercept, we need only consider the range of straight 
lines that could be drawn through the first and last error 
bars. The uncertainty will be the maximum difference 
between these extreme values obtained from graphs of 
maximum and minimum possible gradients and the value 
calculated from the line of best fit. In this example it can 

be shown that: force constant is between 14 Ncm−1 and 
28 Ncm−1, original length is between 1.1 cm and 2.6 cm.

The final result can be quoted as:  
force constant = 19 ± 9 Ncm−1, original length = 1.9 ± 0.8 cm. 
Clearly, the large uncertainties in these results confirm 
that the experiment lacked precision.

Table A2.3 shows the results that a student obtained 
when investigating the effects of a resultant force on a 
constant mass. Plot a graph of these readings, including 
uncertainty bars. Then draw lines of maximum and 
minimum gradients through the error bars. Finally, use 
your graph to determine the mass that the student used in 
the experiment and the uncertainty in your answer.
	■ Table A2.3

Resultant force, N, ± 0.5 N Acceleration, m s−2, ± 0.2 m s−2

1.0 0.7

2.0 1.3

3.0 2.0

4.0 2.8

5.0 3.3

6.0 4.1

Common mistake
Many students believe that the force involved when an object hits the ground is its weight. In reality, 
the force will depend on the nature of the impact. The longer the duration of the impact, the smaller the 
force, as explained below.

Non-mathematical applications of Newton’s second law

We can use Newton’s second law to explain why, for example, a glass will break when dropped on 
the floor, but may survive being dropped onto a sofa. A collision with the floor will be for a much 
shorter duration, which means the deceleration will be greater and (using F = ma) the force will be 
greater, and probably more destructive. Similar arguments can be used to explain how forces can 
be reduced in road accidents.

A car of mass 1450 kg is accelerated from rest by an 
initial resultant force of 3800 N.
a Calculate the acceleration of the car.
b If the force and acceleration are constant, what will its 

speed be after 4.0 s?
c Determine how far it will have travelled in this time.
d After 4.0 s the resistive forces acting on the car are 

1800 N. Show that the new force required to maintain 
the same acceleration is approximately 5.5 kN.

Answer

a a = 
F
m = 

3800
1450 = 2.62 m s–2

b v = u + at = 0 + (2.62 × 4.0) = 10.5 m s−1

c s = 
(u + v)

2  × t = 
(0 + 10.5)

2  × 4.0 = 21.0 m

d 3800 + 1800 = 5600 N ≈ 5500 N = 5.5 kN

 WORKED EXAMPLE A2.8
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Figure A2.53 shows two masses attached by a string 
which passes over a fixed pulley. Assuming that there is 
no friction in the system and that the string has negligible 
mass, determine:
a the acceleration of the system
b the tension in the string.

500

100

fixed pulley

     
	■ Figure A2.53 Two masses attached by a 

string which passes over a fixed pulley

Answer
a The resultant force on the system of two masses = 

weight of the 500 g mass − weight of 100 g mass = 
(0.500 − 0.100) × 9.8 = 3.9 N

 a = 
F
m = 

3.9
(0.500 + 0.100) = 6.5 m s–2

 The 500 g mass will accelerate down while the 100 g 
mass accelerates up at the same rate.

b Consider the 100 g mass: the resultant force acting 
= tension, T, in the string upwards – weight acting 
downwards = T – (0.100 × 9.8) = T – 0.98

 F = ma
 (T – 0.98) = 0.100 × 6.5
 T = 1.6 N
 Equally, we could consider the 500 g mass: 

the resultant force acting =  
weight acting downwards − tension, T, in the string 
upwards =  
(0.500 × 9.8) − T = 4.9 − T

 F = ma
 (4.9 − T) = 0.500 × 6.5
 T = 1.6 N

 WORKED EXAMPLE A2.9

36 A laboratory trolley accelerated at 80 cm s−2 when a 
resultant force of 1.7 N was applied to it. What was 
its mass?

37 When a force of 6.4 N was applied to a mass of 2.1 kg 
on a horizontal surface, it accelerated by 1.9 m s–2. 
Determine the average frictional force acting on 
the mass.

38 When a hollow rubber ball of mass 120 g was dropped on 
a concrete floor the velocity of impact was 8.0 m s−1 and it 
reduced to zero in 0.44  s (before bouncing back).
a Calculate:

i the ball’s average deceleration
ii the average force exerted on the ball.

b Repeat the calculations for a solid steel ball of the 
same size, 10 times the mass, but with the same 
impact velocity. Assume that its speed reduced to 
zero in 0.080 s. 

c Outline why the steel ball can do more damage to a 
floor than the rubber ball.

39 A small aircraft of mass 520 kg needs to take off with a 
speed of 30 m s−1 from a runway in a distance of 200 m.
a Show that the aircraft needs to have an average 

acceleration of 2.3 m s−2.
b What average resultant force is needed during the 

take off?

40 Discuss why the forces on the long-jumper shown in 
Figure A2.54 are reduced because he is landing in sand.

	■ Figure A2.54 Impact in a sand-pit reduces force
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41 a What resultant force is needed to accelerate a train of 
total mass 2.78 × 106 kg from rest to 20 m s−1 in 60 s?

b If the same train was on a sloping track which had an 
angle of 5.0° to the horizontal, what is the component 
of its weight parallel to the track?

c Suggest why railway designers try to avoid hills.

42 Calculate the average force needed to bring a 2160 kg car 
travelling at 21 m s−1 to rest in 68 m.

43 Use Newton’s second law to explain why it will hurt you 
more if you are struck by a hard ball than by a soft ball 
of the same mass and speed.

44 A trolley containing sand is pulled across a frictionless 
horizontal surface with a small but constant resultant 
force. Describe and explain the motion of the trolley if 
sand can fall through a hole in the bottom of the trolley.

45 A man of mass 82.5 kg is standing still in an elevator that 
is accelerating upwards at 1.50 m s−2.
a What is the resultant force acting on the man?
b What is the normal contact force acting upwards on 

him from the floor?

46 Figure A2.55 shows two masses connected by a light 
string passing over a pulley.
a Assuming there is no friction, calculate the 

acceleration of the two blocks.
b What resultant force is needed to accelerate the 2.0 kg 

mass by this amount?
c Draw a fully labelled free-body diagram for the 2 kg 

mass, showing the size and direction of all forces.

10 kg

2.0 kg

	■ Figure A2.55 Two masses connected by a light string passing over 
a pulley

47 Outline how air bags (and/or seat belts) reduce the 
injuries to drivers and passengers in car accidents.

Newton’s second law offers us a different way of understanding mass: larger masses accelerate 
less than smaller masses under the action of the same resultant force. So, mass can be considered 
as a measure of an object’s resistance to acceleration. Physicists use the term inertia to describe 
an object’s resistance to a change of motion.

Mass is a measure of inertia.

	■ Newton’s third law of motion
Whenever any two objects come in contact with each other, or otherwise interact, 
they exert forces on each other (Figure A2.56). Newton’s third law compares these 
two forces.

Newton’s third law of motion states that whenever one body exerts a force on 
another body, the second body exerts a force of the same magnitude on the first 
body, but in the opposite direction.

Essentially this law means that forces must always occur in equal pairs, although it is important to 
realize that the two forces must act on different bodies and in opposite directions, so that only one 
of each force pair can be seen in any free-body diagram. The two forces are always of the same 
type, for example gravity/gravity or friction/friction. Sometimes the law is quoted in the form 
used by Newton: ‘to every action there is an equal and opposite reaction’. In everyday terms, it is 
simply not possible to push something that does not push back on you. Here are some examples:
l If you pull a rope, the rope pulls you.
l If the Earth pulls a person, the person pulls the Earth (Figure A2.57).
l If a fist hits a cheek, the cheek hits the fist (Figure A2.58).

 ◆ Inertia Resistance to a 
change of motion. Depends 
on the mass of the object. 

FB FA

A

point of contact

B

	■ Figure A2.56 When two bodies interact, 
FA = –FB
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l If you push on the ground, the ground pushes on you.
l If a boat pushes down on the water, the water pushes up on the boat.
l If the Sun attracts the Earth, the Earth attracts the Sun.
l If an aircraft pushes down on the air, the air pushes up on the aircraft.

gravitational
force of the
woman on the
Earth

gravitational
force of the
Earth on the
woman

	■ Figure A2.57 The force on the 
woman is equal and opposite to the 
force on the Earth          

	■ Figure A2.58 The force on the glove is equal and opposite to the force 
on the cheek 

48 A book has a weight of 2 N and is at rest on a table. The 
table exerts a normal contact force of 2 N upwards on 
the book.

 Explain why these two forces are not an example of 
Newton’s third law.

49 Seven examples of pairs of Newton’s third law forces are 
provided above. Give three more examples. Try to use 
different types of force.

50 Consider Figure A2.58. Outline reasons why forces of 
equal magnitude, for example on a face and on a fist, can 
have very different effects.

51 Discuss why the person shown in Figure A2.59 could end 
up in the water.

NEWTONIII

	■ Figure A2.59

52 Figure A2.60 shows a suggestion to make a sailing boat 
move when there is no wind.

 Discuss how effective this method could be.

fan

	■ Figure A2.60 Sailing boat

53 A large cage with a small bird sitting on a perch is placed 
on weighing scales.

 Discuss what happens to the weight shown on the scales 
when the bird is flying around the cage (compared with 
when it is sitting still). 
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62 Theme A: Space, time and motion

We have seen (Figure A2.56) that, when any two objects, A and B, interact, FA = −FB.

Using Newton’s second law F = ma we can write: [ma]A = −[ma]B.

Remembering that:

a = 
(v – u)

t
 

we can write:

[m(v – u)
t ]

A
 = [m(v – u)

t ]
B

The time of the interaction is the same for both, so: [m(v – u)]A = [m(v – u)]B.

Putting this into words: (mass × change of velocity) for A = −(mass × change of velocity) for B.

(mass × velocity) is an important concept in physics. It is called momentum. The momentum gained 
by object A = momentum lost by object B. Always. This assumes that there are no external forces.

This is covered in more detail in the next section.

TOK

The natural sciences
l What kinds of explanations do natural scientists offer?

A clockwork universe?

Everything is made of particles and it has been suggested that, if we could know everything about the 
present state of all the particles in a system (their positions, energies, movements and so on), then maybe 
we could use the laws of classical physics to predict what will happen to them in the future. The Universe 
would then behave like a mechanical clock. If these ideas could be expanded to include everything, 
then the future of the Universe would already be decided and predetermined, and the many apparently 
unpredictable events of everyday life and human behaviour (like you reading these words at this moment) 
would just be the laws of physics in disguise.

However, we now know that the laws of physics (as imagined by humans) are not always so precisely 
defined, nor as fully understood as physicists of earlier years may have believed. The principles of 
quantum physics and relativity in particular contrast with the laws of classical physics. Furthermore, in 
a practical sense, it is totally inconceivable that we could ever know enough about the present state of 
everything in the Universe in order to use that data to make detailed future predictions.

Momentum

SYLLABUS CONTENT

 Linear momentum as given by: p = mv remains constant unless the system is acted upon by a resultant 
external force.

 Newton’s second law in the form F = ma assumes mass is constant whereas F = 
Δp
Δt  allows for 

situations where mass is changing.

linear momentum (SI unit: kg m s−1) = mass × velocity, p = mv

Momentum is a vector quantity and its direction is always important.

 ◆ Momentum (linear), p 
Mass times velocity, 
a vector quantity.

DB
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The explanation at the end of the last section shows that when two objects interact, with forces 
between them, the change of momentum for one object is equal and opposite to the change in 
momentum of the other: one object gains momentum while the other object loses an equal amount 
of momentum. This means that the total amount of momentum is unchanged, although this is 
only true if no resultant external force is acting on the objects. (We describe this as an isolated 
system.). This very important principle, which is a consequence of Newton’s third law, can be 
stated as follows:

The law of conservation of momentum: the total momentum of any system is constant, 
provided that there is no resultant external force acting on it.

This law of physics is always true. There are no exceptions. It is very useful in helping to predict 
the results of interactions like collisions. See below.

Nature of science: Models

Systems and the environment

We use the term system to describe and limit the collection of objects we are considering. You may think 
of this as ‘drawing a line around’ an object together with all of the surrounding objects with which there 
are significant interactions. This is especially important when using conservation laws. Objects outside of 
the ‘system’ are usually referred to as the environment, or the surroundings.

In practice, any situation can be complicated and we often have to decide which objects we can ignore 
(assume to be outside of the system) because their effect is minimal.

Take a collision between two cars as an example. Commonly, we calculate an outcome by considering 
the system to be just the two cars. This will give us a quick, reasonably accurate and useful prediction 
for what happens immediately after impact. Such a calculation has chosen not to include the air and the 
road in the system. If they were included, the situation would be much more complex, but the immediate 
consequences of any collision may be similar.

 ◆ Surroundings 
Everything apart from 
the system that is being 
considered; similar to the 
‘environment’.

We know that, for uniform acceleration:

F = ma = 
m(v – u)

t
 = 

mv – mu
t

 

This demonstrates an alternative, more generalized, interpretation of Newton’s second law 
(F = ma) in terms of a change of momentum, Δp (= mv − mu) that occurs in time Δt.

force = rate of change of momentum: F = 
Δp
Δt

This equation allows for the possibility of a changing mass, whereas the use of F = ma assumes a 
constant mass. An application of this is given later in the section on explosions and propulsion.

 ◆ System The object(s) 
being considered (and 
nothing else). An isolated 
system describes a system 
into which matter and 
energy cannot flow in, 
or out. 

DB
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64 Theme A: Space, time and motion

Inquiry 2: Collecting and processing data

Interpreting results

Significant figures

An answer should not have more significant figures than 
the least precise of the data used in the calculation.

The more precise a measurement is, the greater the 
number of significant figures (digits) that can be used to 
represent it. For example, a mass stated to be 4.20 g (as 
distinct from 4.19 g or 4.21 g) suggests a greater precision 
than a mass stated to be 4.2 g.

Significant figures are all the digits used in data to carry 
meaning, whether they are before or after a decimal point, 
and this includes zeros.

But sometimes zeros are used without thought or meaning, 
and this can lead to confusion. For example, if you are 
told that it is 100 km to the nearest airport, you might be 
unsure whether it is approximately 100 km, or ‘exactly’ 
100 km. This is a good example of why scientific notation 
is useful. Using 1.00 × 102 km makes it clear that there 
are 3 significant figures. 1 × 102 km represents much less 
precision. When making calculations, the result cannot 
be more precise than the data used to produce it. As a 
general and simplified rule, when answering questions or 
processing experimental data, the result should have the 
same number of significant figures as the data used. If the 

number of significant figures is not the same for all pieces 
of data, then the number of significant figures in the answer 
should be the same as the least precise of the data (which 
has the fewest significant figures).

You may assume that all the digits seen in the data shown 
in this book are significant. For example 100 km should be 
interpreted as three significant figures.

For example, if a mass of 583 g changed velocity 
by 15 m s−1 in two seconds, then the resultant force 
acting was:

F = 
Δp
Δt

 = 
(0.583 × 15) 

2
 = 4.3725 N

(showing all figures seen on calculator display).

But, since the time was only given to one significant 
figure, then the answer should have the same: F = 4 N.

Maybe this can seem unsatisfactory, but remember that 
when the time is quoted as 2 s, it simply means that it 
was more than 1.5 s and less than 2.5 s. (A time of 1.5 s 
would give an answer of 5.8 N, a time of 2.5 s would give 
an answer of 3.5 N.) If the time had been 2.0 s, then the 
quoted answer for the force should be 4.4 N. If the time had 
been 2.00 s, then the quoted answer for the force should 
still be 4.4 N, because the velocity was only given to 2 
significant figures.

	■ Conservation of momentum in collisions and explosions

SYLLABUS CONTENT

 Elastic and inelastic collisions of two bodies.
 Energy considerations in elastic collisions, inelastic collisions, and explosions.

We will use the word ‘collision’ to describe any event in which two, or more, objects move 
towards each other and exert forces on each other. In physics this term is not limited to its typical 
everyday use to describe accidental events, often involving large forces. The term ‘explosion’ will 
be used to describe any event in which internal forces within a stationary system result in separate 
parts of the system moving apart. Everyday usage of the term is much more dramatic.

 ◆ Scientific notation 
Every number is expressed 
in the following form: 
a × 10b, where a is a 
decimal number larger than 
1 and less than 10 and b is 
an exponent (integer).

 ◆ Significant figures 
(digits) All the digits used 
in data to carry meaning, 
whether they are before or 
after a decimal point.

 ◆ Collision Two (or more) 
objects coming together 
and exerting forces on 
each other for a relatively 
short time. 

 ◆ Explosion Term used 
in physics to describe 
when two or more masses, 
which were initially at rest, 
are propelled apart from 
each other. 
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A.2   Forces and momentum 65

Collisions

We can always use the law of conservation of momentum to help 
predict what will happen immediately after a collision, but we 
must also have some other information. For example, the results 
of two tennis balls colliding will be very different from two 
cushions colliding and neither can be predicted by using only 
the law of conservation of momentum. Consider the following 
worked example.

An object A of mass of 2.1 kg was moving to the left with a velocity of 0.76 m s−1. At the same 
time, object B of mass 1.2 kg was moving in the opposite direction with a velocity of 3.3 m s−1. 
Discuss what happens after the collision. 
Momentum of A = 2.1 × 0.76 = 1.60 kg m s−1. But this is a magnitude only. We have not 
considered direction: 
If we choose that velocity to the left is positive, momentum of A = 2.1 × (+ 0.76) = +1.60 kg m s−1 
(to the left).
(Alternatively, if we prefer to say velocity to the right is positive, then we get:  
momentum of A = 2.1 × (−0.76) = −1.60 kg m s−1 (to the left)
Using velocity and momentum to the left to be positive:
momentum of B = 1.2 × (−3.3) = −3.96 kg m s−1 (to the right)
The combined momentum of A and B before the collision = 1.60 + (−3.96) = −2.36 kg m s−1 

(to the right)
The law of conservation of momentum tells us that after the collision, this momentum 
will be the same (assuming there is no resultant external force). But we need further 
information to determine exactly what happened. That information may come in the form 
of identifying the type of collision (see below), or telling us what happened to one of the 
objects, so that we can calculate what happened to the other, as follows:
If, after the collision, object A moved to the left with a velocity of 0.87 m s−1, what 
happened to object B?
After the collision, momentum of A + momentum of B = −2.36 kg m s−1

[2.1 × (–0.87)] + (1.2 × vB) = −2.36 kg m s−1

vB = −0.44 m s−1 (to the left)
All of this has been explained in detail to help understanding. More directly it can be 
represented by: momentum before collision = momentum after collision
[2.1 × (+0.76)] + [1.2 × (−3.3)] = [2.1 × (−0.87)] + (1.2 × vB)
vB = −0.44 m s−1 (to the left)

 WORKED EXAMPLE A2.10

Top tip!
In Topic A.3, we will introduce the law of conservation of energy and the concept of kinetic energy, 

which is the energy of moving masses, calculated by Ek = 
1
2mv2. That knowledge is needed in order to 

understand the rest of this section on collisions.

You may prefer to delay the rest of this topic on collisions and explosions until Topic A.3 has been 
covered in detail.

	■ Figure A2.61 Newton’s cradle is a demonstration of collisions

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   65369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   65 04/01/2023   20:1204/01/2023   20:12



66 Theme A: Space, time and motion

Kinetic energy in collisions
We need to consider the transfer of energy in a collision. Any moving object has kinetic energy 
and during a collision some, or all, of this energy will be transferred between the colliding objects. 
Typically, some energy, perhaps most of the energy, will be transferred to the surroundings as 
thermal energy and maybe some sound. We can identify the extreme cases:

A collision in which the total kinetic energy before and after the collision is the same is called 
an elastic collision.

All other collisions can be described as inelastic collisions, meaning that kinetic energy has 
not been conserved. In everyday, macroscopic events, elastic collisions are a theoretical ideal 
and they do not happen perfectly. However, elastic collisions are common for microscopic 
particle collisions.

A collision after which the colliding objects stick together is called a totally inelastic collision.

In a totally inelastic collision, the maximum possible amount of kinetic energy is transferred from 
the moving objects to the environment.

	■ Figure A2.62 An inelastic collision

Nature of science: Models

Macroscopic and microscopic

In general, physicists use the terms:

l macroscopic to describe events that can be observed with the unaided eye

l microscopic to describe events on the molecular, atomic, or subatomic scale.

It was not until scientists began to realize that matter consisted of atoms and molecules (that could not be 
seen), that many observations of the world around us could be explained.

Perhaps the best example of an (almost) elastic macroscopic collision is that between steel spheres. 
If a stationary sphere is struck by an identical moving sphere, the moving sphere stops and the 
other sphere continues with the velocity of the first. ‘Newton’s cradle’, as seen in Figure A2.61 is a 
famous demonstration of this.

 ◆ Collisions In an elastic 
collision the total kinetic 
energy before and after 
the collision is the same. 
In any inelastic collision 
the total kinetic energy is 
reduced after the collision. 
If the objects stick together 
it is described as a totally 
inelastic collision.

 ◆ Macroscopic Can be 
observed without the need 
for a microscope.

 ◆ Microscopic Describes 
anything that is too 
small to be seen with the 
unaided eye.
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It is easy to find examples where all kinetic energy appears to have been lost, for example, when 
a student jumps down to the floor. The student has had a totally inelastic collision with the Earth, 
but the change to the motion of the Earth is insignificant and unobservable.

A 2.1 kg trolley moving at 0.82 m s−1 collides with a 1.7 kg trolley moving at 0.98 m s−1 in 
the opposite direction. After the collision, the 1.7 kg trolley reverses direction and moves 
at 0.43 m s−1.
a Discuss what happened to the other trolley.
b Without making any calculations, comment on the difference in total kinetic energy 

before and after the collision.
c If the collision had been totally inelastic, what would have happened after the collision?

Answer
a Total momentum before = total momentum after
 (2.1 × 0.82) + (1.7 × −0.98) = (2.1 × v) + (1.7 × 0.43)
 Velocities in the original direction have been given a + sign and velocities in the 

opposite direction are given a − sign (or it could be the other way around).
 0.056 = 2.1v + 0.731
 v = – 0.32 m s−1. The – sign shows us that the trolley reverses its direction of motion.
b Both velocities have been reduced, so the total kinetic energy is significantly less.
c The trolleys will stick together if the collision is totally inelastic.  

Total momentum before = total momentum after
 (2.1 × 0.82) + (1.7 × −0.98) = (2.1 + 1.7) × v
 0.056 = 3.8v
 v = + 0.015 m s−1. The + sign shows us that they move in the original direction of the 

2.1 kg trolley.
 The combined trolleys are moving slowly, so there has been a considerable loss of 

kinetic energy.

LINKING QUESTION
l In which way is 

conservation of 
momentum relevant 
to the workings 
of a nuclear 
power station?

This question links 
to understandings in 
Topic E.4

 WORKED EXAMPLE A2.11

54 An object of mass 4.1 kg travelling to the right with a 
velocity of 1.9 m s−1 has a totally inelastic collision with 
a stationary object of mass 5.6 kg. Determine how they 
move immediately after the collision.

55 A bus of mass 4900 kg travelling at 22 m s−1 collides with 
the back of a 1300 kg car travelling at 16 m s−1. If the car 
is pushed forward with a velocity of 20 m s−1, calculate 
the velocity of the bus immediately after the collision.

56 In an experiment to find the speed of a 2.40 g bullet, it was 
fired into a 650 g block of wood at rest on a friction-free 
surface. If the block (and bullet) moved off with an initial 
speed of 96.0 cm s−1. Calculate the speed of the bullet.

57 A ball thrown vertically upwards decelerates and its 
momentum decreases, although the law of conservation 

of momentum states that total momentum cannot change. 
Explain this observation.

58 Figure A2.63 shows two trolleys on a friction-free 
surface joined together by a thin rubber cord under 
tension. When the trolleys are released, they accelerate 
towards each other and the cord quickly becomes loose.
a Show that the two trolleys collide at the 20 cm mark. 
b Predict what happens after they collide if they 

stick together.

0 100 cm 

1600g 400g

	■ Figure A2.63 Two trolleys on a friction-free surface joined together by 
a thin rubber cord
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59 Two toy cars travel in straight lines towards each other 
on a friction-free track. Car A has a mass of 432 g and a 
speed of 83.2 cm s−1. Car B has a mass of 287 g and speed 
of 68.2 cm s−1. If they stick together after impact, predict 
their combined velocity.

60 A steel ball of mass 1.2 kg moving at 2.7 m s−1 collides 
head-on with another steel ball of mass 0.54 kg moving 

in the opposite direction at 3.9 m s−1. The balls bounce off 
each other, each returning back in the direction it came 
from on a horizontal surface. 
a If the smaller ball had a speed after the collision of 

6.0 m s−1, use the law of conservation of momentum to 
predict the speed of the larger ball. 

b In fact, the situation described in part a is not 
possible. Discuss possible explanations of why not.

 ATL A2C: Thinking skills 

Reflecting on the credibility of results
A student carried out an experiment into the momentum of colliding trolleys on a horizontal runway. 
A trolley of mass 2.0 kg and speed 80 cm s−1 collided with a trolley of mass 1.0 kg and speed 220 cm s−1 
travelling in the opposite direction. After the collision, both the trolleys reversed their directions and 
the student measured the speeds of both trolleys to be 60 cm s−1.

Explain why the student must have made a mistake.

Explosions

Figure A2.64 shows a possible laboratory investigation into a one-dimensional ‘explosion’. A 
blow from the hammer releases springs which push the previously stationary trolleys apart. If the 
trolleys are identical, they will move apart with equal speeds. If the mass on one side is doubled, 
as shown in the third drawing, the speeds will be in the ratio 2:1, the more massive trolley will 
move more slowly

	■ Figure A2.65 Firing a cannon	■ Figure A2.64 A simple ‘explosion’

Firing a gun, or a cannon, is a more dramatic example. See Figure A2.65. Since there is zero 
momentum to begin with, the momentum of the bullet / cannon ball must be equal and opposite to 
the momentum of the gun itself (or cannon), so that the total momentum after firing is also zero. 
The word recoil is used to describe this ‘backwards’ motion.

 ◆ Recoil When a bullet 
is fired from a gun (or 
similar), the gun must gain 
equal momentum in the 
opposite direction.

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   68369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   68 04/01/2023   20:1204/01/2023   20:12



H
L O

N
LY

A.2   Forces and momentum 69

A rifle of mass 1.54 kg fires a bullet of mass 22 g at a speed of 250 m s−1.  
Calculate the recoil speed of the rifle.

Answer
Total momentum before = total momentum after
0 = (1.54 × v) + (0.022 × 250)
v = −3.6 m s−1.
The ‘−’ sign shows us that the gun moves in the opposite direction to the bullet’s velocity.

 WORKED EXAMPLE A2.12

61 In an experiment similar to that shown in the first 
drawing of Figure A2.64, after being released one 
trolley with a mass of 980 g recoiled with a velocity of 
0.27 m s−1. What was the speed of the other trolley, which 
had a mass of 645 g?

62 An isolated and ‘stationary’ astronaut of mass 65 kg 
accidentally pushes a 2.3 kg hammer away from her body 
with a speed of 80 cm s−1.
a Outline a reason why the word ‘stationary’ has been 

put in quotation marks.
b Predict what happened to the astronaut.
c Suggest how she can stop moving.

63 Cannons have been used extensively in wars for hundreds 
of years. A large cannon from 200 years ago could fire 
a 25 kg cannon ball with a speed of over 150 km h−1 
(42 m s−1). The recoil momentum of these cannons could 
be dangerous, although the recoil speed was limited by 
the very large mass of the cannon. If the speed of recoil 
was 0.30 m s−1, calculate the mass of the cannon.

64 Figure A2.66 shows a heavy ball being thrown from one 
end of a canoe to the other. Describe what will happen to 
the canoe (and the passenger) when:
a the ball is being thrown
b the ball is in the air
c the ball lands back in the canoe. Assume that the 

water does not resist any possible movement of 
the canoe.

	■ Figure A2.66 A heavy ball being thrown from one end of a canoe to 
the other

	■ Collisions and explosions in two dimensions
So far, we have only considered interactions in one direction. This section extends the study to 
two dimensions. It is aimed at Higher Level students only. We will consider that the interacting 
objects behave as point particles.

Figure A2.67 shows two objects, m1 and m2, before and after a collision. In this example m2 was 
stationary before the collision.

For collisions or explosions in two dimensions the law of conservation of momentum can be 
applied in two perpendicular directions.

For the example shown in Figure A2.67 we need to know the components of v1 and v2 in the x and 
y directions:

v1x = v1 cos θ1 v1y = v1 sin θ1

v2x = v2 cos θ2 v2y = v2 sin θ2

m1

v1

v2

m2

Before After

y

x

m1 m2

u1
u2 = 0 θ1

θ2

m1

v1

v2

m2

Before After

y

x

m1 m2

u1
u2 = 0 θ1

θ2

	■ Figure A2.67 Two objects 
colliding in two dimensions

m1

v1

v2

m2

Before After

y

x

m1 m2

u1
u2 = 0 θ1

θ2
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Considering Figure A2.67, let m1 = 0.50 kg, m2 = 0.30 kg and u1 = 4.0 m s−1.
If the angles were θ1 = 36.9° and θ2 = 26.6°, determine the value of v2 if v1 was 2.0 m s−1.

Answer
Applying conservation of momentum in the y-direction:
0 = m1v1 sin θ1 + m2v2 sin θ2

0 = 0.600 + 0.134v2

v2 = −4.5 m s−1, the negative sign shows that it is moving in the negative y-direction.
Alternatively, and less simply, we can apply conservation of momentum in the x-direction:
m1u1 = m1v1 cos θ1 + m2v2 cos θ2

(0.50 × 4.0) = (0.50 × 2.0 × cos 36.9°) + (0.30 × v2 × cos 26.6°)
2.0 = 0.800 + (0.268 × v2)
v2 = 4.5 m s−1, as before.

 WORKED EXAMPLE A2.13

A stationary small mass of mass 5.0 g 
explodes into three particles.
One particle, A, of mass 1.5 g moves with 
a velocity of 23 m s−1 in a direction that we 
will call the x-direction.
The second particle, B, of mass 2.0 g moves 
with a velocity of 18 m s−1 in a direction of 
60° to the first.
Determine what happened to the third 
particle, C.

A

B

60º

C

	■ Figure A2.68 A stationary small mass explodes 
into three particles

Answer
Before the explosion there is zero momentum. After the explosion, in any chosen direction 
momentum must be conserved: pA + pB + pC = 0.
Resolving the velocity of the B particle into two components:
In x-direction, vx = 18 cos 60° = 9.0 m s−1

In y direction, vy = 18 sin 60° = 15.6 m s−1

Consider momentum in the x-direction: pA + pB + pC = 0.
(1.5 × 23) + (2.0 × 9.0) = 52.5 g m s−1 = −pC

Consider momentum in the y-direction: 0 + (2.0 × 15.6) = 31.2 g m s−1 = −pC

Dividing momentum by mass (m = 5.0 – 1.5 – 2.0 = 1.5) gives us the two components of 
the velocity of C: −35 m s−1 and −21 m s−1.
These two components can be added (using a scale drawing or trigonometry) to determine 
the actual velocity of C: 41 m s−1 at an angle of 31° to the −x-direction.

 WORKED EXAMPLE A2.14
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65 Masses of 200 g and 500 g are travelling directly towards 
each other with speeds of 1.2 m s−1 and 0.30 m s−1, 
respectively. After they collide, the speed of the 200 g 
mass reduces to 0.10 m s−1 as it continues in a direction at 
30° to its original motion.

 Determine what happened to the other mass.

66 A mass of mass 1.0 kg moving at 2.0 m s−1 explodes into 
three parts. One part, which has a mass of 250 g, has a 
velocity of 8.5 m s−1 in the original direction of motion. 
The second part has a mass of 450 g and moves with a 
velocity of 5.6 m s−1 at an angle of 90° to the first part.

 Show that the third part has a speed of 8.4 m s–1.

Propulsion

If the ball shown in Figure A2.66 had been thrown over the end of the canoe, the canoe would 
keep moving to the right (until resistive forces stopped it). An unusual example perhaps, but this 
shows us a very useful concept: to start, or maintain motion (propel), we can create momentum 
in the opposite direction. This can be restated using Newton’s third law: if we want a force to 
move us to the right (for example), we exert a force on the surroundings to the left. The person in 
the boat pushes the ball to the left and the ball pushes the person (and the boat) to the right. Using 
friction for walking and car movement has already been discussed.

A boat can be pushed forward by pushing water backwards, using an oar, or a propeller. See 
Figure A2.69. The momentum of the boat forwards is equal and opposite to the momentum of the 
water backwards.

A propeller can also be used for a small airplane, but typically the propeller needs to be much 
larger and rotate faster, because the density of air is much less than water. Larger aircraft use the 
same conservation of momentum principle, but in a different way:

There are many designs of jet engines, but the basic principle is that they take in the surrounding 
air and use it to burn vaporized fuel. The resulting hot exhaust gases are ejected at the back of 
the engine with considerable momentum (much greater than the momentum of the air input), the 
difference is equal and opposite to the forward momentum given to the aircraft.

Rocket engines use the same principle, but they travel where there is little or no air, so they use 
oxygen that has been stored on the vehicle.

	■ Figure A2.69 Boat propeller 	■ Figure A2.70 A Chinese rocket launching a spacecraft to Mars

 ◆ Propel Provide a force 
for an intended motion.

 ◆ Jet engine An engine 
that achieves propulsion 
by emitting a fast-moving 
stream of gas or liquid in 
the opposite direction from 
the intended motion.

 ◆ Rocket engine Similar 
to a jet engine, but there 
is no air intake. Instead, 
an oxidant is carried on 
the vehicle, together with 
the fuel.
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A rocket is ejecting exhaust gases at a rate of 1.5 × 104 kg s−1. If the speed of the exhaust gases 
(relative to the rocket) is 2.3 × 103 m s−1, what is the forward force acting on the rocket?

Answer

F = 
Δp
Δt  ⇒ (Δm

Δt ) × v = (1.5 × 104) × (2.3 × 103) = 3.5 × 107 N

 WORKED EXAMPLE A2.15

67 A rocket’s mass at lift-off was 2.7 × 106 kg. If gases were ejected at a rate of 1.9 × 104 kg s−1 
with a speed of 2.0 × 103 m s−1:
a determine the initial acceleration of the rocket
b explain why the acceleration will increase as the rocket rises, while the engines provide 

the same force.

Forces acting for short times: impulses

SYLLABUS CONTENT

 A resultant force applied to a system constitutes an impulse, J, as given by: J = FΔt, where F is the 
average resultant force and Δt is the time of contact.

 The applied external impulse equals the change in momentum of the system.

Many forces only act for a short time, Δt. Clearly the longer the time for which a force acts, the 
greater its possible effect, so the concept of impulse, J, becomes useful:

impulse, J = FΔt SI unit: N s

If a force varies during an interaction, we can use an average value to determine the impulse.

We have seen that F = 
Δp
Δt  

which can be rearranged to give FΔt = Δp, showing us that

impulse, J = Δp (change of momentum)

An impulse on an isolated object results in a change of momentum, which is numerically equal to 
the impulse. The units N s and kg m s−1 are equivalent to each other.

A constant force of 12.0 N acts on a stationary mass of 
0.620 kg for 0.580 s.
a Calculate the impulse applied to the mass.
b Calculate the change of momentum of the mass.
c Calculate the final velocity of the mass.

Answer
a J = FΔt = 12.0 × 0.580 = 6.96 Ns
b 6.96 kg m s−1 (or Ns)
c Δp = mΔv
 6.96 = 0.620 × Δv
 Δv = 11.2 m s−1

 The final velocity could also be determined by use of 
F = ma and v = u + at.

 WORKED EXAMPLE A2.16

 ◆ Impulse The product 
of force and the time for 
which the force acts. 
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	■ Force–time graphs
In many simple impulse calculations, we may assume that the forces involved are 
constant, or that the average force is half of the maximum force. For more accurate 
work this is not good enough, and we need to know in detail how a force varies during 
an interaction. Such details are commonly represented by force–time graphs. The 
curved line in Figure A2.71 shows an example of a force varying over a time Δt.

The area under any force–time graph for an interaction equals force × time, which 
equals the impulse (change of momentum).

This is true whatever the shape of the graph. The area under the curve in Figure A2.71 can be 
estimated by drawing a rectangle of the same area (as judged by eye), as shown in red. Fav is then 
the average force during the interaction.

Inquiry 2: Collecting and processing data

Applying technology to collect data

Force sensors that can measure the magnitude of forces over short intervals of time can 
be used with data loggers to gather data and draw force–time graphs for a variety of 
interactions, both inside and outside a laboratory. Stop-motion replay of video recordings of 
collisions can also be very interesting and instructive.

Force–time graphs can be helpful when analysing any interaction, but especially impacts involved 
in road accidents and sports.

Figure A2.72 shows how the force on a 57 g tennis ball 
moving at 24 m s−1 to the right varied when it was struck 
by a racket moving in the opposite direction.

0
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N

Time/ms
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	■ Figure A2.72 Force–
time graph for striking a 
tennis ball

a Estimate the impulse given to the ball.
b Calculate the velocity of the ball after being struck by 

the racket.
c The ball is struck with the same force with different 

rackets. Explain why a racket with looser strings could 
return the ball with greater speed.

d Suggest a disadvantage of playing tennis with a racket 
with looser strings.

Answer
a Impulse = area under graph ≈ 200 × (12 × 10−3) = 

2.4 Ns to the left
b mΔv = 2.4

 Δv =  
2.4

0.057 = 42 m s–1 to the left

 vfinal − vinitial = −42 (velocity to the left chosen to be 
negative)

 vfinal – (+24) = −42
 vfinal = −18 m s−1 (to the left)
c The time of contact with the ball, Δt, will be longer 

with looser strings, so that the same force will produce 
a greater impulse (change of momentum).

d There is less control over the direction of the ball.

 WORKED EXAMPLE A2.17

F
av

Time
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rc

e

Δt

area = FΔt

	■ Figure A2.71 Graph showing how a 
force varies with time
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68 A ball of mass 260 g falls vertically downwards and hits 
the ground with a speed of 7.3 m s−1.
a What was its greatest momentum?
b If it rebounded with a speed of 5.5 m s−1, calculate the 

change of momentum.
c Determine the impulse on the ground.
d If the duration of the impact was 0.38 s, calculate the 

average force on the ball during the collision.
e Estimate the maximum force on the ball.

69 A baseball bat hits a ball with an average force of 970 N 
that acts for 0.0088 s.
a What impulse is given to the ball?
b What is the change of momentum of the ball?
c The ball was hit back in the same direction that it came 

from. If its speed before being hit was 32 m s−1, calculate 
its speed afterwards. (Mass of baseball is 145 g.)

70 Figure A2.73 shows how the force between two colliding 
cars changed with time. Both cars were driving in 
the same direction and after the collision they did not 
stick together.
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	■ Figure A2.73 How the force between two colliding cars changed 
with time

a Show that the impulse was approximately 6500 Ns.  
b Before the collision the faster car (mass 1200 kg) was 

travelling at 18 m s−1. Estimate its speed immediately 
after the collision.

71 Consider Figure A2.74.
a Discuss how the movement of the karate expert can 

maximize the force exerted on the boards.
b What features of the boards will help to make this an 

impressive demonstration?

     
	■ Figure A2.74 

Karate expert

72 A soft ball, A, of mass 500 g is moving to the right with a 
speed of 3.0 m s−1 when it collides with another soft ball, 
B, moving to the left. The time of impact is 0.34 s, after 
which ball A rebounds with a speed of 2.0 m s−1.
a What was the change of velocity of ball A?
b What was the change of momentum of ball A?
c Calculate the average force exerted on ball A.
d Sketch a force–time graph for the impact.
e Add to your sketch a possible force–time graph 

for the collision of hard balls of similar masses 
and velocities.

f Suggest how a force–time graph for ball B would be 
different (or the same) as for ball A.

Circular motion and centripetal forces

SYLLABUS CONTENT

 Circular motion is caused by a centripetal force acting perpendicularly to the velocity.
 A centripetal force causes the body to change direction even if the magnitude of its velocity may 

remain constant.

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   74369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   74 04/01/2023   20:1304/01/2023   20:13



A.2   Forces and momentum 75

An object moving along a circular path with a constant speed 
has a continuously changing velocity because its direction of 
motion is changing all the time. From Newton’s first law, we 
know that any object that is not moving in a straight line must 
be accelerating and, therefore, it must have a resultant force 
acting on it, even if it is moving with a constant speed.

Perfectly uniform motion in complete circles may not be a 
common everyday observation, but the theory for circular 
motion can also be used with objects, such as people or vehicles, 
moving along arcs of circles and around curves and bends. 
Circular motion theory is also very useful when discussing 
the orbits of planets, moons and satellites. It is also needed to 
explain the motion of subatomic particles in magnetic fields, as 
discussed in Topic D.3.

Imagine yourself to be standing in a train on a slippery floor, 
holding on to a post (Figure A2.75). While you and the train 
are travelling in a straight line with a constant speed (constant 

velocity) there is no resultant force acting on you and you do not need to hold on to the post, but as 
soon as the train changes its motion (accelerates in some way) there needs to be a resultant force 
on you to keep you in the same place in the train. If there is little or no friction with the floor, the 
post is the only thing that can exert a force on you to change your motion. The directions of these 
forces (from the post) are shown in the diagram for different types of acceleration. If the post 
pushes or pulls on you, then by Newton’s third law you must be pushing or pulling on the post, 
and that is the force you would be most aware of.

In particular, note that the direction of the force needed to produce a curved, circular path is 
perpendicular to the motion.

The term centripetal force is used to describe any type of force which results in motion in a 
circle (or part of a circle). See Figure A2.76.

A centripetal force continuously changes direction so that it is always acting perpendicularly to 
the instantaneous velocity.

	■ Identifying different types of centripetal force
Gravity provides the centripetal force for planets moving around the Sun, and for satellites moving 
around the Earth (including the Moon).

Tension provides the centripetal force for an object being spun around on a string in an (almost) 
horizontal circle.

Friction provides the centripetal force for a vehicle, cyclist or a person, moving in a curved path 
on a horizontal surface. As an example, consider the cyclist shown in Figure A2.77. To move in a 
curved path there needs to be a centripetal force perpendicular to his motion. This is provided by 
friction: The cyclist leans ‘into the bend’ so that the tyre pushes outwards on the ground and the 
ground pushes inwards on the tyre (another example of Newton’s third law).

If a greater speed is desired for movement around a curved track, friction may not be enough. By 
having a banked track greater speeds are possible (and safer). See Figure A2.78. A component of 
the contact force can then act in the necessary direction.

pole

pull

train
accelerating

positively

train
decelerating

train going
around a bend

at constant speed

push

push

	■ Figure A2.75 Forces which make a passenger accelerate in a train

 ◆ Centripetal force The 
name given to any force 
which results in motion 
along a circular path.

F

F

F
F

v

v

v

v
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m

	■ Figure A2.76 Velocity 
and centripetal force vectors 
during circular motion

 ◆ Banked track A sloping 
surface to enable faster 
motion around curves. 

369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   75369917_02_IB_Physics 3rd_Edn_SEC_A_2.indd   75 04/01/2023   20:1304/01/2023   20:13



76 Theme A: Space, time and motion

	■ Figure A2.78 Banked track at Daytona 500 race

A train can travel around a curved track because of the contact force acting on the rim of the 
wheel. See Figure A2.79.

A driver or passenger in a car can move in a curved path because of the forces between them and 
the seat.

An aircraft can change direction by tilting, so that the air pushes the airplane perpendicular to its 
motion (Figure A2.80).

Electrical forces provide the centripetal force for electrons 
moving around the nuclei of atoms.

Common mistake
Centripetal force is not a different type of force, like for 
example, tension or gravity. It is simply a way of describing the 
results of a force. Centripetal force should not be labelled as 
such in a free-body diagram.

It is common for people to refer to centrifugal forces, but this 
will only lead to confusion and the term is best avoided in this 
course. It is a matter of point of view (frame of reference): if 
a system is seen from ‘outside’, a centripetal force is needed 
for circular motion, but ‘inside’ the system an object seems to 
experience a force moving it outwards from its circular path.

73 Draw a free-body diagram for an aircraft changing direction (‘banking’) at constant altitude. 
Ignore air resistance for this question.

74 Consider a cyclist on a horizontal curved track. State three factors which will result in the 
need for a greater centripetal force.

75 If you were a passenger in a car going ‘too fast’ around a bend, outline what you would do to 
exert more centripetal force on yourself.

76 Draw a free-body diagram for a car on a banked curved surface.

FN

Ff

	■ Figure A2.77 Cycling 
around a bend

	■ Figure A2.80 Aircraft changing direction

LINKING QUESTION
l Why is no work 

done on a body 
moving along a 
circular trajectory?

This question links 
to understandings in 
Topic A.3.

train
track

force of 
track

on wheel

	■ Figure A2.79 The contact 
force of the train track pushes 
inwards on the wheel of a 
train moving in a circular path
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	■ Centripetal acceleration

mass

circular
path

instantaneous velocity

centripetal
force and

acceleration

	■ Figure A2.81 Centripetal force and acceleration

We know that a resultant force causes an acceleration, a. Therefore, a centripetal force towards 
the centre of any circular motion must result in a centripetal acceleration, also towards the 
centre of the circle. This is shown more clearly in Figure A2.81. Although there is an acceleration 
directed towards the centre, there is no movement in that direction, or change in the magnitude of 
the velocity of the mass. Instead, the action of the force continually changes the direction of the 
motion of the mass.

Remember that acceleration means a change of velocity, and the velocity of a mass can change by 
going faster, going slower, or changing direction.

Any body moving in a circular path has a centripetal acceleration towards the centre of the circle.

	■ The mathematics of uniform circular motion

SYLLABUS CONTENT

 Motion along a circular trajectory can be described in terms of the angular velocity, ω, which is 

related to the linear speed, v, by the equation as given by: v = 
2πr
T  = ωr.

 Bodies moving along a circular trajectory at a constant speed experience an acceleration that is 
directed radially towards the centre of the circle – known as a centripetal acceleration as given by:  

a = 
v2

r  = ω2r = 
4π2r
T 2 .

Tool 3: Mathematics

Use of units whenever appropriate: radians

In physics, it is usually much easier in calculations to use angles 
measured in radians, rather than degrees (which are based on the 
historical and arbitrary choice of 360 degrees for a complete circle). 
If you are studying Mathematics: Applications and Interpretations 
Standard Level, this may be a new concept for you.

One radian (rad) is defined as the angle which has a length of arc equal to the radius of the 
circle. (See Figure A2.82.) Rotation through a complete circle passes through an angle of 
2πr

r  = 2π rad, so that:

1 rad = 
180°

π
 (= 57.3°)

 ◆ Radians Unit of 
measurement of angle. 
There are 2π radians in 
360°. 

r

1 rad
r

	■ Figure A2.82 
One radian

DB

 ◆ Centripetal 
acceleration The 
constantly changing 
velocity of any object 
moving along a circular 
path is equivalent to an 
acceleration towards the 
centre of the circle.
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Consider an object of mass m moving with a constant linear speed, v, in a circle of radius r, as 
shown in Figure A2.83. The linear speed, v, of the mass can be calculated from:

v = 
2πr
T

where T is called the time period of the repeating motion, the time taken for one complete 
rotation. SI unit: s.

total distance
in one

rotation
= 2p r

linear
speed, v

total angle in
one rotation

= 2p rad

angular
velocity, w

mass, m

	■ Figure A2.83 Relating linear speed to angular velocity

The frequency, f, of the motion is the number of rotations in unit time (per second). SI unit: hertz, 
Hz. A frequency of 1 Hz means one rotation per second.

f = 
1
T

 SI unit: hertz, Hz

We also commonly refer to angular velocity, ω, the rate at which an object rotates. In the context 
of uniform circular motion, the vector nature of a constant angular velocity is not important. It is 
also sometimes called angular speed.

Angular velocity = angle moved through / time taken. It can be measured in degrees per second, 
so that a constant angular velocity in degrees per second would be 360 / T. However, the use of 
radians per second is considered more convenient.

ω = 
2π
T

 = 2πf SI unit: rad s−1

Comparing the last equation with v = 
2πr
T

, it should be clear that:

v = ωr

Top tip!
Period, frequency and angular velocity represent exactly the same information about a constant circular 
motion. (Given any one, we can calculate the other two.) In a question, we are most likely to be told the 
period, or the frequency of a rotation, but in calculations the angular velocity is often needed.

DB

 ◆ Time period, T The 
duration of an event which 

occurs regularly. T = 
1
f
.

 ◆ Frequency, f The 
number of repeating events 
per unit time.

 ◆ Hertz, Hz Derived SI 
unit of measurement of 
frequency. 1 Hz = one event 
per second.

 ◆ Angular velocity, ω 
Change of angle / change 
of time. Sometimes called 
angular speed. 

DB

DB

DB
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A car is travelling at a constant speed of 12 m s−1. Its wheels each have a radius (including 
tyres) of 26 cm.
a What is the linear speed of a point on the surface of the tyre?
b Calculate the frequency and time period of the wheel’s rotation.
c Determine the angular velocity of the wheels.
d Through what total angle does the wheel rotate in 10 seconds in:

i radians
ii degrees?

Answer
a 12 m s−1

b f = 
12
2πr = 

12
(2 × π × 0.26) = 7.3 Hz (7.3456... seen on calculator display)

 T = 
1
f  = 

1
7.3456 = 0.14 s

c ω = 2πf = 2 × π × 7.3456 = 46 rad s−1 (46.1538... seen on calculator display)
d i 46.1538 × 10 = 4.6 × 102 rad

ii 461.538 × 57.3 = 2.6 × 104 °

 WORKED EXAMPLE A2.18

77 a Convert an angle of 157° to radians.
b i How many degrees does a rotating object pass 

through in five complete rotations?
ii How many radians does a rotating object pass 

through in five complete rotations?

78 The diameter of the clock face seen in Figure A2.84 
is 43 m.

    

	■ Figure A2.84 The clock face 
on the Abraj Al-Bait Tower in 
Mecca is the largest in the world

a Determine the linear speed of the tip of the 
minute hand.

b What is the angular velocity of the minute hand?

79 If a rotating object completes 30.0 rotations in 47.4 s, 
calculate:
a its time period
b its frequency
c its angular velocity.

80 a Calculate the angular velocity of the Earth’s motion 
around the Sun.

b What is your angular velocity as you rotate on the 
Earth’s surface?

c Determine the linear speed of someone on the equator 
spinning on the Earth’s surface.  
(radius of Earth = 6.4 ×106 m)

81 A bicycle wheel which has a radius of 31 cm is rotating 
with an angular velocity of 41.9 rad s−1.
a Calculate the linear speed of a point on the 

circumference of the wheel.
b What is the speed of the bicycle along the road?
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80 Theme A: Space, time and motion

Equations for centripetal acceleration and force

Even if an object moving in a circle of radius r has a constant linear speed, v, its centripetal 
acceleration, a, will have a numerical value, which represents how quickly the object’s direction of 
motion is changing. The equation for calculating centripetal acceleration is shown below, and its 
derivation is included below.

a = 
v2

r
 = ω2r = 

4π2r
T 2 

Tool 3: Mathematics

Derive relationships algebraically

When basic principles of physics are used to explain the 
origin of an equation it is called deriving the equation.

Consider a mass moving in a circular path of radius, r, as 
shown in Figure A2.85a. It moves through an angle, θ, and 
a distance, Δs, along the circumference as it moves from 
A to B, while its velocity changes from vA to vB.

a b

Δv
vA

vB

θ
r

Δs

vA

vB

r
A

B

θ

	■ Figure A2.85 Deriving an equation for centripetal acceleration

To calculate acceleration, we need to know the change of 
velocity, Δv. This is done using the vector diagram shown 
in Figure A2.85b. Note that the direction of the change 

of velocity (and therefore the acceleration) is towards the 
centre of motion. The two triangles are similar and, if the 
angle is small enough that Δs can be approximated to a 
straight line, we can write:

θ = 
Δv
v  = 

Δs
r

(The magnitudes of vA and vB are equal and represented by 
the speed, v.)

Dividing both sides of the equation by Δt we get:
Δv

(Δt × v) = 
Δs

(Δt × r)

Then, because a = 
Δv
Δt and 

Δs
Δt = v:

a = 
v2

r

We know F = ma from Newton’s second law of motion, so, the equation for the centripetal force 
acting on a mass m moving in a circle is:

F = 
mv2 

r 
 = mω2r

In Figure A2.86, although both children have the same angular velocity, the bigger child needs a 
much greater centripetal force, so she should hold on tighter. This is because she has greater mass 
and is travelling with a greater linear speed.

2m 1m

rotation

	■ Figure A2.86 Children on a playground ride

DB

 ◆ Derive Explain in detail 
the origin of an equation.
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A.2   Forces and momentum 81

Consider a ball of mass 72 g whirled with a constant 
speed of 3.4 m s−1 around in a (nearly) horizontal circle of 
radius 65 cm on the end of a thin piece of string, as shown 
in Figure A2.87.

thin string

v = 3.4 m s–1

72 g

65 cm

	■ Figure A2.87 Ball whirled with a constant speed in a (nearly) 
horizontal circle

a Calculate the centripetal acceleration and force.
b Explain why the force provided by the string cannot 

act horizontally.
c Suggest a probable reason why the string breaks when 

the speed is increased to 5.0 m s−1.
d Predict in which direction the ball moves immediately 

after the string breaks.

Answer

a a = 
v2

r
 = 

3.42

0.65
 = 18 m s–2

 F = ma = 0.072 × 18 = 1.3 N
b If the force is horizontal, it cannot have a vertical 

component with which to support the weight of the 
ball (see Figure A2.88).

weight

tension in string

horizontal component of
tension is centripetal force  

vertical
component
of tension
supports
weight  

	■ Figure A2.88 Free-body diagram for a ball whirled in a circle

c As the speed of the ball is increased, a greater centripetal 
force is needed for the same radius. If this force is greater 
than can be provided by the string, the string will break. 
This occurs when the speed reaches 5 m s−1.

d The ball will continue its instantaneous velocity in 
a straight line after the string breaks. It will move 
at a tangent to the circle, but gravity will also affect 
its motion.

 WORKED EXAMPLE A2.19

82 Estimate how much greater is the size of the centripetal 
force acting on the larger child (than the smaller child) in 
Figure A2.86. Explain your answer.

	■ Figure A2.89 Throwing the hammer

83 The hammer being thrown in Figure A2.89 completed 
two full circles of radius 2.60 m at a constant speed in 
1.38 s just before it was released. Assuming that the 
motion was horizontal:
a Calculate its centripetal acceleration.
b What force did the thrower need to exert on the 

hammer if its mass was 4.00 kg?
c The thrower will aim to release the hammer when 

it is moving at an angle of 45° to the horizontal. 
Explain why.

84 What is the centripetal acceleration of an object moving 
in a circular path of radius 84 cm if there are exactly two 
revolutions every second?

85 The Moon’s distance from the Earth varies but averages 
about 380 000 km. The Moon orbits the Earth in an 
approximately circular path every 27.3 days.
a Show that the Moon’s orbital speed is about 1 km s–1.
b Calculate the centripetal acceleration of the Moon 

towards the Earth.
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82 Theme A: Space, time and motion

86 A car of mass 1240 kg moved around a bend of radius 
37 m at a speed of 16 m s−1 (see Figure A2.90). If the car 
was to be driven any faster, there would not have been 
enough friction and it would have begun to skid off the 
road.

	■ Figure A2.90 Car driving around a tight mountain bend

a Calculate the magnitude of the centripetal force 
assuming that the road is horizontal.

b Determine a value for the coefficient of friction 
between the road and the tyre.

c State whether this is a coefficient of static friction or 
dynamic friction.

d Discuss whether a heavier car would be able to move 
faster around this bend.

87 A girl of mass 42 kg living in Sydney is moving (like 
everyone else) in a circle because of the rotation of the 

Earth. Sydney is 5.31 × 106 m from the Earth’s axis 
of rotation.
a Calculate her linear speed of rotation.
b What is her centripetal acceleration?
c Determine the resultant force needed on her to 

maintain her circular motion.
d What provides this centripetal force?
e Your answer to part c should be much less than 1% 

of the girl’s weight. It is so small that this force is 
usually considered to be insignificant. However, draw 
a free-body diagram of her standing on the Earth’s 
surface that includes numerical values of the forces 
involved.

88 Figure A2.91 shows a pendulum of mass 120 g being 
swung in a horizontal circle.

30°

mass, m      	■ Figure A2.91 Pendulum

a Draw a free-body diagram of the mass, m.
b Calculate the centripetal force acting on the mass.
c If the radius of the circle is 28.5 cm, i what is the 

speed of the pendulum and ii how long does it take to 
complete one circle?

TOK

Knowledge and the knower
l How do our expectations and assumptions 

have an impact on how we perceive things?
l What constitutes a ‘good reason’ for us to 

accept a claim?

Most people accept that we live on a spherical 
rotating planet, but they have no ‘direct’ evidence 
of that. And as the Earth spins, we are told that the 
invisible force of gravity provides the necessary 
centripetal force that keeps us attracted to the 
Earth’s surface. Our own observations are more 
likely to suggest that we live on a mostly flat 
Earth, and that the Sun and stars move around us.

Foucault’s pendulum (Figure A2.92) provides 
evidence of the Earth’s rotation, but not in an 
obvious way, and it needs to be explained to 
non-scientists.

	■ Figure A2.92 Foucault’s pendulum

Are we sensible to believe what we are told 
by ‘experts’ and teachers, rather than to trust 
our own senses? How can we decide whether 
or not to accept knowledge claims made by 
our predecessors?

TH
E IB LEARNER PRO

FILE
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A.2   Forces and momentum 83

Non-uniform circular motion
Vertical motion

As an example, consider a ball of mass, m, on the end of string which is being spun in a vertical 
circle of radius r, as shown in Figure A2.93. There are two forces which can act on the ball: the 
weight of the ball, Fg = mg, and the tension in the string, FT.

a b c d e

Fg

Fg

Fg

Fg

Fg

FT FT
FT

FT

FT

m

m

m

m

m

θ

	■ Figure A2.93 Forces on a mass moving in a vertical circle

Vertical motion is more complicated than horizontal motion because the centripetal force is 
affected by the combination of the tension in the string and the component of the ball’s weight, 
both of which vary continuously during the motion.

If the ball was moving at a constant speed in a circle of constant radius:
l In position b, centripetal force (mv2/r) = FT + Fg, so that the required tension will have its 

minimum value. If the weight is greater than the necessary centripetal force, the string will 
lose tension and the ball will move inwards from its circular path. See further example below.

l In position e, centripetal force = FT – Fg, so that the required tension will have its maximum 
value. It is at this position that the string is most likely to break.

l In position c, centripetal force = FT, because there is no component of weight acting to, or 
from, the centre.

l In position a there will be a component of weight acting towards the centre.
l In position d there will be a component of weight acting away the centre.

In practice, it is unlikely that the tension can be continuously adjusted to keep the centripetal 
force constant. This means that the speed of the ball will change during its rotation. It will not be 
uniform circular motion.

The situation shown in b is the most widely discussed, and whirling a bucket of water in a vertical 
circle always makes for an interesting demonstration. See Figure A2.94.

The hand pulling on the handle provides a force on the bucket. The normal contact force from the 
bottom of the bucket provides a force on the water. In order for the water to stay in contact with 
the bucket, it must be spinning with a speed which requires a centripetal force which is equal to, or 
greater than, its weight (so that a force from the bucket is also needed):

F = mv2 ≥ mg

vmin
2 = gr

vmin =   gr

	■ Figure A2.94 Bucket of 
water spinning in a circle
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84 Theme A: Space, time and motion

a What is the minimum linear speed 
needed to keep water in a bucket 
rotating in a circle of radius of 0.95 m?

b What is the minimum angular 
velocity needed?

c How long will each rotation take if 
the bucket could be kept moving at 
the same speed?

d What maximum pulling force 
would be needed to maintain that 
speed if the bucket and water had a 
combined mass of 2.1 kg?

Answer
a vmin =   gr =   (9.8 × 0.95) = 3.1 m s−1 (3.0512... seen on calculator display)

b ω = 
v
r = 

3.0512
0.95  = 3.2 rad s−1

c T = 
2πr
v  = 

(2π × 0.95)
3.0512  = 2.0 s

d Maximum pull (tension) is needed when the bucket is at its lowest point:

 
mv2

r  = FT – Fg

 FT = Fg + 
mv2

r  
= (2.1 × 9.8) + 

(2.1 × 3.05122)
0.95  

= 20.6 + 20.6 = 41 N

 WORKED EXAMPLE A2.20

Horizontal motion

We have seen that any object moving along the arc of a circle requires a centripetal force of 

magnitude: F = 
mv2

r
.

But what happens if the circumstances change? As an example, consider a coin on a rotating 
horizontal turntable, as shown from above in Figure A2.95. Friction provides the centripetal force 
on the coin. As the rotational speed increases, a greater frictional force is needed to keep the coin 
in the same place on the turntable. If the speed continues to increase, eventually there will not 
be enough friction and the coin will be thrown off the turntable (approximately along a tangent). 
A similar coin (to the first) placed closer to the centre will be able to stay on the turntable at greater 
speeds because less centripetal force (friction) is needed.

Consider again the car shown in Figure A2.90. If the radius, r, of a bend changes, the centripetal 
force needed changes. For example, if the radius reduces (the bend gets ‘tighter’), a greater frictional 
force is needed to maintain the same speed. This may not be possible, so the driver should reduce 
speed. Similarly, a slower speed is advisable if water or ice on the road reduces frictional forces.

89 a Outline how the passengers seen in Figure A2.96 
remain in their seats even though they are upside 
down (and even if they were not secured by 
safety harnesses!).

b What is the minimum speed 
needed if the carriage moves in a 
vertical arc of radius 15 m?

c In another part of the track the 
passenger carriage is upside 
down in a vertical arc of radius 
20 m. Predict if the carriage 
needs to move faster, slower 
or the same speed. Explain 
your answer.

90 Consider Figure A2.93a. If the mass was 240 g, the 
radius of the circle was 52 cm, θ = 40°, and the mass was 
moving with a linear speed of 2.12 m s−1:

a Write down an expression for the component of 
weight acting towards the centre of motion.

b What was the necessary centripetal force in 
this position?

c Hence, determine the tension in the string.

91 A coin of mass 10 g was rotating on a turntable turning at 
34 revolutions/minute. The coin was 17 cm from the centre.
a Calculate the magnitude of the centripetal force 

acting on the coin.
b Friction provides this force. The turntable’s speed is 

increased so that more friction is required to keep 
the coin in place. If the coefficient of static friction 
is 0.43, what is the greatest possible value for the 
frictional force between the turntable and the coin?

c Determine the maximum angular velocity of the coin 
which will enable it to stay in the same place.

d How would your answers change if an identical coin 
had been fixed on top of the first coin?

	■ Figure A2.96 
Upside down on a 
fairground ride

v

	■ Figure A2.95 Coin on 
rotating turntable
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A.3   Work, energy and power 85

Work, energy and powerA.3

• How are concepts of work, energy and power used to predict changes within a system?
• How can a consideration of energetics be used as a method to solve problems in kinematics?
• How can transfer of energy be used to do work?

Guiding questions

In the last two topics, we have discussed movement (A.1), and how forces can change the motion 
of objects (A.2). In this topic (A.3) we will move on to introduce two very important, closely 
related, numerical concepts: work and energy. Together these provide the ‘accounting system’ for 
science, enabling explanations and useful predictions to be made.

Of course, ‘work’ and ‘energy’ are words in common use in everyday language, but in physics 
they have much more precise definitions.

Nature of science: Science as a shared endeavour

Same words, different meanings

The terms used in physics have very precise meanings – but the same words are often used differently 
in everyday life. There is a long list of such words, such as ‘work’, ‘energy’ and ‘power’, as well as 
the various meanings of ‘conservation’, ‘law’, ‘momentum’, ‘pressure’, ‘stress’, ‘efficiency’, ‘heat’, 
‘interference’, ‘temperature’ and so on.

This ambiguity is a problem that all students must overcome when learning physics. For example, what is 
the connection, if any, between work = force × displacement and ‘I have a lot of homework to do tonight’?

Work

SYLLABUS CONTENT

 Work, W, done on a body by a constant force depends on the component of the force along the line of 
displacement as given by: W = Fs cos θ.

	■ Work done by constant forces
We say that work is done when any force moves an object: work is done on the object by the force. 
The work done, W, can be calculated by multiplying the displacement, s, by the component of the 
force acting in that direction, F cos θ.

See Figure A3.1 and note that θ is the angle between the 
force and the direction of motion.

work done, W = Fs cos θ SI unit: Joule, J

One joule is defined to be the work done when a force of 
1 N moves through a distance of 1 m.

 ◆ Work, W The energy 
transfer that occurs when 
an object is moved with 
a force. More precisely, 
work done = force × 
displacement in the 
direction of the force.

 ◆ Energy Ability to 
do work. 

F cos θ

θ

force, F

displacement, s

	■ Figure A3.1 Work done by a force

DB

 ◆ Joule, J Derived SI 
unit of work and energy. 
1 J = 1 N m.

369917_03_IB_Physics 3rd_Edn_SEC_A_3.indd   85369917_03_IB_Physics 3rd_Edn_SEC_A_3.indd   85 04/01/2023   20:1904/01/2023   20:19



86 Theme A: Space, time and motion

Commonly, a force acts in the same direction as the motion, in which case, the equation reduces 
to W = Fs.

Calculate how much work is done when a 1.5 kg mass is raised 80 cm vertically upwards.

Answer
The force needed to raise an object (at constant velocity) is equal to its weight (mg). The 
symbol h is widely used for vertical distances. (To avoid confusion, W will normally be 
used to represent work, and not weight.)
W = Fs = mg × h = 1.5 × 9.8 × 0.80 = 12 J

 WORKED EXAMPLE A3.1

The 150 kg box in Figure A3.2 was pulled 2.27 m across 
horizontal ground by a force of 248 N, as shown.
a Determine how much work was done by the force.
b Suggest why it may make it easier to move the box if it 

is pulled in the direction shown by the dashed line.
c When the box was pulled at an angle of 20.0° to the 

horizontal, the force used to slide the box was 248 N. 
Calculate the work 
done by this force 
in moving the box 
horizontally the 
same distance.

Answer
a W = Fs = 248 × 2.27 = 563 J
b When the box is pulled in this direction, the force has 

a vertical component that helps reduce the normal 
contact force between the box and the ground. 
This will reduce the friction opposing horizontal 
movement.

c The force is not acting in the same direction as the 
movement. To calculate the work done we need to use 
the horizontal component of the 248 N force.

 W = F cos 20° × s = 248 × 0.940 × 2.27 = 529 J

248 N
20°

150 kg

	■ Figure A3.2 Box being 
pulled across the ground

 WORKED EXAMPLE A3.2

It is important to realize that there are some surprising examples involving forces where no work 
is being done, as shown in Figures A3.3 and A3.4.

	■ Figure A3.3 No work is being done on the weights at this moment

Earth

Moon

motion of the Moon

gravitational
force on Moon

(not to scale)

	■ Figure A3.4 No work is done as the Moon orbits the Earth
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A.3   Work, energy and power 87

In Figure A3.3 a large upwards force is being exerted on the stationary weights, but since there is 
no movement at that moment, no mechanical work is being done on the weights. However, work 
is being done in the weightlifter’s muscles. In Figure A3.4, the Moon is moving perpendicularly 
to the force of gravity (cos 90° = 0), so there is no component of force in the direction of motion. 
A satellite in a similar circular path would not need to do any work, so that it would not need an 
engine to maintain the motion.

	■ Work done by varying forces
When making calculations with the equation W = Fs cos θ we are assuming a single, constant 
value for the force, but in reality, forces are rarely constant. In order to calculate the work done by 
a varying force, we have to make an estimate of the average force involved. This may be best done 
with the help of a force–time graph, or a force–distance graph, as shown in Figure A3.5, which 
could represent, for example, the resultant force used to decelerate a car.

The horizontal dotted blue line represents the average force, as judged by eye.  
Then, work done = Favg × s, which is the same as the rectangular area, and it is also equal to the 
area under the original curved line.

Work done is equal to the area under a force–distance graph.

0
0

0.40

50
60

Extension, x

Fo
rc

e/
N

     

	■ Figure A3.6 
Force–extension 
(displacement) 
graph for rubber 
under tension

The blue line in Figure A3.6 represents the variations 
in force and extension as a rubber band was stretched. 
Estimate the work done as the force increased from zero 
to 60 N.
The work done is equal to the area under the graph. The 
red line has been drawn so that the area under it is the 
same as the area under the blue line (as judged by eye):

W = 
1
2 × 50 × 0.40 = 10 J

 WORKED EXAMPLE A3.3

1 Calculate the work done to:
a lift an 18 kg suitcase a vertical height of 1.05 m
b push the same suitcase the same distance horizontally 

against an average frictional force of 37 N.

2 What was the magnitude of the average resistive force 
opposing the forward motion of a car if 2.3 × 106 J of 
work were done while maintaining a constant speed over 
a distance of 1.4 km?

3 In Figure A3.7 a gardener is pushing a lawnmower at a 
constant speed of 0.85 m s−1 with a force, F, of 70 N at an 
angle of 40° to the ground.
a Calculate the component of F in the direction of 

movement.
b What is the magnitude of the frictional force?
c Determine the work done in moving the lawnmower 

for 3.0 s.

40°
frictional
force

F

	■ Figure A3.7 Gardener pushing a lawnmower

4 A spring which obeyed Hooke’s law was stretched with 
a force which increased from zero to 24 N. The spring 
extended by 12 cm.
a What was the average force used during the extension 

of the spring?
b Calculate the work done on the spring.

0
0

Favg

sDistance

Fo
rc

e,
 F

	■ Figure A3.5 A force 
varying with distance
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88 Theme A: Space, time and motion

Nature of science: Models

Macroscopic and microscopic work

The term ‘work’ is normally used to describe large-scale (macroscopic) movements and forces – such 
as kicking a ball – in which countless billions of particles move as a whole object. We do not concern 
ourselves with the individual particles.

But the concept of ‘doing work’ can also be applied to microscopic processes involving individual 
particles. For example, work is done when two particles collide with each other.

Work done during the random and unknown motions of individual particles can result in a different kind 
of energy transfer, called thermal energy. This important distinction is discussed in Topic B.4.

Energy

SYLLABUS CONTENT

 Work done by a force is equivalent to a transfer of energy.

Energy is probably the most widely used concept in the whole of science. However, the idea of 
energy is not easy to fully explain or truly understand.

When a battery is placed in a child’s toy dog (Figure A3.8), it moves, jumps up in the air and 
barks. After a certain length of time, the toy stops working. In order to try to explain these 
observations we will almost certainly need to use the concept of energy: chemical energy in the 
battery is transferred to electrical energy, which produces motion energy in a small electric motor. 
Some energy is also transferred from electricity to sound in a loudspeaker. Eventually, all the 
useful energy in the battery will be transferred to the surroundings and the toy will stop activity. 
Without the concept of energy all this is very difficult to explain.

We can talk about the energy in the gasoline (petrol) we put in the 
tanks in our cars (for example) and go on to describe that energy being 
transferred to the movement of the car. But nothing has actually flowed 
out of the gasoline into the car, and this is just a convenient way of 
expressing the idea that the controlled combustion of gasoline with 
oxygen in the air can do something that we consider to be useful.

Perhaps the easiest way to understand the concept of energy is this: energy 
is needed to make things happen. Whenever anything changes, energy is 
transferred from one form to another. Most importantly, energy transfers 
can be calculated, and this provides the basic ‘accounting system’ for 
science. Any event will require a certain amount of energy for it to happen 
and, if there is not enough energy available, it cannot happen. For example, 
if you do not get enough energy (originally from your food), you will not 
be able to climb a 500 m hill; if your phone battery is not charged, you 
cannot call your friends; if you do not put enough gasoline in your car, you 
will not get to where you want to go; if energy is not transferred quickly 
enough from an electrical heater, your shower will not be hot enough.

A person, device or machine which provides a force to do work must be able to do the work. We 
say that they must have enough energy to do the work. Energy is often described as the capacity to 
do work. To do work, there must be a ‘source’ of energy.

	■ Figure A3.8 The toy dogs get their energy from batteries
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A.3   Work, energy and power 89

When work is done energy is transferred from a source to the object.

In Figure A3.9, the archer uses her store of energy (originally from food) to do work on the bow, 
which then stores energy because it is stretched out of shape. The bow then does work when energy 
is transferred to the movement of the arrow. When the arrow hits the target, work is done on it by 
the arrow as energy is transferred causing a change of shape and a small rise in temperature.

	■ Figure A3.9 Archer and target

TOK

Knowledge and the knower
l What criteria can we use to distinguish between knowledge, belief and opinion?

Abstract concepts

Energy is one of many abstract concepts in physics. Everyday abstract concepts include ‘hope’, ‘justice’ 
and ‘freedom’. They are all very useful ideas that can be explained (often with difficulty!) and people can 
understand them at various levels, and in differing, often personal and subjective ways, but they have no 
actual physical form.

Should we believe that a non-abstract physics concept, like force, for example, is more ‘real’ than the 
abstract concept of energy?

TH
E IB LEARNER PRO

FILE

	■ Different forms of energy
The capacity of something to do work can exist in many different forms (of energy). These forms 
can be difficult to classify, and no two sources of information ever seem to agree on a simple, 
definitive list or even on how to use the term ‘forms’! The different forms of energy are a constant 
background to the study of physics and need to be well understood. The following is a broad 
initial summary.

Potential energy sources store energy because of their position or arrangement, and the forces 
between different parts of the system.

 ◆ Abstract concept 
An idea which has no 
physical form.

 ◆ Subjective Describes an 
opinion based on personal 
experiences and emotions. 
Compare with objective, 
meaning free from emotion 
and bias.

 ◆ Potential energy Energy 
that arises because of forces 
between different parts 
of the system. Sometimes 
described as stored energy.
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l Gravitational potential energy: The energy stored due to the position of a mass in a 
gravitational field. For example, a weight raised above the ground.

l Electric potential energy: The energy stored due to the position of a charge in an electric field 
(see Theme D).

l Magnetic potential energy: The energy stored due to position in a magnetic field 
(see Theme D).

l Elastic potential energy: The energy stored in a deformed elastic material, or a spring.
l Chemical potential energy: The energy stored in the bonding of chemical compounds, 

released in chemical reactions.
l Nuclear potential energy: The energy stored in the arrangement of particles in the nuclei 

of atoms.

	■ Figure A3.10 Water behind the Three 
Gorges Dam (China) stores enormous amounts 
of gravitational potential energy

	■ Figure A3.11 Kori nuclear power station 
(S. Korea) is the world’s largest

A macroscopic object that is able to do work is said to possess mechanical energy.

Mechanical energy can come in one of three forms:
l Kinetic energy: The energy of all moving masses which could do work on anything they 

collide with. (Includes wind and mechanical waves, including sound).
l Elastic potential energy: As described above.
l Gravitational potential energy: As described above.

All matter contains large amounts of energy inside it.

Internal energy is the name we give to the enormous amount of energy which exists within all 
matter because of the motions and positions of the particles it contains.

The following types of energy transfer will be discussed in later topics:
l Thermal energy: Energy transferred because of a temperature difference.
l Electrical energy: Energy carried along metal wires because of a potential difference (voltage 

– see Topic B.5).
l Radiation energy: Light, for example: energy transferred as electromagnetic waves.

In Theme E we will discuss the equivalence of energy and mass.

 ◆ Gravitational potential 
energy Energy that 
masses have because of 
the gravitational forces 
between them.

 ◆ Electric potential 
energy Energy that charges 
have because of the electric  
forces between them.

 ◆ Elastic potential energy 
Energy that is stored in 
a material that has been 
deformed elastically. 

 ◆ Chemical potential 
energy Energy related to 
the arrangement of electrons 
within the structure of atoms 
and molecules.

 ◆ Nuclear potential energy 
Energy related to the forces 
between particles in the 
centres (nuclei) of atoms.

 ◆ Kinetic energy Energy 
of moving masses.  

 ◆ Thermal energy (heat) 
The (non-mechanical) 
transfer of energy between 
two or more bodies at 
different temperatures 
(from hotter to colder).

 ◆ Electrical energy 
Energy delivered in a circuit 
by an electrical current. 

 ◆ Radiation energy 
Energy transferred by 
electromagnetic waves. 

 ◆ Internal energy Total 
potential energies and 
random kinetic energies of 
the particles in a substance.
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	■ Energy transfers
Energy transfer (between the forms listed above) is the central, recurring theme of all of physics. 
Energy can be quantified and measured, and the total amount within a system remains the same, 
although some useful energy is always ‘wasted’ in every macroscopic energy transfer. Some 
examples of useful energy transfers:
l Our bodies transfer chemical energy from food to internal energy and kinetic energy.
l A rocket transfers chemical energy to gravitational potential energy.
l A ‘clockwork’ toy transfers elastic potential energy to kinetic energy.
l An electric light transfers electrical energy to radiation energy.
l A nuclear power station transfers nuclear potential energy to electrical energy.

These are just a few random examples. Any list like this can be very long!

Principle of conservation of energy

SYLLABUS CONTENT

 The principle of the conservation of energy.

The total energy of an isolated system remains constant.

An alternative way to state the same law is ‘energy cannot be created or destroyed’. We can move 
energy around and transfer it from one form to another, but the total amount remains the same.

This is one of the most important principles in the whole of science, not only because it is one of 
very few principles of science which is always true, but also because it is highly relevant to every 
event that occurs, helping us to predict what can, and what cannot, happen.

A financial analogy may help: if you leave home with $10 cash in your pocket, spend $5 and arrive 
back home with $2, then you will probably assume that you lost $3 somewhere. And you would 
not expect to have, say, $7 left in your pocket. You believe in the ‘conservation’ of cash, even if 
you are not sure of where it has gone.

Similarly, we know that if, for example, 20 000 J of energy is transferred into a system (when 
charging a mobile phone for example), we cannot take 25 000 J out, and if only 4000 J remain, then 
we know that 16 000 J has been transferred somewhere else.

LINKING QUESTION
l Where do the laws of conservation apply in other areas of physics? (NOS – see page 92.)

This question links to understandings in Topics A.2, B.4 and E.3.

Common 
mistake
‘Energy conservation’ 
has evolved to have 
a slightly different 
meaning in everyday 
use. We are often 
advised to ‘conserve’ 
energy, meaning that we 
should not use too much 
now, because there is a 
limited supply and we 
may not have enough 
for when we want it in 
the future.
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Nature of science: Theories

Conservation laws

A conservation law tells us that a measurable physical quantity does not change after any event, or with 
the passage of time. The following quantities, which occur in this course, are always conserved in any 
well-defined system.

l Energy

l Mass (the equivalence of mass and energy will be outlined in Topics E.4 and E.5)

l Linear momentum (see Topic A.2)

l Angular momentum (see Topic A.4)

l Electric charge (see Topic B.5)

Other quantities, such as force, velocity and temperature, are not conserved.

Conservation laws are important in predicting the outcome of events.

 ◆ Conservation laws 
In isolated systems, 
some physical quantities 
remain constant under all 
circumstances: energy/
mass, charge, momentum.

Dissipation of energy
So, we cannot create energy: the total energy after any event cannot be more than we started with, 
but in the macroscopic world in which we live, it seems that every event seems to ‘lose’ energy. 
Take a bouncing ball as an example, as shown in Figure A3.12. The height of each bounce is less 
than the one before, which shows us that the ball is losing (gravitational potential) energy. Also, 
just before each time the ball hits the ground it will also have less kinetic energy.

But if we think of the ball and the ground together as the ‘system’, the mechanical energy ‘lost’ by 
the ball has been ‘gained’ by the ground, keeping the total energy constant. The energy gained by 
the ground is in the form of internal energy and a very accurate temperature measurement would 
show that it had become a little warmer at the points of contact. (A little sound energy will also 
be present.) Some of the mechanical energy of the ball will also have been transferred to internal 
energy in the ball, which will also be slightly warmer.

It is very important to appreciate that gravitational potential 
energy and kinetic energy can be considered as ‘useful’ 
mechanical energies, but the energy transferred to the ground 
spreads out into the surroundings and can never be recovered 
to do any useful work. It is sometimes called ‘wasted’ 
energy, but it may be better described as dissipated energy. 
Sometimes it is called degraded energy.

All macroscopic processes dissipate energy into the 
surroundings.

The law of conservation of energy is a constant theme 
throughout science, but in this chapter, we will concentrate on 
energy transfers in mechanical systems. Numerical examples 
will be given later.	■ Figure A3.12 Bouncing ball

 ◆ Dissipated or degraded 
energy Energy that 
has spread into the 
surroundings and cannot 
be recovered to do 
useful work.
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Using Sankey diagrams to represent energy transfers

SYLLABUS CONTENT

 Energy transfers can be represented on a Sankey diagram.

Energy transfers can be usefully shown in flow diagrams, such as shown in Figure A3.13, which 
represents the energy transfers in a small LED lamp in a specified time.

30 J

70 J

100 J

total
electrical
energy
input

dissipated energy

useful light energy

	■ Figure A3.13 A simple Sankey diagram

The width of each section is proportional to the amount of energy (or power), starting with the 
energy input shown at the left of the diagram. Dissipated energy is shown with downwards arrows 
and useful energy flows to the right. Diagrams like these are known as Sankey diagrams and 
they can be used to help represent many energy transformations.

Sankey energy flow diagrams can be used to visualize quantified transfers of energy.

As a more complicated example, Figure A3.14 represents the useful energy transformations in a 
fossil-fuel power station and Figure A3.15 shows a Sankey diagram representing the energy flow 
through the same system, including the dissipated energy.

chemical
energy
in fuel

fuel is burned

internal
energy in
hot gases

thermal energy
transferred to water

internal
energy of
water and

steam

steam expands

kinetic
energy

of steam

steam forces
turbines to rotate

kinetic
energy of
turbines
and coils

electromagnetic
induction

electrical
energy

	■ Figure A3.14 Energy transfers in a fossil-fuel power station

electrical energy
outputtotal

chemical
energy
input

thermal energy
transferred
to exhaust

gases

thermal energy
transferred
to cooling

water

thermal energy
due to friction

	■ Figure A3.15 Sankey diagram for a fossil-fuel power station

 ◆ Sankey diagram 
Diagram representing the 
flow of energy in a system.
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Nature of science: Theories

Law or principle?

Many physics books refer to the ‘law’ of conservation of energy, others refer to the ‘principle’ of 
conservation of energy. Is there any difference? And why is it not called the ‘theory’ of conservation 
of energy?

Research to determine if there are any differences between ‘theories’, ‘laws’ and ‘principles.’

5 Outline the energy transfers that occur when a mass 
hanging vertically on the end of a metal spring is 
displaced and allowed to move up and down (oscillate) 
freely until it stops moving.

6 State the main energy transfers that occur in the use of a 
mobile phone.

7 State the names of devices whose main uses are to 
perform the following energy transfers:
a electricity to sound
b chemical to electricity
c sound to electricity
d chemical to radiation
e chemical to kinetic
f elastic to kinetic
g kinetic to electricity
h chemical to internal
i electromagnetic radiation to electricity.

8 Sketch and annotate a Sankey diagram to represent 
the following process. A car transfers 1500 kJ from its 
fuel as it gains 100 kJ of kinetic energy and 200 kJ of 
gravitational potential energy. The rest of the energy is 
dissipated into the environment.

9 a What are the two main types of energy of an aircraft 
flying at a height of 12 km?

b After the airplane has landed at an airport, what has 
happened to most of that energy?

10 An adult male body transfers about 107 J of energy 
every day.
a Name the source of this energy.
b i Outline the principle uses for this energy and 

ii why does it have to be replaced?

11 A car slows down for traffic lights. State two causes of 
energy dissipation.

Common mistake
Many students believe (wrongly) that batteries store electrical energy. Batteries contain chemical 
compounds that react when a circuit containing the battery is connected. Chemical energy is then 
transferred to an electric current. Many batteries can be recharged if the direction of current is reversed. 
This reverses the chemical changes.

Calculating mechanical energies

SYLLABUS CONTENT

 Mechanical energy is the sum of kinetic energy, gravitational potential energy and elastic 
potential energy.

 Work done by the resultant force on a system is equal to the change in the energy of the system.

 Kinetic energy of translational motion as given by: Ek = 
1
2mv2 = 

p2

2m.

 Gravitational potential energy, when close to the surface of the Earth as given by: ΔEp = mgΔh.

 Elastic potential energy as given by: EH = 
1
2kΔx2.
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Work can be done on a macroscopic object / system to give it kinetic energy, gravitational 
potential energy, or elastic potential energy. The object then has the ability to transfer that energy 
to do useful work. We say that it has mechanical energy. We will now show how these three 
types of energy can be calculated.

The symbol E can be used to represent energy, usually with a subscript to represent the particular 
type of energy. (Note: E is also used for electric field.)

	■ Kinetic energy

Tool 3: Mathematics

Derive relationships algebraically

Kinetic energy can be calculated from the equation Ek = 
1
2mv2. This is explained / derived 

below. (Ideally, we would like to fully explain the origin of all of the equations used in this 
course, but that is not always possible.)

Consider a mass m accelerated horizontally from rest by a constant resultant force, F, acting 
in the direction of motion, as shown in Figure A3.16.

F
m m

s

Speed, v

	■ Figure A3.16 Doing work to increase movement

Using the equation of motion v2 = u2 + 2as (from Topic A.1) and noting that, in this example, 

u = 0, we see that the distance travelled, s, can be determined from the equation: s = 
v2

2a.

The work done W, in a distance s, can be calculated from: W = Fs = ma × 
v2

2a = 
1
2mv2.

This amount of energy has been transferred from the origin of the force to the moving mass. 
We say that the mass has gained kinetic energy, Ek.

1
2
mv2 can also be written as: 

[mv]2

2m
.

Since momentum, mv, is given the symbol p, kinetic energy can also be determined from 

the equation: Ek = 
p2

2m
.

This version is most commonly used with the kinetic energy and momentum of atomic particles 
(See Topic E.5).

The kinetic energy of a moving mass can be calculated using: Ek = 
1
2 
 mv2

Or from: Ek = 
p2

2m 

Some typical examples of kinetic energies (to an order of magnitude):
l a molecule in air at 20° C: 10–20 J
l a falling snowflake: 10–7 J
l a boy running in a 100 m race: 103 J
l a bullet from a rifle: 104 J
l a car moving along an open road: 105 J
l a large meteor moving towards Earth: 1017 J
l the Earth in its motion around the Sun: 1033 J.

DB

 ◆ Order of magnitude An 
approximate value rounded 
to the nearest power of ten. 

 ◆ Mechanical energy 
Energy of a macroscopic 
object which can do useful 
work.
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Tool 3: Mathematics

Compare and quote values and approximations to the nearest order of magnitude

Physics is the fundamental science that tries to explain how 
and why everything in the Universe behaves in the way 
that it does. Physicists study everything from the smallest 
parts of atoms to distant objects in our galaxy and beyond 
(Figure A3.17).

	■ Figure A3.17 a The arrangement of individual atoms in graphene (a material made from a single layer of carbon atoms) can be 
seen using a special type of electron microscope; b complex gas and dust clouds in the Cat’s Eye nebula, 3000 light-years away

Measurements and calculations commonly relate to 
the world that we can see around us (the macroscopic 
world), but our observations may require microscopic 
explanations, often including an understanding of 
molecules, atoms, ions and subatomic particles. 
Astronomy is a branch of physics that deals with the 
other extreme − quantities that are very much bigger than 
anything we experience in everyday life.

The study of physics therefore involves dealing with both 
very large and very small numbers. When numbers are 
so different from our everyday experiences, it can be 
difficult to appreciate their true size. For example, the age 
of the Universe is believed to be about 1018 s, but just how 
big is that number? 

When comparing quantities of very different sizes 
(magnitudes), for simplicity we often make approximations 
to the nearest power of 10. When numbers are approximated 
and quoted to the nearest power of 10, it is called giving 
them an order of magnitude. For example, when comparing 
the lifetime of a human (the worldwide average is about 70 
years) with the age of the Universe (1.4 × 1010 y), we can 
use the approximate ratio 1010 / 102. That is, the age of the 
Universe is about 108 human lifetimes, or we could say that 
there are eight orders of magnitude between them.

Here are three further examples:
l The mass of a hydrogen atom is 1.67 × 10−27 kg. To an 

order of magnitude this is 10−27 kg.
l The distance to the nearest star (Proxima Centauri) is 

4.01 × 1016 m. To an order of magnitude this is 1017 m. 
(Note: log of 4.01 × 1016 = 16.60, which is nearer to 17 
than to 16.)

l There are 86 400 seconds in a day. To an order of 
magnitude this is 105 s.

Tables A3.1, A3.2 and A3.3 list the ranges of mass, 
distance and time that occur in the Universe.
	■ Table A3.1 The range of masses in the Universe

Object mass / kg Object mass / kg

the observable Universe 1053

our galaxy (the Milky Way) 1042

the Sun 1030

the Earth 1024

a large passenger airplane 105

a large adult human 102

a large book 1

a raindrop 10−6

a virus 10−20

a hydrogen atom 10−27

an electron 10−30
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	■ Table A3.2 The range of distances in the Universe

Distance size / m Distance size / m

distance to the edge of the visible Universe 1027

diameter of our galaxy (the Milky Way) 1021

distance to the nearest star 1016

distance to the Sun 1011

distance to the Moon 108

radius of the Earth 107

altitude of a cruising airplane 104

height of a child 1

how much human hair grows by in one day 10−4

diameter of an atom 10−10

diameter of a nucleus 10−15

	■ Table A3.3 The range of times in the Universe

Time period time interval / s
Time period time 

interval / s

age of the Universe 1018

time since dinosaurs became extinct 1015

time since humans first appeared on Earth 1013

time since the pyramids were built in Egypt 1011

typical human lifetime 109

one day 105

time between human heartbeats 1

time period of high-frequency sound 10−4

time for light to travel across a room 10−8

time period of oscillation of a light wave 10−15

time for light to travel across a nucleus 10−23

Estimation

Sometimes we do not have the data needed for accurate 
calculations, or maybe calculations need to be made 
quickly. Sometimes a question is so vague that an accurate 
answer is simply not possible. The ability to make 
sensible estimates is a very useful skill that needs plenty 
of practice.

When making estimates, different people will produce 
different answers and it is usually sensible to use only 1 
(maybe 2) significant figures. Sometimes only an order of 
magnitude is needed.

The numbers in the list of kinetic energies given above 
cannot be given with precision because the situations are 
vague and there are a wide range of possibilities (with the 
exception of the Earth’s kinetic energy). For example, boys 
(of all ages) in 100 m races could have masses between 
20 kg and 70 kg (or more), and they could run at speeds 
between 2 m s−1 and 9 m s−1. These figures correspond to a 
kinetic energy range of 90–2800 J. To give a value with 2, 
or 3, significant figures would be misleading. It is more 
sensible to give a typical value to the nearest power of 10 
(or sometimes, 1 significant figure). In the case of boys 
running 100 m, values of 102 J or 103 J may be considered 
typical (a matter of opinion).

A constant resultant horizontal force of 
40 N accelerated a box over a distance 
of 50 cm.
a How much work was done on the box?
b State the assumption that you made 

answering part a.
c Calculate the kinetic energy that was 

gained by the box.
d If the box was initially at rest and then 

reached a speed of 2.9 m s−1, what was 
its mass?

Answer
a W = Fs = 40 × 0.50 = 20 J
b The force was in the same direction as 

the motion of the box.
c 20 J
d Ek =  

1
2mv2

 20 = 
1
2 × m × 2.92

 m = 
(2 × 20)

2.92

  = 4.8 kg

 WORKED EXAMPLE A3.4
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Tool 3: Mathematics

Understand the significance of uncertainties 
in raw and processed data

Although scientists are perceived as working towards 
finding ‘exact’ answers, an unavoidable uncertainty 
exists in every measurement. The results of all scientific 
investigations have uncertainties and errors, although good 
experimenters will try to keep these as small as possible.

When we receive numerical data of any kind (scientific or 
otherwise) we need to know how much belief we should 
place in the information that we are reading or hearing. 
The presentation of the results of serious scientific 
research should always have an assessment of the 
uncertainties in the findings, because this is an integral 
part of the scientific process. Unfortunately, the same is 
not true of much of the information we receive through 
the media, where data is too often presented uncritically 
and unscientifically, without any reference to its source, 
uncertainties or reliability.

No matter how hard we try, even with the very best 
of measuring instruments, it is simply not possible to 
measure anything exactly. For one reason, the things that 
we can measure do not exist as perfectly exact quantities; 
there is no reason why they should.

This means that every measurement is an approximation. 
A measurement could be the most accurate ever made, 
for example the width of a ruler might be stated as 
2.283 891 03 cm, but that is still not perfect, and even if it 
was, we would not know because we would always need 
a more accurate instrument to check it. In this example 
we also have the added complication of the fact that when 
measurements of length become very small, we have to deal 
with the atomic nature of the objects that we are measuring.

A measurement is accurate if is close to its true value. For 
example, if you weigh a mass of 90.1 g and the result is 
90.1 g, then the measurement can be described as accurate. 
However, be aware that in scientific research, true values 
are usually not known.

If the same mass (90.1 g) was measured by a different 
method, or a different person and the result was 89.8 g, 
then there was a clear error in the measurement. An error 
has occurred if the measurement is different from its true 
value (using an appropriate number of significant figures 
for the comparison).

Significant errors are often due to faulty apparatus or 
poor experimental skills. It is often possible to correct the 
source of such errors.

A systematic error occurs because there is something 
consistently wrong with the measuring instrument or the 
method used. A reading with a systematic error is always 
either bigger or smaller than the correct value by the same 
amount. Common causes are instruments that have an 
incorrect scale (wrongly calibrated), or instruments that 
have an incorrect value to begin with, such as a meter 
that displays a reading when it should read zero. This 
is called a zero-offset error – an example is shown in 
Figure A3.18. A thermometer that incorrectly records room 
temperature will produce systematic errors when used to 
measure other temperatures.

0

1
2 3

4

5

V

	■ Figure A3.18 This voltmeter has a zero-offset error of 
0.3 V, so that all readings will be too large by this amount.

Uncertainties in measurements are an indication of the 
amount of variation seen in the readings taken (without 
considering their accuracy). For example, if you weigh 
the same (unknown) mass five times you might get the 
following results: 53.2 g, 53.4 g, 52.9 g. 53.0 g, and 53.1 g. 
The results are not all the same, so there is clearly some 
random uncertainty in the results. The uncertainty in the 
use of the measuring instrument itself is usually assumed 
to be equal to the smallest division on its scale / display. 
In this example this is ± 0.1 g.

All experimental data has uncertainties. Sometimes 
uncertainties will arise because of difficulties in taking 
measurements. For example, human reaction times affect 
measurements made when using a stopwatch, or measuring 
the distance moved by something moving quickly can 
be difficult.

It is usually not possible to reduce uncertainties using the 
same apparatus and techniques.

In science the word precise means that measurements have 
low uncertainty. If, and when, measurements are repeated 
they will produce similar results. Consider Figure A3.19, 
which shows where arrows fired at a target (not shown) 
landed on eight separate occasions. Because we do not 
know where the target is, we cannot tell if the arrows were 
fired accurately, or not. But we can describe b and d as 
more precise than a and c.
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a b c d

	■ Figure A3.19 Precision of arrows hitting unseen target

In Figure A3.20 the positions of the targets have been included and we can see that the 
accuracy was good in d. But note that the accuracy seen in c is also good, because the average 
position of the arrows is close to the centre of the target.

a b c d

	■ Figure A3.20 Accuracy of arrows hitting target

 ◆ Uncertainty (random) 
The range, above and 
below a stated value, over 
which we would expect any 
repeated measurements 
to occur. Uncertainty 
can be expressed in 
absolute, fractional or 
percentage terms.

 ◆ Accuracy A single 
measurement is described 
as accurate if it is close 
to the correct result. A 
series of measurements of 
the same quantity can be 
described as accurate if 
their mean is close to the 
correct result. 

 ◆ Error When a 
measurement is not the 
same as the correct value. 

 ◆ Systematic error An 
error which is always either 
bigger or smaller than the 
correct value by the same 
amount, for example a 
zero-offset error. 

 ◆ Zero offset error A 
measuring instrument 
has a zero offset error if it 
records a non-zero reading 
when it should be zero.

 ◆ Precision A 
measurement is described 
as precise if a similar result 
would be obtained if the 
measurement was repeated. 

Common mistake
Uncertainties and errors are often confused, and different sources may define them slightly differently. 
See Tool 3: Mathematics (Propagating uncertainties) on page 131.

A student wanted to determine the increase of a trolley’s kinetic energy as it accelerated 
down a slope. The trolley had a mass of 576 g ± 5 g and its length was 28.0 cm ± 0.5 cm. 
Using a stopwatch the student measured the time for the trolley to pass a point near the 
top of the slope to be 1.26 s. Near the bottom of the slope the trolley took 0.73 s to pass a 
particular point. Because it was difficult to start and stop the stopwatch at exactly the right 
time, it was estimated that the uncertainty in each time measurement was 0.10 s.
Calculate a value for the increase in kinetic energy of the trolley. Determine the absolute 
and percentage uncertainties in the answer. Comment on your answer

Answer
Near the top:

Ek = 
1
2mv2 = 

1
2 × 0.576 × (0.28

1.26)2

 = 1.42 × 10–2 J

l Percentage uncertainty in mass = 100 × (5/576) = 0.87%
l Percentage uncertainty in length = 100 × (0.5/28) = 1.79%
l Percentage uncertainty in time = 100 × (0.10/1.26) = 7.94%
l Percentage uncertainty in kinetic energy = 0.87 + 1.79 + 1.79 + 7.94 + 7.94 = 20.33%
l Absolute uncertainty in kinetic energy = (20.33/100) × (1.42 × 10−2) = 0.29 × 10−2 J

 WORKED EXAMPLE A3.5
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100 Theme A: Space, time and motion

Near the bottom:

Ek = 
1
2mv2 = 

1
2 × 0.576 × (0.28

0.73)2

 = 4.24 × 10–2 J

l Percentage uncertainty in mass = 100 × (5/576) = 0.87%
l Percentage uncertainty in length = 100 × (0.5/28) = 1.79%
l Percentage uncertainty in time = 100 × (0.10/0.73) = 13.70%
l Percentage uncertainty in kinetic energy = 0.87 + 1.79 + 1.79 + 13.70 + 13.70 = 31.85%
l Absolute uncertainty in kinetic energy = (31.85/100) × 4.24 × 10−2 = 1.35 × 10−2 J
l Difference in kinetic energies = (4.24 × 10−2) − (1.42 × 10−2) = 2.82 × 10−2 J
l Absolute uncertainty in difference = (0.29 × 10−2) + (1.35 × 10−2) = 1.64 × 10−2 J

l Percentage uncertainty in difference = (1.64
2.82) × 100 = 58%

This high percentage uncertainty in the results of this experiment may be surprising. The 
experiment needs redesigning if accurate results are needed.

Other types of kinetic energy

We can only use Ek = 
1
2

mv2 to determine the translational kinetic energy of objects travelling from  
place to place. Objects which are vibrating or rotating also have kinetic energy, but we need different 
equations to calculate their values. This will be covered in Topics A.4 and C.1 (for HL students).

12 Calculate the kinetic energy of a 57 g tennis ball served 
with a speed of 50 m s−1.

13 a Determine the work needed to be done on a 1800 kg 
car to accelerate it from rest to 20 m s−1.

b What average resultant force is needed to do this in a 
horizontal distance of 100 m?

c If the car decelerates from the same speed to rest in 
70 m, calculate the average force exerted on the car

d What are the locations of this force?

14 a Calculate the kinetic energy of an electron (mass = 
9.110 × 10−31 kg) moving with a speed which is 5% of 
the speed of light (3.0 × 108 m s−1).

b What is the momentum of this electron?

15 Suppose that the force on the box in Worked example 
A3.4 continued to act for another 50 cm. Determine the 
final speed of the box after it had moved a total distance 
of 1.0 m.

16 a Calculate the kinetic energy of a high-speed train (see 
Figure A3.21) which has a mass of 7.5 × 105 kg and is 
moving with a speed of 300 km h−1.

b Compare your answer to the kinetic energy of a 
typical family car on a motorway.

c What average force is needed to reduce the speed of 
the train uniformly to zero in a distance of 5.0 km?

d Suggest two reasons why high-speed railway systems 
do not have many stations.

	■ Figure A3.21 A high-speed train
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	■ Gravitational potential energy
Consider raising a mass m a vertical height Δh, as shown in Figure A3.22. The minimum force 
required is equal to the weight of the mass, Fg = mg. 

The work done by the force on the mass, W = Fs = mgΔh

This amount of energy has been transferred from the origin of the force to the raised mass. We 
say that the mass has gained gravitational potential energy, ΔEp. If the mass is allowed to fall 
back down the same distance, the same amount of energy could be transferred to do useful work. 
Falling water in a hydroelectric power station uses this principle.

The gravitational potential energy of a mass raised a height Δh, close to the Earth’s surface can 
be calculated using ΔEp = mgΔh 

It is important to realize that this equation can only be used accurately where a value of g can 
be considered as constant over the distance involved. For example, g = 9.8 N kg−1 cannot be used 
accurately when moving masses large distances up from the Earth’s surface.

Top tip!
A mass resting on a table, or on the ground, does not have zero gravitational potential energy. When we 
use ΔEp= mgΔh we are calculating how much more, or less, gravitational potential energy the object has 
in its new position compared to the place from where it was moved.

In other words, we are calculating a change in gravitational potential energy.

In the detailed study of gravitational fields (Topic D.1) HL students will need to consider if there is any 
place where an object really does have zero gravitational energy.

Estimate the gravitational potential  
energy gained by a teenage girl 
who moves from ground level to 
the viewing platform on the 124th 
floor of the Burj Khalifa in Dubai 
(see Figure A3.23).
Assume that the girl has a mass of 
40 kg and the height of each floor 
is 3.5 m.

Answer
ΔEp = mgΔh = 40 × 9.8 × (124 × 3.5) ≈ 2 × 105 J

	■ Figure A3.23 The Burj Khalifa in Dubai

 WORKED EXAMPLE A3.6

�h
�EP � mg�h

m

m

	■ Figure A3.22 A mass 
gaining gravitational 
potential energy

 ◆ Hydroelectric power 
The generation of electrical 
power from falling water.

DB

LINKING QUESTION
l Why is the equation 

for the change 
in gravitational 
potential energy 
only relevant close 
to the surface of 
the Earth, and what 
happens when 
moving further away 
from the surface?

This is discussed 
in Topic D.1 for 
HL students.
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102 Theme A: Space, time and motion

 ATL A3A: Research skills 

Use search engines and libraries effectively; 
evaluate information sources for accuracy, 
bias, credibility and relevance
When lifting a heavy object, the amount of gravitational 
potential energy that we need to transfer to it is decided only by 
its weight and the vertical height (ΔEp = mgΔh). For example, 
when a 50 kg mass is raised a height of 1 m it gains about 500 J of 
gravitational potential energy. Although 500 J may not be a lot of 
work to do, that does not mean that we can do this job easily.

There are two main reasons why this job could be difficult. 
Firstly, we may not be able to transfer that amount of energy in 
the time required to do the work. Another way of saying this is 
that we may not be powerful enough. (Power is discussed later 
in this topic.) Secondly, we may not be strong enough because 
we are not able to provide the required upwards force of 500 N. 
Power and strength are often confused with each other in 
everyday language.

Lifting (heavy) weights is a common human activity and many 
types of simple ‘machine’ were invented many years ago to 
make this type of work easier, by reducing the force needed. 
These include the ramp (inclined plane), the lever and the pulley 
(Figure A3.24).

F

F

F

lever

pulley system

ramp

F

F

F

lever

pulley system

ramp

F

F

F

lever

pulley system

ramp

	■ Figure A3.24 Simple machines which can be used to raise loads

In each of these simple machines the force needed to do the job 
is reduced, but the distance moved by the force is increased. If 
there was no energy dissipation (mainly due to friction), the work 
done by the force (Fs) would equal the useful energy transferred 
to the object being raised (mgΔh). In practice, because of energy 
dissipation, we will transfer more energy using a machine than 
if we lifted the load directly, without the machine. However, this 
is not a problem because we are usually much more concerned 
about how easy it is to do a job, rather than the total energy 
needed, or the efficiency of the process.

Figure A3.25 shows another example of a simple machine: a car 
jack being used to raise one side of a car.

	■ Figure A3.25 Changing a car tyre using a simple machine (car jack)

By changing the design of a car jack, it is possible in theory to raise 
the car with any sized force that we choose. For example, a force 
of 50 N may raise the wheel off the ground if the handle is rotated 
10 times, whereas a force of 10 N would require about 50 rotations 
of the handle to transfer the same amount of energy. The heavy 
weight of the car will produce a lot of friction in the car jack.

The construction of many ancient structures was only possible 
because of the simple machines seen in Figure A3.24. Research 
online to learn some details of how the pyramids (or any other 
building of a similar age) were made. Compare the information 
you retrieve from different sources. Do the sources agree? 
Which sources do you consider most credible? Why?

	■ Elastic potential energy
When a spring, or an elastic material, is deformed from the shape it had when there was no force 
acting on it, as in Figure A3.26, it will become a store of elastic potential energy that can later be 
used to transfer useful energy when the spring / material returns to its original shape.

Remember Hooke’s law for elastic stretching from Topic A.2: FH = −kx, where k is the ‘spring 
constant’. Note also that, if a force on a spring / elastic material increases from 0 to FH, the average 
force used during the deformation is ½FH, assuming that the deformation is proportional to the 
force (as shown in Figure A3.26).

 ◆ Lever A simple machine 
consisting of a rigid 
bar and a pivot. Used to 
change the direction and 
magnitude of a force. 

 ◆ Pulley A rotating 
wheel used to change the 
direction of a force. When 
two or more pulleys are 
combined, the system can 
reduce the force needed to 
do work.
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A.3   Work, energy and power 103

For a spring / material which obeys Hooke’s law, the work done, W, when it is deformed a 
distance Δx by a force FH, is given by:

W = average force × distance = 
1
2
FH × Δx = 

1
2
(kΔx)x = 

1
2
kΔx2

The work done is equal to the stored elastic potential energy, EH. (There is no need to 
include a negative sign because work is not a vector quantity.)

The elastic potential energy of a deformed spring / material which obeys Hooke’s law 

can be calculated by using: 

EH = 
1
2 
 kΔx2.

As explained earlier in this topic, the work done is equal to the area under force–extension 
graph.

An open-coiled compression spring, like the one seen in  
Figure A3.27 has an overall length of 5.64 cm. A compressive 
force of 59.0 N reduced its length to 5.30 cm.
a Determine the spring constant, assuming that Hooke’s law 

was obeyed.
b Calculate how much work was done to compress the spring.

c Use EH = 
1
2kΔx2 to confirm the amount of elastic potential 

energy stored in the spring.

Answer

a k = 
FH

x  = 
59.0

(5.64 – 5.30) = 174 N cm–1 (or 1.74 × 104 N m−1)

b W = 
1
2FHΔ x = 29.5 × (5.64 – 5.30) × 10−2 = 0.100 J

c EH = 
1
2kΔx2 = 0.5 × (1.74 × 104) × (3.4 × 10−3)2 = 0.100 J

The answers to b and c are the same, as we would expect.
See Figure A3.6 for an example of how to determine elastic potential energy from a force–
extension graph.

	■ Figure A3.27 An open-
coiled compression spring

 WORKED EXAMPLE A3.7

DBFo
rc

e

area = work
          done

Extension, x

FH

0 Δx

0

no force

force, FH

extension

	■ Figure A3.26 Force and 
extension when stretching a spring
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104 Theme A: Space, time and motion

17 How much potential energy is transferred when:
a a 1.2 kg box is raised from the floor to a table top 

0.85 m higher
b a 670 g book falls to the floor from the same table?

18 A cable car rises a vertical height of 700 m in a total 
distance travelled of 6.0 km.
a Show that approximately 15 MJ of gravitational 

potential energy must be transferred to a car of mass 
1800 kg during the journey if it has six passengers 
with an average mass of 47 kg.

b Suggest why considerably more energy (than your 
answer to part a has to be transferred in making 
this journey.

	■ Figure A3.28 Ngong Ping cable car in Hong Kong

19 A rocket launches a 500 kg satellite to a height of 400 km 
above the Earth’s surface.
a Outline why the equation ΔEp = mgΔh, with 

g = 9.8 N kg−1 cannot be used to accurately determine 
the gravitational potential energy that has to be 
transferred to the satellite.

b However, the actual value of g at that height has 
not reduced as much as many students expect: 
during the launch it reduced from 9.8 N kg−1 to a 
value of 8.7 N kg−1 at a height of 400 km. Predict the 
gravitational potential energy gained by the satellite.

20 A spring has a spring constant of 384 Nm−1 and is 
stretched by 2.0 cm.
a Calculate the elastic potential energy stored in the 

spring. Assume that it obeys Hooke’s law.
b Predict a value for the extension that would be needed 

to store 1.0 J of energy.
c Explain why the answer to part b is uncertain.

21 a Calculate the work done in raising the centre of 
gravity of a trampolinist of mass 62 kg through a 
vertical height of 3.48 m (see Figure A3.29).

b When he lands on the trampoline he is brought to rest 
for a moment before being pushed up in the air again. 
If the maximum displacement of the trampoline is 
0.90 m, sketch a possible force–displacement graph 
for the surface of the trampoline.

	■ Figure A3.29 The more the trampoline stretches, 
the higher the trampolinist can jump
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A.3   Work, energy and power 105

	■ Conservation of mechanical energy

SYLLABUS CONTENT

 In the absence of frictional resistive forces, the total mechanical energy of a system is conserved.
 If mechanical energy is conserved, work is the amount of energy transformed between different forms 

of mechanical energy in a system, such as: kinetic energy, gravitational potential energy and elastic 
potential energy.

Applying the law of conservation of energy to mechanical systems:

kinetic energy + gravitational potential energy + elastic potential energy = constant

But this is only true if there are no frictional (resistive) forces acting. Such forces can be described 
as ‘non-conservative’. Conservative forces (such as gravitational forces, for example) conserve 
mechanical energy and do not involve the dissipation of energy. (More precisely: a conservative 
force is one for which the total work done in moving between two points is independent of the 
path taken.)

We have already explained that energy dissipation occurs in all mechanical systems to a greater 
or lesser extent, because of ever-present frictional / resistive forces (non-conservative forces). 
However, the equation above remains very useful for predicting ‘ideal’ outcomes, and for 
determining the amount of energy dissipated in other situations.

One of the most common examples of mechanical energy transfers is that between gravitational 
potential energy and kinetic energy. Assuming no resistive forces: change of gravitational 
potential energy = change of kinetic energy

mgΔh = 
1
2
mv2 – 

1
2
mu2

If the mass starts or ends with zero velocity during the time being considered: v2(or u2) = 2gΔh. 
leading to: v (or u) =   2gΔh.

This equation can be used to relate height with speed for any mass falling from rest, or any mass 
projected upwards to its highest point (assuming that gravity is the only force acting).

Note that the same equation can be obtained using the equation of motion (see Topic A.1):  
v2 = u2 + 2as, with u or v equal to zero, and using s instead of h.

A ball is thrown upwards with a speed of 
23 m s−1. Calculate the maximum height that 
it can reach.

Answer
 u2 = 2gΔh
 232 = 2 × 9.8 × Δh
Δh = 27 m

 WORKED EXAMPLE A3.8

 ◆ Conservative force A 
force, the action of which 
conserves mechanical 
energy. There is no 
energy dissipation.
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106 Theme A: Space, time and motion

A ball of mass 7.8 g was fired horizontally by a spring, 
as shown in Figure A3.30. The spring has a spring 
constant of 620 N m−1 and was pulled back 3.7 cm from its 
uncompressed length.

3.7 cm

	■ Figure A3.30 Ball being fired horizontally by a spring

a Calculate how much elastic potential energy was 
stored in the spring. Assume that it obeys Hooke’s law.

b What average force was used to compress the spring?
c Determine the maximum possible speed of the ball 

after the spring was released.
d Explain why the actual speed will be less than your 

answer to part c.

Answer

a EH = 
1
2kΔx2 = 0.5 × 620 × 0.0372 = 0.42 J

b EH = W = Fs
 0.42 = F × 0.037
 F = 11 N (This was half of the maximum force.)

c 0.42 = 
1
2mv2 = 0.5 × 0.0078 × v2

 v = 10 m s−1

d All of the elastic potential energy in the spring was 
not transferred to the kinetic energy of the ball. For 
example, there was some friction with the sides of the 
tube, the spring did not stop moving after propelling 
the ball, there was some sound produced.

 WORKED EXAMPLE A3.9

A box of mass 4.7 kg slid down a slope of vertical 
height 80 cm.
a Calculate the gravitational potential energy of the 

box at the top of the slope (compared to the bottom of 
the slope).

b Assuming the conservation of mechanical energy, 
what would the speed of the box be at the bottom of 
the slope?

c But the actual speed of the box was measured to be 
2.2 m s−1. Explain why the speed was less than the 
answer to part b.

d Determine how much energy was dissipated into the 
surroundings.

e In what form(s) was this dissipated energy?

Answer
a ΔEp = mgΔh = 4.7 × 9.8 × 0.80 = 37 J

b 37 = 
1
2mv2 = 0.5 × 4.7 × v2

 v = 4.0 m s−1

 Note that this answer (which assumes no energy 
dissipation) would be the same for any mass on any 
slope, or a vertical fall.

c Friction with the slope (and a little air resistance) acted 
in the opposite direction to motion.

d 37 − 
1
2mv2 = 37– (0.5 × 4.7 × 2.22) = 26 J

e Internal energy in the surfaces of the slope and box 
(which then spreads out as thermal energy).

 WORKED EXAMPLE A3.10
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A.3   Work, energy and power 107

22 What is the maximum speed with which a mass can hit 
the ground after being dropped from a height of 1.80 m?

23 The ball shown in Figure A3.31 was released from rest 
in position A. It accelerated down the slope and had its 
highest speed at the lowest point. It then moved up the 
slope on the other side, reaching its highest point at B.

A

C

D

B

	■ Figure A3.31 Ball rolling down slope

a Explain why B is lower than A.
b Describe the motion of the ball after leaving position 

B, explaining the energy transfers until it finally 
comes to rest at D.

24 The large angle swing of a pendulum is interrupted by 
a peg as shown in Figure A3.32. Sketch a copy of the 
diagram and indicate the position of the pendulum after it 
has momentarily stopped moving on the right-hand side of 
the peg.

peg

	■ Figure A3.32 Pendulum

25 Figure A3.33 shows an experiment to measure the speed 
of a bullet which was fired into a block of wood. The 
bullet is embedded in the wood, so this was a totally 
inelastic collision. The block of wood and the bullet had 
kinetic energy and this was transferred to gravitational 
potential energy as they swung upwards.
a Outline what is meant by a totally inelastic collision. 
b If the combined mass of the block and the bullet 

was 1.23 kg, determine their maximum gravitational 
potential energy.

c Use the law of conservation of energy to show that 
the initial velocity of the combined block and bullet 
was 1.5 m s–1.

d If the bullet’s mass was 15 g, use the law of 
conservation of momentum to determine its speed.

12 cm

	■ Figure A3.33 Experiment to measure the speed of a bullet

26 a A 10 g steel sphere moving to the left at 2.0 m s−1 
collided with a similar sphere of mass 2.0 g moving in 
the opposite direction at 4.0 m s−1. If after the collision 
the 10 g sphere remained stationary, determine what 
happened to the other sphere.

b Calculate the total kinetic energy:
i before the collision
ii after the collision.

c Was mechanical energy conserved in this collision?
d State the term we use to describe collisions like this.

27 In a laboratory experiment an 8.6 g wooden sphere 
moving at 0.39 m s−1 collided with a 5.7 g wooden 
sphere moving in the opposite direction with a speed of 
0.72 m s−1. After the collision they were both observed 
to move with a speed of 0.25 m s−1, but in opposite 
directions.
a Show that these results are in good agreement with 

the law of conservation of momentum.
b Calculate the total kinetic energy:

i before the collision
ii after the collision.

b Was kinetic energy conserved in this collision?
c State the term we use to describe collisions like this.

28 A rubber band of mass 1.2 g was extended by 8.4 cm. The 
extension was proportional to the force and the band had 
a spring constant of 280 N m–1

a If the force was released and the band fired vertically 
upwards, predict the maximum theoretical height that 
it could reach.

b Explain why, in practice, the height will be a lot less 
than your answer to part a.
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29 A long steel wire of mass 150 g was extended by 3.2 cm 
by a force which had increased slowly from 0 N to 240 N.
a Assuming that the extension was proportional to the 

force, how much elastic potential energy was stored 
in the wire?

b The wire then snapped and the stored energy 
was transferred to the kinetic energy of the wire. 
Calculate an average value for the speed of the wire. 

c Discuss why breaking some metal wires can 
be dangerous.

30 ‘Crumple zones’ are a design feature of most vehicles 
(Figure A3.34). They are designed to compress and 
deform permanently if they are in a collision. Use the 

equation Fs = 
1
2
mv2 to help explain why a vehicle should 

not be too stiff and rigid.

	■ Figure A3.34 The front of the car is deformed 
but the passenger compartment is intact

31 A bungee jumper (Figure A3.35) of mass 61 kg is moving 
at 23 m s−1 when the rubber bungee cord begins to 
become stretched.
a Calculate her kinetic energy at that moment.
b Figure A3.36 shows how the extension of the cord 

varies with the applied force. State what quantity is 
represented by the area under this graph.

c Describe the relationship between force and extension 
shown by this graph.

d Use the graph to estimate how much the cord has 
extended by the time it has brought the jumper to 
a stop.

	■ Figure A3.35 Bungee jumping in Taupo, New Zealand
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	■ Figure A3.36 Force–extension graph for a bungee cord

32 A pole-vaulter of mass 59.7 kg falls from a height of 
4.76 m onto foam.
a Calculate the maximum possible kinetic energy 

on impact.
b Will air resistance have had a significant effect in 

reducing the velocity of impact? Explain your answer.
c If the foam deforms by 81 cm, estimate the average 

force exerted on the pole-vaulter.
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 ATL A3B: Thinking skills 

Apply key ideas and facts in new contexts

Regenerative braking

Most ways of stopping moving vehicles involve braking systems 
in which the kinetic energy of the vehicle is transferred to 
internal energy because of friction in the braking system and 
with the ground / track. The internal energy is dissipated into the 
surroundings as thermal energy and cannot be recovered.

The kinetic energy of a long, fast-moving train is considerable. 
Values of 108 J, or more, are not unusual. When the train stops, 
all of that energy has to be transferred to other forms and, unless 
the energy can be recovered, the same amount of energy then 
has to be transferred to accelerate the train again. This is very 
wasteful, so the train and its operation should be designed to 
keep the energy wasted to a minimum. One way of doing this 
is to make sure that large, fast trains stop at as few stations as 
possible, perhaps only at their origin and final destination.

A lot of research has gone into designing efficient regenerative 
braking systems in recent years, usually involving the generation 
of an electric current, which can be used to transfer energy to 
stored chemical changes in batteries, or to operate on-board 
electrical equipment.

The process of converting the kinetic energy of the train into 
electrical energy decelerates the train, so that there is much less 
need for frictional braking. This also reduces the wear on the 
brakes and the thermal energy transferred to the environment.

Small electric trains, which are often operated underground or 
on overhead tracks, are a feature of most large cities around the 
world (Figure A3.37). Such trains usually have stations every 
few kilometres or less, so regenerative braking systems and other 
energy-saving policies are very important.

	■ Figure A3.37 The Light Rail Transit trains on the SBS 
network in Singapore have regenerative braking

When designing a new urban train system, it has been suggested 
that energy could be saved by having a track shaped as shown in 
Figure A3.38.

What might be the advantages of such a track profile? 
Consider the energy transfers taking place as the train moves 
between stations.

station station

	■ Figure A3.38 Possible track profile

Power

SYLLABUS CONTENT

 Power, P, is the rate of work done, or the rate of energy transfer, as given by: P = 
E
t  = Fv.

Power is the rate of transferring energy. When energy is transferred by people, animals or 
machines to do something useful, we are often concerned about how much time it takes for the 
change to take place. If the same amount of useful work is done by two people (or machines), the 
one that does it faster is said to be more powerful. (In everyday use the word power is used more 
vaguely, often related to strength and without any connection to time.)

power = 
energy transferred

time taken  
P = 

E 
t  

SI unit: watt, W

Alternatively: power = 
work done 
time taken  

P = 
ΔW 
Δt 

 ◆ Regenerative braking 
Decelerating a vehicle by 
transferring kinetic energy 
into a form that can be 
of later use (rather than 
dissipating the energy into 
the surroundings). For 
example, by generating 
an electric current that 
charges a battery.

DB

 ◆ Power, P 
energy transferred

time taken
  

or, for mechanical energies, 
work done
time taken

.

 ◆ Watt, W Derived SI unit 
of power. 1 W = 1 J s−1.
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110 Theme A: Space, time and motion

1 W = 1 J s−1. The units mW, kW, MW and GW are all in common use. (Avoid confusion between 
work done, W and the unit the watt, W.)

The following are some examples of values of power in everyday life.

	■ Figure A3.39 Transferring energy at a rate of about 250 W

l A 0.0001 W calculator transfers energy at a rate of 
0.0001 J every second.

l A 7 W light bulb transfers energy from electricity to light 
and thermal energy at a rate of 7 J every second.

l A girl walking upstairs may transfer chemical energy to 
gravitational energy at a rate of about 250 W.

l In many countries, homes use electrical energy at an 
average rate of about 1 kW.

l A 2 kW water heater transfers energy from electricity to 
internal energy at a rate of 2000 J every second.

l A typical family car might have a maximum output power 
of 100 kW.

l A 500 MW oil-fired power station transfers chemical 
energy to electrical energy at a rate of 500 000 000 J 
every second.

Calculate the average power of a 65 kg climber moving up a height of 40 m in 3 minutes.

Answer

P = 
ΔW
Δt  

= 
(mgΔh)

Δt  
= 

(65 × 9.8 × 40)
3 × 60  

= 1.4 × 102 W

 WORKED EXAMPLE A3.11

	■ Power needed to maintain a constant speed
It is common for a vehicle to maintain a constant velocity. Under those circumstances, the forward 
force, F, from the engines is equal in magnitude, but opposite in direction to the magnitude of the 
total resistive forces, F. Then:

Power, P, needed to maintain a constant velocity, v, against the resistive forces, can be 
determined from:

P = 
ΔW
Δt

 = 
FΔs
Δt

 = Fv

Power needed to maintain a constant velocity, P = Fv

a What average power is needed to accelerate a 1600 kg car from rest to 25 m s−1 in 12.0 s?
b What power is needed to maintain the same speed if the resultant resistive force is a 

constant 2300 N?

Answer

a P = 
ΔW
Δt  = 

kinetic energy gained
time taken  = 

1
2mv2

Δt  = 
(0.5 × 1600 × 252)

12.0  = 4.2 × 104 W (= 42 kW)

b P = Fv = 2300 × 25 = 5.8 × 104 W (= 58 kW)

 WORKED EXAMPLE A3.12

 ◆ Resistive force, F Any 
force that opposes motion, 
for example friction, air 
resistance, drag.

DB

369917_03_IB_Physics 3rd_Edn_SEC_A_3.indd   110369917_03_IB_Physics 3rd_Edn_SEC_A_3.indd   110 04/01/2023   20:1904/01/2023   20:19



A.3   Work, energy and power 111

33 a How much useful energy must be transferred to lift twelve 1.7 kg bottles from the ground 
to a shelf that is 1.2 m higher?

b If this task takes 18 s, what was the average useful power involved?

34 Estimate the output power of an electric motor that can raise an elevator of mass 800 kg and 
six passengers 38 floors in 52 s. (Assume there is no counterweight.)

35 a Calculate the average power needed for a cyclist of mass 72.0 kg to accelerate from 
8.00 m s−1 to 12.0 m s−1 in 22.0 s on a horizontal road. Assume that the resistive forces are 
negligible and the bicycle has a mass of 8.00 kg.

b Compare your answer to 6.5 W kg−1 (using body mass) for the best athletes.

36 A small boat is powered by an outboard motor with a maximum output power of 40 kW. The 
greatest speed of the boat is 27 knots (1 knot = 1.85 km h−1). Determine the magnitude of the 
forward force provided by the motor at this speed.

37 a What is the constant speed of a car which has an output power of 22 kW when the 
resistive forces are 2.0 kN?

b What assumption did you make in answering part a?

38 What is the output power of a jet aircraft that has a forward thrust of 6.60 × 105 N when 
travelling at its top speed of 950 km h−1 (264 m s−1) through still air?

39 a Find out which countries of the world have the highest average power consumption 
per person.

b Suggest reasons why they use so much energy.

	■ Efficiency

SYLLABUS CONTENT

 Efficiency, η, in terms of energy transfer or power, as given by:  
Eoutput

Einput
 = 

Poutput

Pinput
.

It is an ever-present theme of physics that, whatever we do, some of the energy transferred 
is ‘wasted’ (dissipated) because it is transferred to less ‘useful’ forms. In mechanics this is 
usually because friction, or air resistance, transfers kinetic energy to internal energy and 
thermal energy. The useful energy we get out of any energy transfer is always less than the total 
energy transferred.

When an electrical water heater is used, nearly all of the energy transferred makes the water 
hotter and it can therefore be described as ‘useful’, but when a mobile phone charger is used, for 
example, only some of the energy is transferred to the battery (most of the rest is transferred to 
thermal energy). Driving a car involves transferring chemical energy from the fuel and the useful 
energy is considered to be the kinetic energy of the vehicle, although at the end of the journey 
there is no kinetic energy remaining.

A process that results in a greater useful energy output (for a given energy input) is described as 
being more efficient. In thermodynamics, efficiency is defined as follows:

efficiency, η = 
useful energy output

total energy input 
 = 

Eoutput

Einput

 ◆ Efficiency 
(thermodynamic), η Ratio 
of useful energy (or power) 
output to the total energy 
(or power) input.

DB
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Dividing energy by time to get power, we see that efficiency may also be defined as:

efficiency, η = 
useful power output

total power input
 = 

Poutput

Pinput

Because it is a ratio of two energies (or powers), efficiency has no units. It is often expressed as a 
percentage. It should be clear that, because of the principle of conservation of energy, efficiencies 
will always be less than 1 (or 100%).

It is possible to discuss the efficiency of any energy transfer, such as the efficiency with which our 
bodies transfer the chemical energy in our food to other forms. However, the concept of efficiency 
is most commonly used when referring to electrical devices and engines of various kinds, 
especially those in which the input energy or power is easily calculated. Sometimes we need to 
make it clear exactly what we are talking about. For example, when discussing the efficiency of 
a car, do we mean only the engine, or the whole car in motion along a road with all the energy 
dissipation due to resistive forces?

The efficiencies of machines and engines usually change with the operating conditions. For 
example, there will be a certain load at which an electric motor operates with maximum 
efficiency; if it is used to raise a very small or a very large mass it will be less efficient. Similarly, 
cars are designed to have their greatest efficiency at a certain speed, usually about 100 km h−1. If 
a car is driven faster (or slower), then its efficiency decreases, which means that more fuel is used 
for every kilometre travelled.

Car engines, like all other engines that rely on burning fuels to transfer energy, are inefficient 
because of fundamental physics principles (see Topic B.4). There is nothing that we can do to change 
that, although better engine design and maintenance can make some improvements to efficiency.

In recent years we have all become very aware of the need to conserve the world’s energy 
resources and limit the effects of burning fossil fuels in power stations and various modes of 
transport on global warming (see Topic B.2). Improving the efficiency of such ‘heat engines’ has 
an important role to play in this worldwide issue.

	■ Figure A3.40 Power stations which use natural gas have the greatest overall efficiency (≈ 60%)

DB
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A.3   Work, energy and power 113

Figure A3.41 shows an experiment designed to measure 
the efficiency of a small electric motor. Electrical power 
was supplied to the motor at a rate of 0.72 W. The hanging 
mass (25 g) went up a distance of 1.12 m in 2.46 s.
a Calculate how much gravitational potential energy 

was transferred to the mass.
b How much electrical energy was transferred in 

this time?
c Determine the efficiency of the motor.
d How much energy was dissipated into the surroundings?
e State the forms of this dissipated energy.
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Answer
a ΔEp = mgΔh = 0.025 × 9.8 × 1.12 = 0.27 J (seen on 

calculator display as 0.2744...)

b power, P = 
energy transferred

time taken
 energy transferred = P × Δt = 0.72 × 2.46 = 1.8 J (seen 

on calculator display as 1.7712...)

c efficiency, η = 
useful energy output

total energy input  = 
0.2744 
1.7712 = 0.15 

 (15%) 

d 1.7712 – 0.2744 = 1.5 J
e internal energy, thermal energy (+ sound)
We will see in Topic B.5 that the power input to any 
electric device can be determined from:  
power = voltage × current.

	■ Figure A3.41 
Experiment to 
measure the efficiency 
of a motor

 WORKED EXAMPLE A3.13

Inquiry 3: Concluding and evaluating

Concluding

Figure A3.42 represents the apparatus used 
by a student to investigate the efficiency of a 
pulley system.

The student measured the forces needed to 
lift loads of 0.5 kg, 1.0 kg, 4.0 kg and 5.0 kg: 
0.6 N, 1.5 N, 7.5 N and 12.7 N. He assumed 
that the force always moves four times 
further than the load. His conclusion was 
that the efficiency of the system was 66%.
1 Is this a correct conclusion from the 

data collected?
2 Discuss the quantity and range of 

readings taken by the student.

force

load

	■ Figure A3.42 Pulley system
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	■ Energy density

SYLLABUS CONTENT

 Energy density of the fuel sources.

One of the advantages of fossil fuels is the large amount of energy that can be transferred from 
each cubic metre of the fuels. Although, nuclear fuels are much more energy dense.

Energy density is the amount of energy that can be transferred from each cubic metre.

SI unit: J m−3

Table A3.4 shows some typical energy densities of energy sources.

When discussing gaseous energy resources, it is more common to use specific energy, which is 
the amount of energy that can be transferred from each kilogram. For example, the specific energy 
of natural gas is 55 MJ kg−1.

Tool 2: Technology

Represent data in a graphical form

Use data from the internet to determine specific energies for a 
variety of different energy sources.

Use a spreadsheet to present the information in the form of a 
bar chart.

Inquiry 1: Exploring and designing

Designing

Controlling heat losses

Figure A3.43 shows how a student intended 
to investigate the energy density of 
ethanol. She knows that for every 4184 J 
of energy that are transferred to 1.0 kg of 
water, the temperature will rise by 1.0 °C 
(see Topic B.2).
1 Identify the student’s choice of 

dependent, independent and control 
variables. How would the results be used 
to calculate energy density?

2 Suggest how the experiment (as shown) 
could be improved. Hint: how much 
of the energy stored in the fuel is 
transferred to the water?

3 What other energy transfers are 
taking place?

thermometer

glass
beaker

water

ethanol

  

	■ Figure A3.43 Estimating the energy 
density or specific energy of a fuel

Common 
mistake
Energy density and 
specific energy are often 
confused. Some sources 
define energy/mass as 
energy density.

 ◆ Energy density The 
energy transferred from 
unit volume of fuel 
(SI unit: J m−3). 

 ◆ Specific energy Amount 
of energy that can be 
transferred from unit 
mass of an energy source 
(SI unit: J kg−1).

	■ Table A3.4 Some approximate energy densities

Source Energy density / MJ m−3

Reactor-grade uranium-235 66 000 000 000

coal 43 000

gasoline (petrol) 36 000

crude oil 37 000

ethanol 24 000

wood 15 000

electrical batteries 1000

hydroelectric 1

 ATL A3C:  
 Research  
 skills 

How did you check 
the reliability of your 
online sources?
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40 The power output from a natural gas-fired electrical 
power station is 540 MW.
a If its efficiency is 48%, what is the input power?
b Calculate how much fuel the power station uses in one 

hour if 49 MJ can be obtained from each kilogramme.

41 An elevator (lift) which has a mass of 2400 kg when 
empty is connected as shown in Figure A3.44 to a 
counterweight of the same mass.

 When the elevator goes up, the counterweight goes down. 
Five people of total mass 265 kg got in the elevator and 
went up four floors, each floor of height 3.2 m.

electric motor and pulley

cable

elevator car

pulley in basement

counterweight

    

	■ Figure A3.44 
An elevator 
(lift) and its 
counterweight

a Outline the reason for using a counterweight.
b Calculate the useful work done by the motor.
c If, in fact, 1.3 × 105 J of energy was transferred from 

the electrical supply to the motor, determine the 
efficiency of the process.

d If the process took a total time of 18 s, what was the 
average input power to the motor?

e How much energy was transferred in 
overcoming friction?

f Discuss where friction would occur in this system.

42 Explain why it may be more useful to refer to the specific 
energy of natural gas, rather than its energy density.

43 A petrol-driven car was accelerated from rest in order to 
determine its overall efficiency.
a Calculate the efficiency if it gained kinetic energy of 

4.0 × 105 J while using 55 ml (5.5 × 10−5 m3) of fuel.
b Draw an annotated Sankey diagram to represent 

this process.
c Discuss whether it is reasonable to state that 

the car has zero efficiency while travelling with 
constant speed.

44 An airplane has a mass of 200 tonnes (2.0 × 105 kg) and 
take-off speed of 265 km h−1 (73 m s−1) at the end of a 
distance of 2.24 km from where it began.
a Calculate the kinetic energy of the airplane when it 

takes off.
b Estimate the average power output from the airplane’s 

engines while it is on the runway.
c What average resultant forward force was acting on 

the airplane during its movement along the runway?
d If 76 kg of fuel was used during take off, calculate 

the efficiency of the process if 1 kg of fuel can 
transfer 43 MJ.

45 An oil burning power station has an efficiency of 39% 
and an output of 770 MW.
a Calculate the mass of oil burned:

i every second ii every year.
b Estimate how much reactor grade uranium-235 would 

be needed every year to produce the same output 
power (assume the same efficiency).

46 Show that the energy density of wind blowing at a speed 
of 5 m s–1 (as could be used with a wind turbine to generate 
electricity) is about 15 J m–3. The density of air is 1.3 kg m–3.

 ATL A3D: Thinking skills 

Evaluating and defending ethical positions
After we have used any mode of transport, all of the energy used by the vehicle will have been 
dissipated into the environment. In a scientific sense, their efficiency is zero but, of course, they will 
have normally served a useful purpose.
For the sake of reducing pollution, conserving materials and limiting global warming, do individuals 
have any responsibility for limiting their travel? Or do people have the right to travel wherever and 
whenever they like, in whatever mode of transport they choose?
Should governments enact laws to limit our travel, and/or introduce or raise taxation on transportation 
and its fuels?
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116 Theme A: Space, time and motion

Rigid body mechanicsA.4

• How can the understanding of linear motion be applied to rotational motion?
• How is the understanding of the torques acting on a system used to predict changes in 

rotational motion?
• How does the distribution of mass within a body affect its rotational motion?

Guiding questions

Rotational dynamics
Dynamics is the name we give to that branch of physics which is concerned with motion and its 
causes (forces). In Topics A.1, A.2 and A.3 we have mostly considered linear dynamics: bodies 
moving in straight lines. In this topic we will study the rotational motion of objects/bodies 
about a fixed axis. The term rotation usually refers to movement about an axis within the body, 
for example the rotation of the Earth every 24 hours. The rotation of a body does not affect its 
location, whereas revolution usually concerns movement of a body around an exterior point, for 
example the Earth revolves around the Sun every year. (Some situations may be described as a 
rotation or a revolution.)

We will assume that the bodies are rigid, that is, their shape does not deform significantly under 
the action of forces. The simplest everyday examples of rotation include a wheel and a door handle.

Nature of science: Models

Point objects and extended objects

In Topics A.1–A.3 we have generally considered 
all bodies to be point objects. This was done in 
order to simplify the situations. This topic is 
different, as the focus of our attention will be on 
extended objects which are able to rotate.

We know that a resultant force acting on a point 
mass results in a linear translational acceleration 
(F= ma from Topic A.2). This remains true if 
the force acts on an extended object, but only 
if the force is directed at the centre of mass of 
the object. However, when resultant forces are 
directed elsewhere on objects, the situations are 
complicated and the results will depend on how 
the magnitude and direction of the force vary 
after initial contact. See Figure A4.1.

point
mass

force towards
centre of mass

force not towards
centre of mass

fixed axis

axis

rotation

?

F

F

F

F m a

a

X

	■ Figure A4.1 Resultant forces acting on 
point objects and extended objects

All of Topic A.4 is about rotations caused by 
forces on objects which are able to rotate in the 
same place because they have a fixed axis of 
rotation (wheels for example).

 ◆ Dynamics The science 
which explains the motion 
of objects. 

 ◆ Rotate To move around 
a central point or axis 
(usually inside the rotating 
object). 

 ◆ Revolve To move around 
a central point or axis 
(usually outside of the 
revolving object).

 ◆ Rigid Does not change 
shape.

 ◆ Extended object An 
object that has dimensions. 
Not a point. 

 ◆ Axis of rotation Line 
about which an object 
can rotate. 
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	■ Comparing rotational motion to linear motion
We can greatly simplify our introduction to rotational dynamics by using our existing knowledge 
and understanding of linear dynamics. All the concepts of linear dynamics have rotational 
dynamics equivalents, with similar equations. They are summarized in Table A4.1.
	■ Table A4.1 Comparing linear and rotational motion

Linear motion Rotational motion

force torque

mass (a measure of inertia) moment of inertia

linear displacement angular displacement

linear speed / velocity angular speed / velocity

linear acceleration angular acceleration

linear momentum angular momentum

linear kinetic energy rotational kinetic energy

TOK

Knowledge and the knower
l How do we acquire knowledge?

Analogies

An analogy is a useful comparison between two different things that have some features in common, 
with the intention that knowledge of one can be applied to the other. Making an analogy between linear 
and rotational motion is probably not surprising and, as we shall see, it is very useful. However, many 
other analogies may not be so obvious. For example, can the study of economics find useful analogies in 
the laws of physics?

Apart from assisting in the teaching and learning of a new situation, there may be two major purposes 
for using analogies.
1 An analogy may be used to make reliable predictions about the behaviour of the system to which it is 

applied and that, in itself, may be sufficient reason to justify the use of an analogy.
2 An analogy may help to provide a deeper understanding of the system to which it is applied. However, 

without further justification, analogies should not be assumed to be accurate descriptions of the 
systems to which they are applied.

 ◆ Rotational dynamics 
Branch of physics and 
engineering that deals with 
rotating objects.

 ◆ Analogy Applying 
knowledge of one subject 
to another because of some 
similarities. 

	■ Torque

SYLLABUS CONTENT

 The torque, τ, of a force about an axis, as given by: τ = Fr sin θ 

In situations where rotation may be possible, it is important to identify the place about which 
the rotation can occur. Most commonly this will involve an axis of rotation. (The terms pivot, 
hinge and fulcrum are widely used for various situations in which movement is not complete, 
nor continuous.)

A straight line showing the direction in which a force is applied is called its line of action. Any 
force applied to an object whose line of action is not through the axis of rotation will tend to start, 
or change, rotational motion, if that is possible.

Bigger forces will tend to produce larger rotational accelerations but the line of action (direction) 
of a force is also very important. See Figure A4.2.

 ◆ Pivot A fixed point 
supporting something 
which turns or balances. 

 ◆ Hinge Device which 
connects two solid objects 
allowing one (or both) to 
rotate in one direction. 

 ◆ Fulcrum See pivot.
 ◆ Line of action (of a 

force) A line through the 
point of action of a force, 
showing the direction in 
which the force is applied.
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In Figure A4.2, F1 has no turning effect because its line of action is 
through the axis of rotation. F2 has the biggest turning effect because 
its line of action is perpendicular to a line joining its point of 
application to the axis. F3 has an effect between these two extremes. 
The turning effect also depends on the distance, r, from the axis of 
rotation to the line of action of the force.

The ‘turning effect’ of a force, F, is known as its torque, τ , and 
it depends on the magnitude of the force and the perpendicular 
distance from the axis of rotation to the line of action of the force. In 
Figure A4.2 this is shown for force F3 as r sin θ, where θ is the angle 
between the line of action of the force and a line joining the point of 
application of the force to the axis of rotation; r is the distance from 
the axis of rotation to the point of application of the force.

torque τ = Fr sin θ 

When there is no actual rotation, torque is sometimes called the moment of a force. (You may be 
familiar with the ‘principle of moments’ for a body in equilibrium.)

Torque has the SI unit Nm (not Nm−1) but note that it is not equivalent to the unit of energy, the 
joule, which is also Nm.

Inquiry 1: Exploring and designing

Exploring

The right tool for the job

A torque wrench is a device which limits 
the torque that can applied when tightening 
a bolt. This is to prevent over-tightening 
and damage to the bolt and, for example, 
an engine. There are various designs. 
Figure A4.3 shows a modern digital type. 
Demonstrate insight by reflecting on the 
image to suggest how this type of torque 
wrench might be used. Check your ideas 
through research. 	■ Figure A4.3 Torque wrench

Look again at Figure A4.2.
a If r = 48 cm, calculate the 

torque produced by a force of 
35 N applied along the line of 
action of F2.

b Determine the value of F3 
that would produce the same 
torque as in part a, if the angle 
θ = 55°.

Answer
a τ = Fr sin θ = 35 × 0.48 × sin 90° = 17 Nm
b 17 = F3 × 0.48 × sin 55°

 F3 = 
17

0.393 = 43 N

 WORKED EXAMPLE A4.1

F1

F2F3

r

θ

r sin θ

line of action
of force F3

axis of
rotation

	■ Figure A4.2 Forces producing rotation 
of a spanner (wrench) and bolt

 ◆ Torque Product of a 
force and the perpendicular 
distance from the axis of 
rotation to its line of action. 

 ◆ Moment (of a force) 
Term sometimes used as 
an alternative to torque, 
especially if rotation 
is incomplete.

 ◆ Principle of moments 
If an object is in rotational 
equilibrium, the sum of 
the clockwise moments 
(torques) equals the sum 
of the anticlockwise 
moments (torques).

DB
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	■ Combining torques
Torque is a vector quantity, but generally we will only be concerned about its ‘sense’: whether it 
tends to produce clockwise or anticlockwise motion.

When more than one torque acts on a body the resultant (net) torque can be found by simple 
addition, but clockwise and anticlockwise torques will oppose each. For example, when an object 
is acted upon by a 12 Nm clockwise torque and a 15 Nm anticlockwise torque, the resultant torque 
is (15 − 12) = 3 Nm anticlockwise.

Couples

A couple is the name we give to a pair of equal-sized forces that have different lines of action 
but which are parallel to each other and act in opposite directions, either side of the axis 
of rotation.

A couple produces no resultant force on an object, so there is no translational acceleration; the 
object will remain in the same location. Figure A4.4 shows a typical example, a couple used to 
turn a steering wheel.

Other examples of using couples include the forces on a bar magnet placed in a uniform magnetic 
field, the forces on the handlebar of a bicycle and the forces on a spinning motor.

The magnitude of the torque provided by a couple is simply twice the magnitude of the torque 
provided by each of the two individual forces, τ = 2Fr sin θ. See Figure A4.5.

Rotational equilibrium

SYLLABUS CONTENT

 Bodies in rotational equilibrium have a resultant torque of zero.
 An unbalanced torque applied to an extended, rigid body, will cause rotational acceleration.

If an object remains at rest, or continues to move in exactly the same way, it is described as being 
in equilibrium. Translational equilibrium occurs when there is no resultant force acting on an 
object (Newton’s first law – Topic A.2), so that it remains stationary or continues to move with 
a constant velocity (that is, in a straight line at a constant speed). A similar definition applies to 
rotational motion:

Rotational equilibrium occurs when there is no resultant torque acting on an object, so that it 
remains stationary or continues to rotate with a constant angular speed (defined below).

If an object is in rotational equilibrium, there is no resultant torque, so that:  
clockwise torque = anticlockwise torque.

If there is a resultant torque acting on a body, it will produce an angular acceleration. More details 
to follow.

F

F

	■ Figure A4.4 A couple 
used to turn a steering wheel

LINKING QUESTION
l How does a torque 

lead to simple 
harmonic motion?

This question links 
to understandings in 
Topic C.1.

F

F

r sin θ
r sin θ

r

r

θ

θ

	■ Figure A4.5 Calculating 
the torque provided by a couple

 ◆ Couple (forces) Pair 
of equal-sized forces 
that have different lines 
of action, but which are 
parallel to each other and 
act in opposite directions, 
tending to cause rotation.
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Figure A4.6 shows a view of a door from above. A person is trying to push the door open 
with a force of 74 N in the direction and position shown.
Calculate the minimum force, F (magnitude and direction) needed at the handle to stop 
this happening.

65°

65 cm

20 cm
push

	■ Figure A4.6 A view of a door from above

Answer
The maximum torque obtained with a given force at the door handle will be perpendicular 
to the door.
For the door to be in rotational equilibrium, the two torques must be equal in magnitude.
Fr sin θ clockwise =  Fr sin θ anticlockwise
F × 0.65 × sin 90° = 74 × 0.20 × sin 65°
0.65F = 13.4
F = 21 N clockwise, perpendicular to the door.

 WORKED EXAMPLE A4.2

1 A torque of 55 Nm is required to loosen a nut on an engine.
 Calculate the minimum force with which this can be 

achieved, if the length of the spanner (wrench) used 
is 25 cm.

2 Figure A4.7 shows a side-view of one pedal on a bicycle. 
The distance from the pedal to the axis is 21 cm.

axis of
rotation

line of action

force

60°

	■ Figure A4.7 Bicycle pedal

a If a cyclist pushes down the line of action, as shown, 
with a force of 48 N, determine the torque that is 
being applied.

b Sketch a copy of the diagram but move the pedal to 
the position where the cyclist can probably apply the 
greatest torque.

c In which part(s) of each rotation should no torque be 
applied by the cyclist?

3 a Determine the torque provided by the couple shown 
in Figure A4.5 if the force is 37 N, r = 7.7 cm and the 
angle θ is 49°.

b Sketch a graph to show how the torque would vary 
if the object moved from horizontal to vertical, as 
seen (assume that the directions of the forces do 
not change).

c Does the magnitude of the torque provided by the 
couple depend on the position of the axis of rotation? 
Explain your answer.

369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   120369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   120 04/01/2023   20:2204/01/2023   20:22



H
L O

N
LY

A.4   Rigid body mechanics 121

	■ Angular displacement, velocity and acceleration

SYLLABUS CONTENT

 The rotation of a body can be described in terms of angular displacement, angular velocity, and 
angular acceleration.

Angular displacement

Any point on a rigid rotating body will be moving along a circular path. See Figure A4.8 for 
an example.

Angular displacement is defined as the total angle, θ, through which a rigid body has rotated 
from a fixed reference position. It is measured in radians (or degrees).

In Figure A4.8, the point P is a distance r from the axis of rotation and it has travelled a distance s 
along the circumference of the circle (arc length). So that angular displacement in radians:

θ = 
s 
r 

Tool 1: Experimental techniques

Understand how to accurately measure 
quantities to an appropriate level of 
precision: angle

Describe how you would measure the total angular 
displacement (in radians) through which the car jack 
handle seen in Figure A4.9 would need to be rotated in 
order to raise the side of the car exactly 5.0 cm. Estimate 
the percentage uncertainty in your measurement.

	■ Figure A4.9 A car jack

Angular velocity

Angular velocity is a vector quantity, but its direction will not be important here, so that angular 
speed and angular velocity can be considered to be equivalent.

Angular velocity has already been discussed in Topic A.2, where it was considered to be constant 
during uniform circular motion. More precisely:

Angular velocity, ω, is defined as the change of angular displacement divided by the time 

taken: ω = 
Δθ
Δt  

SI unit: rad s−1, radians (or degrees) per second

Angular velocities are often quoted in rotations per minute (rpm). 1 rpm is equal to 0.10 rad s−1 
(to 2 significant figures).

axis of rotation

r

s

linear
speed, v

θ r

P

P

	■ Figure A4.8 Angular 
displacement, θ, of a point 
P on a rotating body

 ◆ Angular displacement 
The angle through which a 
rigid body has been rotated 
from a reference position. 
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All points on a rigid rotating object will have the same angular 
velocity, but their linear speeds will be greater if they are further 
from the axis of rotation. We have seen in that for a body rotating 
with constant angular speed:

ω = 
2π
T

 

and:

v = 
2πr
T

 

so that (as seen in Topic A.2):

linear speed, v = ωr 

In a fairground ride (Figure A4.11) which 
is moving with a constant linear speed, the 
passengers complete one rotation in 3.9 s.

	■ Figure A4.11 A fairground ride

a Calculate their angular velocity.
b What is their total angular displacement 

after one minute?

c Determine the angle between their current 
position and their starting position.

Answer

a ω = 
Δθ
Δt  = 

360
3.9  = 92° s–1 or 

2π
3.9 = 1.6 rad s–1

b In 60 s they will have completed  
60/3.9 = 15 rotations. (15.38... seen on 
calculator display)

 Total angle moved through =  
15.38 × 2π = 97 rad (5.5 × 103°)

c They are 0.38 of a complete rotation 
from their position at the beginning of 
the minute.

 displacement = 0.38 × 2π = 2.4 radians 
(1.4 × 102°)

 WORKED EXAMPLE A4.3

Angular acceleration

Angular acceleration, α, is defined as the rate of change of angular velocity with time:

α = 
Δω
Δt  

SI unit: rad s−2 (or degrees per second squared)

There is a simple relationship between angular acceleration and 
linear acceleration of a point which is a distance r from the axis of rotation.

Since:

Δω = 
Δv
r

 ⇒ α = 
Δv
Δtr

 

α = 
a 
r 

For example, Figure A4.12 shows a motor cyclist accelerating linearly at a rate 
a = 5.3 m s−2. This is also the rate at which the edge of the tyre is accelerating. If 
the wheel and tyre have an outer radius of 34 cm, the angular acceleration of a 

wheel, α = 
a
r
 = 5.3 / 0.34 = 16 rad s−2.

	■ Figure A4.10 A car’s tachometer displays rpm/1000

 ◆ Angular acceleration, α  
The rate of change of 
angular velocity with time, 
Δω/Δt (SI unit: rad s−2). 
It is related to the linear 
acceleration, a, of a point 
on the circumference by 
α = a/r.

Common 
mistake
Do not confuse angular 
acceleration with 
centripetal acceleration.

αα

a

r

	■ Figure A4.12 Comparing linear 

and angular acceleration α = 
a
r
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A motor spinning at 24 rotations per second accelerates uniformly to 33 rotations per 
second in 6.7 s.
Calculate its angular acceleration.

Answer
Initial angular velocity = 24 × 2 × π = 151 rad s−1

Final angular velocity = 33 × 2 × π = 207 rad s−1

Acceleration = (207 – 151) / 6.7 = 8.4 rad s−2

 WORKED EXAMPLE A4.4

Equations of motion for angular acceleration

SYLLABUS CONTENT

 Equations of motion for uniform angular acceleration can be used to predict the body’s angular 
position, θ, angular displacement Δθ, angular speed, ω, and angular acceleration.

By direct analogy we can write down the equations for uniform angular acceleration. See 
Table A4.2. ωi is the initial angular velocity (speed) at the start of time t. ωf is the final angular 
velocity at the end of that time.
	■ Table A4.2 Equations of motion

Equations for uniform linear acceleration Equations for uniform angular acceleration

s = 
(u + v)

2 t Δθ = 
(ωf + ωi)

2 t

v = u + at ωf = ωi + αt
 

s = ut + 
1
2at2 Δθ = ωit + 

1
2αt

2

v2 = u2 + 2as ωf
2 = ωi

2 + 2αΔθ 

An object which is rotating with an angular 
velocity of 54 rad s−1 accelerates uniformly 
for 3.2 s and reaches an angular velocity of 
97 rad s−1.
a Calculate its angular acceleration.
b What was its angular displacement 

during the acceleration?
c It then decelerated to rest during an 

angular displacement of 156 rad. 
Determine the angular deceleration 
(negative acceleration).

Answer
a  ωf = ωi + αt
  97 = 54 + 3.2α

  α = 
(97 –54)

3.2  = 13 rad s−2

b  Δθ = 
(ωf + ωi)

2 t = 
(97 + 54) × 3.2

2  = 

  2.4 × 103 rad

c ωf
2 = ωi

2 + 2αΔθ
  02 = 972 + (2 × α × 156)

  α = – 
9409
312  = –30 rad s−2

 WORKED EXAMPLE A4.5

DB

 ATL A4A:  
 Thinking  
 skills 

Write ‘Linking 
questions’ for the end of 
Topic A.1, A.2 and A.3 
relating to the content 
of this topic (A.4) so far.

369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   123369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   123 04/01/2023   20:2204/01/2023   20:22



H
L O

N
LY

124 Theme A: Space, time and motion

4 A carriage on the London Eye (Figure A4.13) can rotate 
continuously at a speed of 26 cm s−1. The wheel has a 
radius of 60 m.
a Calculate its angular velocity.
b Calculate how many minutes it takes the wheel to 

complete one revolution.

	■ Figure A4.13 The London Eye

5 A very large wind turbine (similar to those seen in 
Figure A4.14) has blades of length 80 m and has a 
maximum rotational speed of 15 rpm.

 Determine the linear speed and the angular velocity of:
a the end of the blade
b a point 10 m from the axis of rotation
c  Suggest why engineers limit the speed of rotation of 

the blades.

	■ Figure A4.14 Wind turbines

6 The outer rim of a bicycle wheel of radius 32 cm has a 
linear acceleration of 0.46 m s−2.
a Calculate the angular acceleration of the wheel.
b If it starts from rest, determine the time needed for 

the wheel to accelerate to a rate of three rotations 
every second.

7 A wheel accelerates uniformly from rest at 5.2 rad s−2.
a What is its angular velocity at the end of 5.0 s?
b Calculate its total angular displacement in this time.
c How many rotations does it complete in 5.0 s?
d After 5.0 s the accelerating torque is removed and 

the wheel decelerates at a constant rate to become 
stationary again after 18.2 s.

 Calculate how many rotations are completed during 
this time.

8 A blade of a rotating fan has an angular velocity of 
7.4 rad s−1. It is then made to accelerate for 1.8 s, during 
which time it passes through a total angle of 26.1 rad. 
Calculate the angular acceleration of the fan blade.

9 A machine spinning at 3000 rpm is accelerated to 
6000 rpm while the machine made 12 revolutions.
a Convert 3000 rpm to rad s−1.
b Calculate the angular acceleration.

LINKING QUESTION
l How are the laws of conservation and equations of motion in the context of rotational motion 

analogous to those governing rectilinear motion?

This question links to understandings in Topics A.1, A.2 and A.3.
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	■ Graphs of rotational motion

Graphs for rotational motion can be interpreted in the same way as graphs for linear 
motion. See Figure A4.15.

10 Sketch an angular displacement–time 
graph for the following rotational 
motion: an object rotates at 3 rad s−1 for 
4 s, it then very rapidly decelerates and 
then remains stationary for a further 6 s. 
The rotation is then reversed so that it 
accelerates uniformly back to its original 
position after a total time of 15 s.

11 Figure A4.16 shows how the angular 
velocity of an object changed during 6.0 s.
a Determine the angular acceleration 

during the first 2.0 s.

b Through what total angle did the 
object rotate in 6.0 s?
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	■ Figure A4.16 Change in angular velocity

Moment of inertia

SYLLABUS CONTENT

 The moment of inertia, I, depends on the distribution of mass of an extended body about an axis 
of rotation.

 The moment of inertia for a system of point masses: I = Σmr2.

In Topic A.2 we saw that when a resultant force is applied to an object, the result is a linear 
acceleration, the magnitude of which depends on the mass of the object. Resistance to a 
change of motion (acceleration) is called inertia.

However, in the case of rotational motion, we also need to consider how the mass is 
distributed around the axis. Consider Figure A4.17.

Object A will require more force to produce a certain acceleration than object B, which has 
the same mass and shape but a different axis of rotation. We say that A has a larger moment 
of inertia than B.

Resistance to a change of rotational motion of an object is quantified by its moment of 
inertia, I, which depends on the distribution of mass around the chosen axis of rotation.

The simplest object to consider is a point mass, as seen in Figure A4.18.

The moment of inertia of a point mass, m, rotating at a distance r from its axis is given by:

I = mr2

The SI unit of moment of inertia is kg m2. Most spherical objects can be considered to behave 
like masses concentrated at their centre points. That is, their centre of mass is at the centre of 
the sphere.
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	■ Figure A4.15 Interpreting 
graphs of rotational motion

A

B

axis of rotation

	■ Figure A4.17

 ◆ Moment of inertia, I 
The resistance to a change 
of rotational motion of an 
object, which depends on the 
distribution of mass around the 
chosen axis of rotation. The 
moment of inertia of a point 
mass is given by I = mr2 (SI unit: 
kg m2). The moment of inertia 
of any real, extended mass can 
be determined by the addition 
of the individual moments of 
inertia of its particles. This is 
represented by I = Σmr2.
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Determine the moment of inertia of a 24 g simple pendulum of 
length 90 cm.

Answer
I = mr2 = 0.024 × 0.902 = 1.9 × 10−2 kg m2 (Assuming that the pendulum 
can be considered to act as a point mass, and the effect of the string or 
connecting rod is negligible.)

 WORKED EXAMPLE A4.6
axis of

rotation

point mass, m

r

	■ Figure A4.18 Rotation of a point mass

In principle, the moment of inertia of any real, extended mass can be determined by the addition 
of the individual moments of inertia of its point masses: I = Σmr2 (The symbol Σ means ‘sum of’.)

In practice, the moments of inertia of most simple-shaped objects about specific axes are well known. 
Some examples are shown in Figure A4.19, but there is no need to remember them, or to know 
how they were derived, because equations will be provided in the examination paper if needed.
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	■ Figure A4.19 Examples of moments of inertia (r represents radius and L represents length)

Tool 3: Mathematics

Calculate and interpret percentage change and percentage difference

Example: using Figure A4.19, determine the percentage difference between the moments of 
inertia (about a central axis) of a solid sphere of mass 1.0 kg and a thin spherical shell of mass 
100 g. Assume they have the same radius of 12 cm. Use 3 significant figures for all answers.

Moment of inertia of solid sphere = 2/5 × 1.0 × 0.122 = 5.76 × 10−3 kg m2

Moment of inertia of shell = 2/3 × 0.10 × 0.122 = 9.60 × 10−4 kg m2

The difference between these two = 4.80 × 10–3 kg m2

The mean of these two = 3.36 × 10−3 kg m2

Percentage difference = 100 × (actual difference) / mean = 100 × (4.80 × 10−3) / (3.36 × 10−3) = 143%

Perhaps more often, we are concerned with percentage changes. For example, consider a 
torque which increased from 12 Nm to 18 Nm: the change is 6 Nm (18 − 12)

Percentage change = 100 × (change / original value) = 100 × 6/12 = +50%

Alternatively, if the torque changed from 18 Nm to 12 Nm,

Percentage change = 100 × (change / original value) = 100 × −6/18 = −33%

DB
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Figure A4.20 shows a ‘dumb-bell’ arrangement in which two  
spherical masses, each of mass m1= 2.0 kg, are rotating about 
an axis that is a distance r1 = 35 cm from both of their centres.
a If the rod has a mass of m2 = 400 g, length L = 56 cm 

and radius r2 = 1.2 cm, determine the overall moment of 
inertia of this arrangement.

b Calculate the percentage that the rod contributes to the 
overall moment of inertia of the system.

Answer

a I = (2 × m1r
2) + ( 1

12 × m2L
2) = (2 × 2.0 × 0.352) + ( 1

12 × 0.400 × 0.562) 
  = 0.490 + (1.045 × 10−2) = 0.50 kg m2 (0.50045... seen on calculator display)

b 100 × (0.01045
0.50045) = 2.1%

axis of rotation

35 cm 35 cm

	■ Figure A4.20 ‘Dumb-
bell’ arrangement

 WORKED EXAMPLE A4.7

 ATL A4B: Research skills 

Comparing, contrasting and 
validating information

Flywheels

Flywheels are added to the axes of rotating machinery to resist 
changes of motion and/or to store rotational kinetic energy. They 
need to have large moments of inertia and are used in modern 
machinery, but Figure A4.21 shows an old-fashioned example, 
a potter’s wheel. The large wheel at the bottom is kicked for a 
while until it is spinning quickly. After that, because it has a 
large moment of inertia, there will be no need to keep kicking 
the wheel continuously to maintain its motion.

	■ Figure A4.21 A flywheel on a potter’s wheel

Flywheels can be useful for maintaining rotations in machines 
that do not have continuous power supplies. To do this they 
will usually need to be able to store relatively large amounts of 
kinetic energy. If the potter’s flywheel had a mass of 20 kg and 
radius 50 cm, it would store about 200 J of rotational kinetic 
energy if it was spinning with a frequency of 2 Hz. (This can 

be confirmed by using Ek = 
1
2
Iω2, which is discussed later in 

this topic.)

A modern flywheel can be seen in Figure A4.22.

In Topic A.3 we outlined the technology of regenerative braking.
1 Use a search engine to find out how flywheels are used:

a in vehicles which employ regenerative braking
b in wind turbines for generating electricity.

2 Compare and contrast the use of the flywheel in each 
application. What is similar; what is different?

	■ Figure A4.22 Flywheel on a two-wheeled tractor

 ◆ Flywheel Dense, 
cylindrical mass with a 
high moment of inertia 
– added to the axes of 
rotating machinery to 
resist changes of motion 
and/or to store rotational 
kinetic energy. 
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Inquiry 1: Exploring and designing

Exploring 

Formulating a research question

A student is planning to investigate the 
behaviour of a flywheel, using the apparatus 
shown in Figure A4.23. Suggest a possible 
research question for this investigation.

flywheel

axle

	■ Figure A4.23 Flywheel investigation

12 Estimate the moment of inertia of the Earth in its orbit 
around the Sun (mass of Earth ≈ 6 × 1024 kg, distance to 
Sun ≈ 150 million km).

13 a Calculate the moment of inertia of the rotating dumb−
bell arrangement seen in Figure A4.24. Assume that 
the connecting rod has no significant effect.

b By what factor would the moment of inertia change if 
20 cm was increased to 30 cm?

20 cm

800 g 800 g

20 cm

	■ Figure A4.24 A dumb-bell

14 a Suggest why the equation I = mr2 could be used to 
determine an approximate value for the moment of 
inertia of a bicycle wheel.

b Estimate a value for the moment of inertia of a typical 
bicycle wheel.

15 The flywheel shown in Figure A4.23 may be considered 
to be a steel cylinder (density 7800 kg m−3) of outer radius 
40 cm and thickness 12 cm. Use this simplification to 
estimate its moment of inertia. Ignore other features.

16 Figure A4.25 shows a thick-walled tube and its axis of 
rotation. Determine its moment of inertia about axis Y if 
its length, L, is 20.0 cm..

5.6 cm

6.4 cm

m = 2.57 kg

L

Y

	■ Figure A4.25 Thick-walled tube and its axis of rotation

17 Figure A4.26 shows a boy of mass 25 kg on a playground 
merry-go-round of mass 370 kg. Estimate a value for the 
moment of inertia of the system.

1.86 m

1.25 m

	■ Figure A4.26 Boy on a playground merry-go-round
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Newton’s second law for rotational motion

SYLLABUS CONTENT

 Newton’s second law for rotation, as given by: τ = Iα, where τ is the average torque.

For linear motion, a resultant force, F, acting on an object of mass, m, produces an acceleration, a, 
as given by: F = ma.

For rotational motion, a resultant torque, τ, acting on an object which has a moment of inertia I, 
produces an acceleration, α.

torque, τ = Iα

Tool 3: Mathematics

Understand direct and inverse proportionality

The simplest possible relationship between two variables 
(like α and τ for a constant moment of inertia) is that they 
are directly proportional to each other (often just called 
proportional). This means that if one variable, x, doubles, 
then the other variable, y, also doubles; if y is divided by 
five, then x is divided by five; if x is multiplied by 17, then 
y is multiplied by 17, and so on. In other words, the ratio 

of the two variables (
x
y or 

y
x) is constant. Proportionality is 

shown using the following symbol:

Proportionality:

y ∝ x and 
x
y
 = constant 

To check if two variables are proportional to each other, 
we can either
1 calculate their ratios for different values to confirm that 

they are constant (see Table A4.3), or
2 draw an x–y graph to determine if it is a straight line 

through the origin (as discussed later in this chapter).
	■ Table A4.3 The data in either of the last two columns 

confirms y ∝ x (allowing for experimental uncertainties)

x y
x
y

y
x

0 0 - -

0.32 1.6 0.20 5.0

0.81 4.2 0.19 5.2

1.4 6.9 0.20 4.9

2.5 12.8 0.20 5.1

6.4 30.0 0.21 4.7

10.9 55.2 0.20 5.1

If one variable increases while the other decreases (like 
α and I for a constant torque), we describe it as an inverse 
relationship. The simplest inverse relationship is when one 
variable, x, doubles, while the other variable, y, halves. 
if y is divided by five, then x is multiplied by five; if x is 
multiplied by 17, then y is divided by 17, and so on. In 
other words multiplying the two variables together always 
produces the same result: xy = constant. This is called 
inverse proportionality.

Inverse proportionality:

y ∝ 
1
x
 and xy = constant 

To check if two variables are inversely proportional to 
each other, we can either
1 calculate values for when they are multiplied together, to 

confirm that they are constant (see Table A4.4), or
2 draw an x = 

1
y
 graph to determine if it is a straight line 

through the origin (as discussed later in this chapter).
	■ Table A4.4 The data in the last column confirms y ∝ 

1
x  

(allowing for experimental uncertainties)

x y xy

0 0 -

2.0 17 34

11 3.1 34

22 1.6 35

37 0.94 35

43 0.79 34

64 0.55 35

 ◆ Newton’s second law 
for angular motion τ = Iα

 ◆ Inverse proportionality 
Two quantities are 
inversely proportional 
if, when one increases 
by a factor x, the other 
decreases by the same 
factor. For example: x ∝ 

1
y
 

(xy = constant).

DB

369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   129369917_04_IB_Physics 3rd_Edn_SEC_A_4.indd   129 04/01/2023   20:2204/01/2023   20:22



H
L O

N
LY

130 Theme A: Space, time and motion

This topic provides another example. Do a quick 
mathematical check to see if the following data represents 
an inversely proportional relationship and sketch a graph 
to show this relationship.

Moment of inertia / 10−2 kg m−2 Angular acceleration / rad s−2

0.058 5.3

0.051 5.8

0.039 7.8

0.029 9.9

0.021 14.6

a Calculate the acceleration produced 
when a system that has a moment of 
inertia of 1.23 kg m2 is acted on by a 
resultant torque of 0.83 Nm.

b If the system was already rotating at 
2.7 rad s−1, determine its maximum 
angular velocity if the torque is applied 
for exactly 4 s.

c State the assumption that you made 
when answering these questions.

Answer
a  τ = Iα

  α = 
τ
I = 

0.83
1.23 = 0.67 rad s−2

b ωf = ωi + αt = 2.7 + (0.67 × 4.0) = 5.4 rad s−1

c There are no frictional forces acting on 
the system.

 WORKED EXAMPLE A4.8

Figure A4.27 shows a falling mass, m, 
attached to a string which is wrapped 
around a cylinder of radius r and moment 

of inertia  I = 
1
2 Mr2. Derive an equation 

for the downward linear acceleration, a, of 
the mass.

weight, mg

tension, T

tension, T
r

mass, M

mass, m

	■ Figure A4.27 A falling mass attached 
to a string wrapped around a cylinder

Answer

Since α = 
a
r 

, torque acting on cylinder, τ = Tr = Iα = 
1
2Mr2 × 

a
r 

So that, T = 
1
2Ma

Resultant downwards force acting on falling mass, F = mg − T

Linear acceleration of falling mass, a = 
F
m = 

(mg –T)
m  = 

(mg – 
1
2
Ma)

m  

Rearranging gives: a = 
mg

(m + 
1
2M) 

 WORKED EXAMPLE A4.9

Common 
mistake
Note that, because the 
mass is accelerating 
downwards, the tension 
in the string is not 
equal to the weight of 
the mass on the end of 
the string.
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Tool 3: Mathematics

Propagate uncertainties in processed data

The term processed data is used to describe the results 
obtained after calculations have been made using 
raw data.

In this section we will consider how uncertainties in raw 
data affect the results of processed data.

Processed data should not have more significant figures 
than the raw data used to calculate it.

Consider a simple example: a trolley moving with 
constant speed was measured to have travelled a distance 
of 76 cm ± 2cm (±2.6%) in a time of 4.3 s ± 0.2 s (±4.7%).

The speed can be calculated from distance / time = 
76 / 4.3 = 17.674…, which is 18 m s−1 when rounded to 2 
significant figures, consistent with the experimental data.

To determine the uncertainty in this answer we consider 
the uncertainties in distance and time. Using the largest 
distance and shortest time, the largest possible answer 
for speed is 78 / 4.1= 19.024…. m s−1. Using the smallest 
distance and the longest time, the smallest possible answer 
for speed is 74 / 4.5 = 16.444…. m s−1. (The numbers will 
be rounded at the end of the calculations.)

The speed is therefore between 16.444 cm s−1 and 
19.024 cm s−1. The value 19.024 has the greater difference 
(1.350) from 17.674. So, the final result can be expressed 
as 17.674 ± 1.350 cm s−1, which is a maximum uncertainty 
of 7.6%. Rounding to 2 significant figures, the more 
realistic result is 18 ± 1 cm s−1.

Uncertainty calculations like these can be very time 
consuming and, for this course, approximate methods 
are acceptable. For example, in the calculation for 
speed shown above, the uncertainty in the data was 
±2.6% for distance and ±4.7% for time. The percentage 
uncertainty in the final result is approximated by adding 
the percentage uncertainties in the data: 2.6 + 4.7 = 7.3%. 
This gives approximately the same value as calculated 
using the largest and smallest possible values for speed. 
Rules for finding uncertainties in calculated results are 
given below.
l For quantities that are added or subtracted: add the 

absolute uncertainties:

if y = a  b , then Δy = Δa + Δb

l For quantities that are multiplied or divided: add the 
individual fractional or percentage uncertainties:

if y = abc, then 
Δy
y

 = 
Δa
a

 + 
Δb
b

 + 
Δc
c

l For quantities that are raised to a power, n:

if y = an, then 
Δy
y

 = |n(Δa
a )|

l For other functions (such as trigonometric functions or 
logarithms) calculate the highest and lowest absolute 
values possible and compare with the mean value, 
as shown in Worked example A4.10. But note that, 
although such calculations can occur in connection 
with laboratory work, they will not be required 
in examinations.

 ◆ Processed data Data 
produced by calculations 
made from raw 
experimental data. 

 ◆ Raw data 
Measurements made 
during an investigation.

DB

DB

DB

An angle, θ, was measured to be 34° ± 1°. Determine the uncertainty in the tangent of 
this angle.

Answer
tan34° = 0.6745, tan 33° = 0.6494, tan 35° = 0.7002
Larger absolute uncertainty = 0.7002 – 0.6745 = 0.0257
(0.6745 − 0.6494 = 0.0251, which is smaller than 0.0257)
So, tan θ = 0.67 ± 0.03 (using the same number of significant figures as in the original data).

 WORKED EXAMPLE A4.10
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Nature of science: Falsification

Uncertainties

Most people believe that science deals with ‘facts’. That is a reasonable comment – but it also gives an 
incomplete impression of the nature of science. The statement is misleading if it suggests that scientists 
believe they are always discovering ‘truths’ that will last forever. In reality, scientific knowledge is open 
to change, if and when we make new discoveries. More than that, it is the essential nature of science 
and good scientists to encourage the re-examination of existing ‘knowledge’ and ‘truths’ and to look for 
improvements and progress.

‘All scientific knowledge is uncertain…’ Richard P. Feynman (1998), The Meaning of It All: Thoughts of 
a Citizen-Scientist.

‘One aim of the physical sciences has been to give an exact picture of the material world. One 
achievement of physics in the twentieth century has been to prove that this aim is unattainable.’ 
Jacob Bronowski

TH
E IB LEARNER PRO

FILE

18 A resultant torque of 2.4 Nm ± 0.2 N, accelerated a large metal hoop (with axis of rotation 
through a diameter) of radius 42 cm ± 1 cm from rest to 5.7 rad s−1 ± 0.1 rad s−1 in 3.2 ± 0.2 s. 
Determine a value for the mass of the hoop and the absolute uncertainty in your answer.

19 Calculate the torque needed to accelerate a rotating object which has a moment of inertia 
3.2 kg m from 1.3 rad s−1 to 4.9 rad s−1 in 8.8 s.

20 An object was accelerated from 300 rpm (revolutions per minute) to 1100 rpm in 2.3 s when a 
resultant torque of 112 Nm was applied. Determine its moment of inertia.

21 Two parallel forces each of 26 N are separated by a distance of 8.7 cm. If this couple provides 
the resultant torque to a rotating system that has a moment of inertia of 17.3 kg m2, determine 
the angular acceleration produced.

22 A torque of 14.0 Nm is applied to a stationary wheel, but resistive forces provide an opposing 
torque of 6.1 Nm. If the wheel has a moment of inertia of 1.2 kg m2, show that the total 
angular displacement after 2.0 s is about two rotations.

23 Consider Figure A4.27. What mass, m, will produce a linear acceleration of 2.5 m s−2 when 
acting on an 8.3 kg cylinder?

	■ Conservation of angular momentum

SYLLABUS CONTENT

 An extended body rotating with an angular speed has an angular momentum, L, as given by: L = Iω.
 Angular momentum remains constant unless the body is acted upon by a resultant torque.

Angular momentum, L, of a rotating object is the rotational equivalent of linear momentum 
(p = mv). It depends on the moment of inertia, I, of the object and its angular velocity (speed), ω.

angular momentum, L = Iω  SI unit: kg m2 s−1

 ◆ Angular momentum, L  
Moment of inertia 
multiplied by angular 
velocity: L = Iω (SI unit: 
kg m2 s−1). 

DB
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The law of conservation of linear momentum (Topic A.2), which has no exceptions, was shown 
to be very useful when predicting the outcome of interactions between masses exerting forces on 
each other. In a similar way, the law of conservation of angular momentum (as follows) has no 
exceptions and can be used to predict changes to rotating systems.

The total angular momentum of a system is constant provided that no resultant (net) external 
torque is acting on it.

Figure A4.28 shows a spinning ice-skater in two positions, a and b. In moving from position a 
to position b, the skater lowers her arms and brings them closer to her body, and so reduces her 
moment of inertia. Assuming there are no external torques acting, her rotational momentum will 
be constant so that her angular velocity must increase. Similar rotational behaviour can be seen in 
the motions of gymnasts, divers and ballet dancers.

A sphere of mass 2.1 kg and radius 38 cm is spinning around a diameter at a rate of 44 rpm. 
Calculate its angular momentum.

Answer

L = Iω = 
2
5mr2 × 

2π
T

 = 
2
5 × 2.1 × 0.382 × 2 × 

π
(60/44)

 = 0.56 kg m2 s−1

 WORKED EXAMPLE A4.11

A solid metal disc of mass 960 g and radius 8.8 cm is rotating horizontally at 4.7 rad s−1.
a Calculate the moment of inertia of the disc.
b Calculate the new angular velocity after a mass of 500 g is dropped quickly and 

carefully on to the disc at a distance of 6.0 cm from the centre.

Answer

a I = 
1
2mr2 = 

1
2 × 0.96 × (8.8 × 10–2)2 = 3.7 × 10–3 kg m2

b moment of inertia of added mass = mr2 = 0.5 × (6.0 × 10−2)2 = 1.8 × 10−3 kg m2

 L = Iω = constant
 (3.7 × 10−3) × 4.7 = [(3.7 × 10−3) + (1.8 × 10−3)] × ω
 ω = 3.2 rad s−1

 WORKED EXAMPLE A4.12

a

b

	■ Figure A4.28 Ice-skater

 ◆ Conservation of 
angular momentum The 
total resultant angular 
momentum of a system is 
constant provided that no 
resultant external torque is 
acting on it.
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Common mistake
Students often believe that an object travelling in a straight line must have zero angular momentum, 
but consider Figure A4.29. A ball of mass m and speed v is just about to strike a stationary rod 
perpendicularly at a distance r from where it is pivoted.

v

m

pivot, P
r

    	■ Figure A4.29 Ball striking a pivoted rod (seen from above)

The rod will be made to rotate anticlockwise, gaining angular momentum. From the law of conservation 
of angular momentum in the rod and ball ‘system’, the ball must have lost angular momentum. The 
ball initially had angular momentum, L, about point P, not around any point within the ball itself. 
Instantaneous value:

L = Iω = (mr2) × (vr) = mvr

LINKING QUESTION
l How does 

conservation of 
angular momentum 
lead to the 
determination of the 
Bohr radius?

This question links 
to understandings 
in Topic E.1 for 
HL students.

24 Calculate the angular momentum of a 1.34 kg disc of 
radius 56 cm spinning at an angular speed of 37 rad s−1 
around an axis passing perpendicularly through 
its centre.

25 The three blades of a rotating fan each have a moment of 
inertia of 0.042 kg m2. If they have a combined angular 
momentum of 0.74 kg m2 s−1, determine how many times 
the fan rotates every minute.

26 An unpowered merry-go-round of radius 4.0 m and 
moment of inertia 1200 kg m2 is rotating with a constant 

angular velocity of 0.56 rad s−1. A child of mass 36 kg 
is standing close to the merry-go-round and decides to 
jump onto its edge.
a Predict the new angular velocity of the merry-go-

round. State any assumptions you made.
b Discuss whether the merry-go-round would return to 

its original speed if the child jumped off again.

27 Neutron stars are the very dense collapsed remnants 
of much larger spinning stars. Suggest why they have 
extremely high rotational velocities.

	■ Angular impulse

SYLLABUS CONTENT

 The action of a resultant torque constitutes an angular impulse, ΔL, as given by:
 ΔL = τt = Δ(Iω).

In Topic A.2, we noted that the effect of an (average resultant) force is greater if it acts for a longer 
time. So, it was convenient to introduce the term linear impulse, J = FΔt. Using Newton’s second 
law, a change of linear momentum, Δp = Δ(mv) occurs because of a linear impulse FΔt.

Similarly, for rotational motion: an average resultant torque, τ, acting for a time Δt, produces a 
change of angular momentum, ΔL, called angular impulse (no symbol).

A change of angular momentum, ΔL = Δ(Iω) occurs because of an angular impulse, τΔt:  
ΔL = τΔt SI unit: kg m2 s−1

N m s is an equivalent and alternative unit.

LINKING QUESTION
l How does rotation 

apply to the motion 
of charged particles 
or satellites in orbit?

This question links 
to understandings in 
Topics D.1 and D.3.

DB
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Nature of science: Science as a shared endeavour

Communicating inter-connected concepts

It could be argued that we do not need to give [force (or torque) × time] a name: impulse. Have we added 
to our understanding if we say that impulse = change of momentum, rather than force × time = change of 
momentum, or is it just easier to say one word instead of three? Would it be possible to understand this 
topic without ever referring to ‘impulse’?

Perhaps the main reason why impulse is important is that forces are rarely constant. Forces usually 
change to, or from, zero over time and they may also vary depending on many other factors. It is much 
simpler to refer to the overall effect.

If the applied resultant torque changes, an average value should be used to determine an impulse. 
For a torque which varies in a regular way, this can be assumed to be midway between the starting 
and final values. In other examples, we may need to determine an average value from looking at a 
torque–time graph. We know from Topic A.2, that the area under a force–time graph is equal to the 
change of linear momentum of the system (impulse). Similarly, in rotational dynamics:

The area under a torque–time graph is equal to the change in angular momentum (angular 
impulse). This is true for any shape of graph.

To
rq

ue
/N

m

Time/s

area = change

0

1

2

3

4

1 2 3

of angular
momentum

	■ Figure A4.30 Example of a torque–time graph

Consider Figure A4.30.
a Determine the angular impulse 

represented.
b If this impulse accelerated an object 

already rotating at 25 rad s−1, calculate 
the final angular velocity if the object 
had a moment of inertia of 0.51 kg m2.

Answer
a Area under graph = angular impulse = 

change of angular momentum

 ΔL = (4.0 × 1.0) + (12 × 4.0 × 2.0) = 

8.0 N m s (or kg m2 s−1).

b ΔL = Δ(Iω) = I(ωf − ωi) = 8.0
 ωf − 25 = 8.0/0.51 
 ωf = 41 rad s−1

 WORKED EXAMPLE A4.13
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28 An object which has a moment of inertia of 4.8 kg m2 is 
initially at rest. A torque is then applied which increases 
uniformly from zero until the object is rotating with an 
angular velocity of 79 rad s−1 after 23 s.

 Show that the maximum torque applied was 
approximately 30 Nm.

29 A solid sphere of mass 1.47 kg and radius 12 cm is 
rotating about a diameter with an angular speed 
of 57 rad s−1. Determine what constant torque will bring it 
to rest in 10.0 s.

30 Figure A4.31 shows the variation of torque applied 
to a stationary system that has a moment of inertia 
of 0.68 kg m2.

To
rq

ue
/N

m

Time/s

0
0.2 0.4 0.6

5

10

15

20

25

	■ Figure A4.31 Variation of torque applied to a stationary system

a Estimate the change of angular momentum of 
the system.

b Predict a value for its final angular velocity.

	■ Rotational kinetic energy

SYLLABUS CONTENT

 The kinetic energy of rotational motion, as given by:  Ek = 
1
2Iω2 = 

L2

2I

Knowing, from Topic A.3, that linear kinetic energy:

Ek = 
1
2
mv2 = 

p2

2m
we can simply write down the equivalent equations for rotational kinetic energy by analogy.

Rotational kinetic energy: Ek = 
1
2 
Iω2 = 

L2

2I

It is common for an object to have both linear and kinetic energy, the wheel on a bicycle, for example.

A car of mass 1340 kg is moving with a speed of 12 m s−1.
a Calculate its linear kinetic energy.
b If each wheel and tyre (of four) has a radius of 29 cm and a moment of inertia of 

0.59 kg m2, determine its rotational kinetic energy.
c What is the total kinetic energy of the car?

Answer
a Ek (linear) = 

1
2mv2 = 

1
2 × 1340 × 122 = 9.6 × 104 J

b ω = 
v
r 

= 
12

0.29 = 41.4 rad s−1 (41.379... seen on calculator display)

 Ek (rotational) = 
1
2Iω2 = 

1
2 × 0.59 × 41.3792 = 5.1 × 102 J

c (9.6 × 104) + (4 × 5.1 ×102) = 9.8 × 104 J

 WORKED EXAMPLE A4.14

 ◆ Rotational kinetic 
energy, Ek Kinetic energy 
due to rotation, rather than 

translation. Ek = 
1
2 

Iω2

DB
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Rolling (without slipping)

We will assume that there is sufficient surface friction to prevent any slipping or sliding. This 
means that there is no relative motion between the lower surface of the rotating object and the 
surface on which it is moving.

Consider a wheel of radius r rotating with an angular speed ω. All points on its circumference will 
be moving with linear speed v = ωr. Figure A4.32a shows the wheel of a motor bike (for example), 
on a road surface, and Figure A4.32b shows the same wheel a short time later. If point P is moving 
with linear speed v, this must also be the overall speed of the motor bike, as shown on the 
central axle.

r
w w

2n

n

n = 0n = 0

axle

a b

P

P

	■ Figure A4.32 Moving wheel showing instantaneous speeds relative to the road surface

The wheel is rotating clockwise due to the action of the engine, and it is pushing backwards (to the 
left) on the road surface because of friction. Friction with the road surface pushes the car forward. 
(Newton’s third law.)

Under normal circumstances, because of friction, there will be no slipping of the wheel on the 
road surface, which would be dangerous. This means that point P on the wheel in Figure A4.32b 
must be momentarily stationary.

A point on the top of the wheel will be moving with speed 2v relative to the road surface.

Because there is no movement, the frictional force does not do any work, so no energy is 
dissipated at that point. (This is a simplified interpretation.)

Rolling down a slope

An object, such as a ball or a wheel, which can roll down a hill will transfer its gravitational 
potential energy to both translational kinetic energy and rotational kinetic energy.

ball of
mass, m,
radius, r

ball has gained both
translational and
rotational kinetic energy

v
Δh ω

	■ Figure A4.33 Rolling down a slope

mgΔh = 
1
2
mv2 + 

1
2
Iω2

Common 
mistake
When a vehicle 
accelerates, many 
students think that there 
is just one frictional 
force, acting against the 
direction of motion. But 
all forces occur in pairs: 
because of friction, there 
is a force backwards on 
the road and an equal 
and opposite force 
acting forwards on 
the vehicle. This force 
accelerates the vehicle 
or opposes air resistance 
if it is moving with 
constant speed. When 
there is no forward 
propulsion, the frictional 
force on the vehicle 
from the road will be in 
the opposite direction.

 ◆ Slipping (wheel) Occurs 
when there is not enough 
friction between a wheel 
and the surface to maintain 
a rolling motion.

 ◆ Sliding Surfaces moving 
over each other without any 
rotation involved.

 ◆ Roll Rotation of an 
object along a surface 
in which the lowest 
point of the object is 
instantaneously stationary. 
Requires friction. Compare 
with slipping.
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At the bottom of a slope, a sliding object will reach a higher speed than a rolling object. Also, 
rotating objects that have bigger moments of inertia will travel slower at the bottom of the same 
slope. If the angle of the slope is too steep, rolling will not be possible.

Consider the example of a solid sphere, for which:

I = 
2
5
mr2

Remembering that v = ωr, the equation above becomes:

mgΔh = 
1
2

mω2r2 + (12)25 mr2ω2 = 
7
10

ω2r2

Note that, with the assumptions made, the angular velocity at the bottom of the slope does not 
depend on the slope angle or the mass of the ball.

Determine the:
a angular speed
b linear speed of the centre of mass of a 500 g ball, 
which has a radius of 10 cm, after it has rolled down a slope of vertical height 1.0 m.

Answer

a  gΔh = 
7
10 ω2r2 

 9.8 × 1.0 = 0.7 × ω2 × 0.12

  ω = 37 rad s−1

b v = ωr = 37 × 0.1 = 3.7 m s−1

 WORKED EXAMPLE A4.15

31 Calculate the rotational kinetic energy of a tossed coin if it has a mass of 8.7 g, 
radius 7.1 mm and completes one rotation in 0.52 s.

32 Calculate the rotational kinetic energy of the Earth spinning on its axis. 
(Research relevant information.)

33 A flywheel is spinning with rotational kinetic energy of 4.6 × 104 J. Calculate 
its moment of inertia if it has an angular momentum of 98 kg m2 s−1.

34 The moment of inertia of the windmill seen in Figure A4.34 is 96 kg m2. 
Estimate how  many rotations every minute are needed for it to have 250 J of 
kinetic energy.

	■ Figure A4.34 A windmill
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35 Figure A4.35 shows an experimental arrangement that 
could be used to determine a value for the moment of 
inertia of a wheel. A string is wrapped around the outside 
of a wheel and provides a torque as the attached mass 
accelerates downwards and starts the wheel rotating.
a Write down an equation to represent the transfer of 

energy when the mass has fallen a distance h.
b Calculate a value for the moment of inertia of the 

wheel, of radius 24 cm, if a mass of 500 g is moving 
down with a speed of 1.14 m s−1 after falling a distance 
of 50 cm.

mass = m

r

Δh

	■ Figure A4.35 Determining the moment of inertia of a wheel

36 The cyclist seen in Figure A4.36 is moving to the right 
with a constant linear speed of 4.0 m s−1.
a State the linear speed of all points on the 

circumference of the wheel (with respect to 
the bicycle).

b State the speed of the lowest point of the wheel with 
respect to the ground.

c Use the picture to show that the angular speed of 
the wheel is approximately 15 rad s–1.

d What is the instantaneous velocity of the top of the 
wheel, with respect to the ground?

	■ Figure A4.36 Cyclist

37 A solid ball and a hollow ball of the same mass and 
radius roll down a hill. At the bottom, discuss which ball
a will be rotating faster
b has the greater linear speed. 

38 a Calculate the greatest
i angular speed
ii linear speed of a solid ball of radius 1.2 cm rolling 

down a slope from a vertical height of 6.0 cm.
b What assumption did you make?
c Compare your answer to the greatest speed of the 

same ball dropped the same vertical distance.

39 Use the analogies between linear and rotational 
mechanics to write down equations for rotational work 
and power.

Inquiry 1: Exploring and designing

Designing

Identify variables

A student wishes to investigate balls rolling down slopes. Identify all the possible variables 
involved, and select one independent and one dependent variable that could be investigated. 
State how the other variable would be controlled.
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RelativityA.5

• How do observers in different reference frames describe events in terms of space and time?
• How does special relativity change our understanding of motion compared to Galilean relativity?
• How are space–time diagrams used to represent relativistic motion?

Guiding questions

Einstein’s theory of special relativity (1905) was a complete revolution in scientific thinking. 
Before then, Newtonian Mechanics (as explained in Topics A.1 to A.3) had accurately described 
and predicted motion in the Universe as it was understood at that time. However, the theories of 
Newton, Galileo and others cannot be applied accurately to objects which are moving very fast 
(with speeds close to the speed of light called relativistic motion). The (unexpected) discovery 
that the speed of light is always the same for all observers was one reason that Einstein proposed 
his theory of relativity, one aspect of which is that all motions are observed relative to each other, 
there is no ‘correct point’ of view, there is nowhere at absolute rest.

Reference frames
When making calculations on motion (in Topics A.1 to A.3) you will usually have assumed that 
the objects concerned were moving over the stationary surface of the Earth. The Earth’s surface 
was the reference frame and values of displacement, velocity and acceleration were relative to a 
stationary point on that surface.

A reference frame is a coordinate system that allows a single value of time and position to be 
assigned to an event.

Precise events are used to simplify our understanding:

An event is considered to be a single, instantaneous incident that occurs at a specific time and 
point in space.

Examples of events could be a flash of light, the moment when two objects 
collide, or the high point of an object in parabolic flight. Lightning strikes and 
balloon bursts are commonly used visualizations.

Reference frames are often represented by a set of axes, usually given the label S 
or S′, as shown for two dimensions (only) in Figure A5.1.

To fully define a four-dimensional reference frame, we must specify the origin, 
the directions of the x-, y- and z-axes, and the event from which the measurement 
of time, t, is started. The example shown in Figure A5.1 is limited to the x- and 
y-axes (for simplicity) and it uses the obvious reference frame that is the Earth’s 
surface. However, if we wanted, we could alternatively consider the rocket’s 
reference frame, in which the rocket is stationary and it is the Earth that is seen 
to move (at the same speed in the opposite direction).

 ◆ Relativistic motion 
Travelling at a significant 
fraction of the speed 
of light.

 ◆ Reference frame A 
coordinate system from 
which events in space and 
time are measured.  

 ◆ Coordinate system An 
agreed numerical way of 
identifying the location and 
time of an event.

 ◆ Event Single incident 
that occurs exactly at a 
precise time and location.

y

0
x

Event 2

Event 3
Event 1

Stationary reference
frame, S

	■ Figure A5.1 Graphical representation of the 
Earth’s reference frame for a rocket in flight
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The success of Newtonian mechanics is that it allows the accurate calculation of properties such as 
displacement, velocity, acceleration and time using the equations of motion (Topic A.1), as Worked 
example A5.1 illustrates.

In reference frame, S, shown in Figure A5.1, calculate for the three events shown the x-, y- 
and t-coordinates of an unpowered rocket with an initial vertical velocity of 400 m s−1 and a 
horizontal velocity of 100 m s−1. Ignore the effects of air resistance.

Answer
Event 1: This is the event that defines the origin and also the start of the timing, so,
x = 0 m, y = 0 m and t = 0 s. The coordinates are (0.0 m, 0.0 m, 0.0 s).
Event 2: This is the event defined by the rocket reaching its maximum height. We can 
use an equation of motion (v2 = u2 + 2as) to calculate x, y and t: this gives us the height, 
y = 8200 m.
The equation s = 

(u + v)
2  

t can be used to show that the time to reach the top of the flight, t = 41 s.
Since there is no horizontal acceleration, it is straightforward to calculate the horizontal 
position, x, using s = ut = 4100 m.
Hence the (x, y, t) coordinates of Event 2 are (4100 m, 8200 m, 41 s).
Event 3: This event occurs when the rocket is the same height as it was originally. The 
symmetry of parabolic motion means that it occurs at (8200 m, 0 m, 82 s).

 WORKED EXAMPLE A5.1

In the rest of Topic A.5, to explain principles without involving extra complications, we will 
restrict the discussion of reference frames to just the x-direction and time.

1 A car is caught by a speed camera travelling at 35.0 m s−1. If the speed camera photograph is 
taken at point (0.00 m, 0.0 s) determine the coordinates of the car 23.0 s later.

2 A naughty child throws a tomato out of a car at a stationary pedestrian the car has just 
passed. The car is travelling at 16 m s−1 and the child throws the tomato directly towards the 
pedestrian so that it leaves the car with a speed of 4 m s−1.

 Explain why the tomato will not hit the pedestrian.

	■ Different reference frames
Have you ever walked along a moving train and wondered what your speed was? If you happened 
to bang your head twice on bags that stuck out too far from the luggage rack as you walked, what 
were the coordinates of these two events and the distance between them? The answer to this 
depends on the reference frame from which an observer is taking the measurements.

In the study of relativity, an observer is a hypothetical person who takes measurements from 
only one specific reference frame. An observer is always stationary relative to their own 
reference frame.

In the example of the train, there are three possible reference frames that could be occupied by 
three different observers:
1 an observer taking measurements sitting on the platform as the train moves past
2 an observer taking measurements sitting on a seat in the train
3 an observer taking measurements walking up the train at the same velocity as you.

 ◆ Observer: Often a 
hypothetical person able 
to use their senses, or 
instrumentation, to record 
information about events. 
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According to Newton, each of these three observers will record different values for how fast you 
are moving and your position when you bang your head. However, they will all agree on the time 
between the two events occurring and the distance you have moved up the carriage between the 
two events.

Inertial reference frames

The problem that most students have when trying to understand relativity is that, when they 
observe movement while they are standing on the ground, they instinctively think that the Earth’s 
surface is not moving, which makes it the ‘correct’ frame of reference (point of view). We think 
that the points of view of others – in planes and boats and trains – are temporary and misleading. 
It needs to be repeatedly stressed that, in physics:

all reference frames are equally valid; there is no ‘correct’ reference frame.

It may help to think about a thought experiment, far away from the Earth: consider an observer in 
a space vehicle (without windows) in deep space, where any effects of gravity are negligible. See 
Figure A5.2.

Can the observer determine if the vehicle is ‘stationary’, moving with constant velocity, 
or accelerating?

If the observer slowly and carefully releases an object (which has no weight in deep space) in 
mid-air, the object will appear to stay in exactly the same place if the vehicle and all its contents 
are moving with constant velocity. If the rocket was considered to be ‘stationary’ the same 
observations would be made, but most importantly, there is no such thing as being absolutely 
‘stationary’ – it can never be distinguished from motion at constant velocity.

A resultant force is needed for acceleration. That force originates with the rocket engines and the 
observer is accelerated by contact forces with the vehicle. An object released in mid-air would not 
have any resultant force acting on it, so that it will maintain its original motion while the vehicle 
accelerates around it. To the observer, the object moves ‘backwards’ compared to them and the 
accelerating rocket.

This last point is very important: For an observer in the frame of reference of an accelerating 
vehicle, Newton’s laws of motion appear to be broken.

An inertial reference frame is one which is not accelerating and in which Newton’s laws of 
motion can be applied.

If there were places which were truly stationary, they would be perfect inertial reference frames, 
the ideal background for observations of motions. (The adjective ‘inertial’ suggests lack of 
movement.) However, a frame of reference moving with constant velocity (zero acceleration) 
fulfils the same purpose.

The reference frames discussed in the rest of Topic A.5 will all be inertial (non-accelerating) 
reference frames.

For non-relativistic applications we usually use the Earth’s surface as our inertial reference frame 
(despite its movement).

	■ Figure A5.2 
Observer in a rocket

 ◆ Inertial reference 
frame A frame of reference 
that is neither accelerating 
nor experiencing a 
gravitational field, in 
which masses obey 
Newton’s laws of motion. 
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3 State which of the the following can be thought of as truly inertial reference frames, almost 
inertial reference frames (objects measured over a small distance appear to be travelling at 
constant velocity) or clearly not inertial reference frames (unbalanced forces or gravity are 
clearly present):
a a rocket stationary in deep space so that it is a long way from any gravitational fields.
b a rocket travelling through deep space in a straight line with constant speed
c a GPS communication satellite in orbit around the Earth
d a space probe hovering above the surface of the Sun
e a proton travelling close to the speed of light through a straight section of tubing in the 

CERN particle accelerator in Geneva.

Newton’s postulates concerning time and space

TOK

The natural sciences
l Do the natural sciences rely on any assumptions that are themselves unprovable by science? How is an 

axiomatic system of knowledge different from, or similar to, other systems of knowledge?

Mathematics and the arts

A postulate is a starting point for the development of more advanced reasoning and discussions.

An historical example, from Euclid more than two thousand years ago, concerning geometry: a straight 
line can be drawn from any one point to any other point. Such fundamental postulates in mathematics are 
referred to as axioms.

Postulates and axioms may not be directly provable, but they are usually simple and unambiguous 
statements which are agreed by everybody (at that time). They are considered to be necessarily true, in 
the sense that they are logically necessary.

 ◆ Postulate See axiom.
 ◆ Axiom An unproven 

assumption that is accepted 
to be true, which is then 
used as starting point for 
further discussion. Similar 
in meaning to a postulate.

 ◆ Simultaneous events 
Events that occur at the 
same time in a specific 
reference frame, so that 
in this reference frame 
they have the same time 
coordinates. Events that are 
simultaneous in one frame 
may not be simultaneous in 
another frame.

 ◆ Global positioning 
system (GPS) A navigation 
system that provides 
accurate information on 
the location of the GPS 
receiver, by continually 
communicating with 
several orbiting satellites.

Before Einstein’s theory of relativity, Newton’s description of the 
Universe had made important assumptions. These assumptions 
are still used by everybody in their everyday lives.
1 The universality of time: All observers agree on the time 

interval between two events. In particular, they will agree on 
whether two events are simultaneous, or not.

2 The universality of distance: All observers agree on the 
distance between two simultaneous events.

Simultaneous means that two events are observed to occur at 
exactly the same time. That is, the time interval between the two 
events is zero.

To understand these postulates better, imagine a universe with a 
tiny clock placed in the centre of every cubic metre as shown in 
Figure A5.3.
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	■ Figure A5.3 A cubic matrix of clocks spreading out regularly 
throughout space and all reading exactly the same time
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144 Theme A: Space, time and motion

The first postulate implies that every clock would always be reading the same time and ticking at 
exactly the same rate. Any observer moving through the Universe carrying a clock would find that 
their clock also read the same time as the background clocks and would tick at the same rate. If an 
observer also carried a metre rule with them as they moved around, they would find that it always 
exactly matched the shortest distance between any two adjacent clocks.

The central theme of this topic is that Newton’s postulates are not totally accurate: they do not 
apply if relativistic effects are significant.

	■ Galilean relativity

SYLLABUS CONTENT

 Newton’s laws of motion are the same in all inertial reference frames and this is known as 
Galilean relativity.

 In Galilean relativity the position x′ and time t′ of an event are given by:  x′ = x – vt and t′ = t.
 Galilean transformation equations lead to the velocity addition equation as given by: u′ = u – v.

Galilean relativity refers to relative motion as described and explained (using the principles 
we have already used in Topics A.1 to A.3) by Galileo, Newton and others. That is, relativity as 
understood before special relativity, which was first introduced by Einstein in 1905 (see below). 
Galilean relativity can be assumed to be a very good approximation for special relativity for 
speeds which are low compared to the speed of light.

In Galilean relativity, Newton’s laws of motion are the same in all (inertial) frames of reference.

Whenever we move our point of view from one reference frame to another, we need to do what is 
called a transformation by applying standard equations. This becomes very important when we 
study relativity, so it is worth ensuring that Galileo and Newton’s simpler vision of the Universe 
(as follows) is expressed in a similar way and fully understood.

Observations of position, distance and speed made within our own reference frame are 
straightforward, but if we make measurements from our reference frame of similar quantities 
in another reference frame which is moving compared to us, we need to know in what way our 
measurements are different from measurements made in the other reference frame.

Consider first, the widely used example of an event that occurs on a moving train and how it is seen 
by observers on the train and on the ground. Consider that both observers start their clocks when the 
observer sitting on the  train travelling with a constant velocity of 20 m s−1 passes the observer sitting 
on the ground. After 5 s, the observer on the ground sees a flash of light (an event) at a point on the 
train 120 m away. The coordinates of this event in his frame of reference are x = 120 m, t = 5 s.

The train has moved forward 5 × 20 = 100 m in 
the 5 s since the timings began, so that, in the 
frame of reference of the observer on the train, 
the flash of light occurs a distance of 20 m in 
front of her. The coordinates of this event in 
her frame of reference are x = 20 m, t = 5 s.

More generally, Figure A5.4 compares where 
an event is observed to occur in two different 
reference frames (S and S′) which were 
coincident (in the same place) at time t = t′ = 0, 
and before they separated.

 ◆ Galilean relativity 
How relative motions 
were described before 
the discovery of special 
relativity.

a  time t = t’ = 0
    Two reference frames
    coincident

reference frame S

S

S’

reference frame S’

x’

x

vt

event

b  time t = t’
    Reference frames have separated
    and an event occurs

	■ Figure A5.4 Comparing an event in two frames of reference

a  time t = t’ = 0
    Two reference frames
    coincident

reference frame S

S

S’

reference frame S’

x’

x

vt

event

b  time t = t’
    Reference frames have separated
    and an event occurs
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     	■ Figure A5.5 Galileo Galilei (1564–1642)

If in reference frame S the coordinates of an event are (x, t), in reference frame S′, which has 
relative velocity v compared to S, the coordinates (x′, t′) of the same event are

x′ = x – vt and t′ = t

These are known as the Galilean transformation equations.

Remember that this assumes that the two reference frames are coincident when t = t′ = 0.

Velocity addition equation

In this topic we will often need to calculate the velocity of an object as observed from different 
reference frames. This called velocity addition. In Galilean relativity this is straightforward. 
Returning to our previous example of the train: suppose that an object on a train (moving with 
velocity v) is moving forward with a constant speed and an observer on the ground (reference 
frame S) records this as a velocity u. This will be greater than the velocity of the object, u′, 
recorded on the train (reference frame S′). u′ = u – v

If in reference frame S the velocity of an object is u, in a reference frame S′, which has relative 
velocity of v compared to S, the same movement will be recorded as having a velocity, u′ = u – v

A train is moving with a constant velocity 
of 16.0 m s−1. A ball is rolling along the floor 
of the train in the direction of travel with a 
constant velocity of 3.0 m s−1.
a Calculate the velocity of the ball 

as recorded by an observer on the 
ground outside.

b Determine how your answer would 
change if 
i the ball was rolling towards the back 

of the train with the same speed
ii the train was moving in the opposite 

direction (with the ball moving 
towards the front of the train). .

Answer
a  u' = u – v
 3.0 = u – 16.0
  u = +19 m s−1

b i  u' = u – v
 −3.0 = u – 16.0
  u = +13 m s−1

ii  u' = u – v
 −3.0 = u – (−16.0)
  u = −19 m s−1

If we choose to reverse which reference 
frames are S and S′, the same answers will 
be obtained (as we should expect)

 WORKED EXAMPLE A5.2

 ◆ Galilean 
transformation The 
non-relativistic method of 
mathematically relating 
observations between 
reference frames.

DB

Common 
mistake
It is easy to think that an 
event primarily occurs 
in one reference frame 
and then it is observed 
in another, but we need 
to remember that any 
given event occurs in all 
reference frames.

 ◆ Velocity addition 
Equation which connects 
the velocities of the same 
object as observed in two 
different reference frames.

DB
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In deep space, rocket A leaves a space-station 
with a constant velocity of 300 m s−1. At 
the same time rocket B travels in the same 
direction with a constant velocity of 200 m s−1.
a Calculate the distance between rocket A 

and the space-station after one hour.
b According to an observer in rocket B, 

what is the distance to rocket A after 
one hour?

c In rocket B’s reference frame, determine 
how fast an observer would measure the 
speed of rocket A.

Answer
a  x = ut where t = 1 × 60 × 60 = 3600 s
  = 300 × 3600 = 1.08 × 106 m
b  x′ = x − vt
  = 1.08 × 106 m − (200 × 3600)
  = 3.6 × 105 m
c  u′ = u − v
  = 300 – 200 = 100 m s−1

 WORKED EXAMPLE A5.3

Assume that the Newtonian model of the Universe is correct and use Galilean transformations to 
answer the following questions. (Note that the answers to some of these questions will contradict 
the rules of relativity that are introduced later.) The speed of light, c = 3.00 × 108 m s−1.

4 In Worked example A5.3 the rockets travel in the same direction. Use the Galilean 
transformation equations to calculate the answers to Worked example A5.3 questions b and c, 
if the rockets travel in opposite directions.

5 A rocket travelling at one-tenth of the speed of light away from Earth shines a laser beam 
forwards into space.
a Determine how fast an observer inside the rocket measures the light beam photons to 

be travelling.
b Calculate how fast an observer floating stationary, relative to the Earth, measures the 

light beam photons to be travelling.

6 Two rockets travelling towards each other are measured by an observer on Earth to each be 
moving with a speed of 0.6c. Calculate how fast an observer in one rocket thinks that the 
other rocket is travelling.

7 If you were in an incredibly fast spaceship that was travelling past a space-station at 0.35c 
and you accelerated a proton inside the ship so that it was travelling forwards through the 
ship at 0.95c, what speed would an observer in the space-station measure the proton to 
be travelling?

Limitations of Galilean relativity

The discovery of the constancy of the speed of light (in a vacuum) – see opposite – was evidence 
that Galilean relativity could not be applied under all circumstances.

Consider the Galilean velocity addition equation applied to light: if a beam of light was sent 
forward by a passenger on the train (instead of a ball as in Worked example A5.2), they would 
correctly record the speed of light leaving them to be c = 3.00 × 108 m s−1, but using the Galilean 
velocity equation incorrectly predicts that the observer on the ground would record a higher speed.
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Nature of science: Hypotheses, and falsification

The Michelson–Morley experiment

In the nineteenth century it was assumed that light needed a medium through which to travel as 
with other types of waves, such as sound. It was thought that there was a not-understood or detected, 
‘luminiferous aether’, that was present in all space, including vacuum.

Many experiments were designed to discover and investigate this aether. The most famous were the 
experiments carried out in 1887 by Albert Michelson and Edward Morley. The experiments were 
technically difficult because of the high speed of light, but it was expected that it would be possible 
to detect small differences in the speed of light beams sent in different directions through the aether 
(because of the motion of the Earth).

The Michelson-Morley experiment failed to demonstrate (verify) the hypothesis that the speed of light 
would be affected by its direction of travel through the aether. Repeated tests then, and subsequently, 
have not detected any difference in the speed of light. It has been called ‘the most famous failed 
experiment in history’, although perhaps it would be fairer to refer to Michelson and Morley’s important 
result as a ‘null finding.’

The results of experiments similar to this confirm that the speed of light is always observed to have the 
same value, regardless of the motions of the source or observer.

Introducing special relativity
Towards the end of the nineteenth century, the classical physics of Newton and Galileo faced two 
very big problems:
1 The work of James Clerk Maxwell on electromagnetism in the middle of the nineteenth 

century had combined the phenomena of electricity, magnetism and light. However, Maxwell’s 
(correct) theories of electromagnetism contradicted classical physics in some important 
respects. James Clerk Maxwell was undoubtedly one of the greatest physicists/mathematicians 
of all time but his work is not included in this course.

2 Experiments were unable to show that light travelled at different speeds depending on its 
direction of travel with respect to the rotating Earth.

Einstein proposed the theory of special relativity, connecting space and time, 
in 1905 in order to resolve these problems. His theory adjusts the Galilean / 
Newtonian model for speeds close to the speed of light, but classical physics is 
still valid for slower speeds.

It is called ‘special’ relativity because it is restricted to inertial frames 
of reference.

The effects of special relativity only become significant at speeds close to the 
speed of light, but none of us have any direct experiences of such phenomena 
in our everyday lives. Throughout the rest of Topic A.5, we will be using 
examples of events involving such speeds: the motion of imaginary rockets and 
atomic particles, with imaginary observers travelling with them.

LINKING QUESTION
l Why is the equation for the Doppler effect for light so different from that for sound?

This question links to understandings in Topic C.5.

 ◆ Michelson–Morley 
experiment An experiment 
designed to measure the 
Earth’s speed through the 
ether. The famous null 
result was the prime reason 
for the abandonment of 
the ether idea, which 
then contributed to 
the development of 
special relativity.

 ◆ Ether (or aether) A 
hypothetical substance, 
proposed (falsely) to be 
the medium through 
which electromagnetic 
waves travel.

 ◆ Special relativity 
Theory connecting space 
and time developed by 
Albert Einstein based on 
two postulates concerning 
relativistic motion in 
inertial reference frames. 
The consequences lead 
to time dilation, length 
contraction and the 
equivalence of mass 
and energy.

	■ Figure A5.6 Albert Einstein in 1905
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	■ The two postulates of special relativity

SYLLABUS CONTENT

 The two postulates of special relativity.

First postulate: the laws of physics are identical (invariant) in all inertial reference frames.

The first postulate does not initially appear to be profound. However, it can be interpreted as:
l Observations in different inertial reference frames all have equal worth; there is no single 

‘correct’ frame of reference.
l The Universe has no unique stationary reference frame.
l No experiment is possible that can show an observer’s absolute velocity through the Universe.

Second postulate: the speed of light in a vacuum is a constant, c = 3.00 × 108 m s−1, in all inertial 
reference frames.

This simple statement has enormous implications and needs to be carefully considered (as 
explained in the rest of this topic). It does not appear to make any sense as judged by our 
experiences from everyday life. However, many experiments have confirmed it to be true.

It implies that if a rocket in deep space passes a space-station at a tenth of the speed of light, and 
fires a laser beam forwards as it does so, then both the observer in the rocket and on the space-
station must measure the speed of light to be 3.00 × 108 m s−1, even though they are moving relative 
to each other. For this to be the case, space and time must behave in profoundly different ways to 
how we have learnt to expect.

TOK

Knowledge and the knower
l How do our expectations and assumptions have an impact on how we perceive things? Is the truth 

what the majority of people accept?

The constancy of the speed of light (and its implications) conflicts with our expectations and experiences 
but is undoubtedly true. This counterintuitive knowledge cannot be denied and is a cornerstone of 
modern physics. Scientists are faced with similar issues when dealing with quantum physics.

Implications of the two postulates

Since the constant speed of light equals distance travelled / time taken, and we know from 
Galilean relativity that observers in different frames of reference can measure different distances 
between the same events, then the observers must also measure different times for the travel of 
a light beam. This means that observers moving relative to each other will disagree about the 
measurement of time.

Time cannot be an invariant quantity in a relativistic universe.

Our earlier model of the matrix of clocks (Figure A5.2) was wrong. Not only do clocks read different 
times and tick at different rates but for any pair of events different clocks can record different time 
intervals. In other words, the time interval between two events is not the same for different observers 
taking measurements from different (inertial) reference frames.

DB

LINKING QUESTION
l Special relativity 

places a limit on the 
speed of light. What 
other limits exist in 
physics? (NOS)

 ◆ Postulates of special 
relativity The speed of light 
in a vacuum is the same for 
all inertial observers. The 
laws of physics are the same 
for all inertial observers.

 ◆ Invariant quantity A 
quantity that has a value that 
is the same in all reference 
frames. In relativity, 
examples are the speed of 
light in a vacuum, space–
time interval, proper time 
interval, proper length, rest 
mass and electrical charge.
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Space and time are linked as space–time. Space and time are not independent of each other, as 
they were assumed to be in Newtonian mechanics.

The rest of this topic will provide more details about ‘space–time’ and the implications of special 
relativity, including
l time dilation
l length contraction
l relativistic velocity additions

l invariant space–time intervals
l space–time diagrams
l relativity of simultaneous events.

TOK

The natural sciences
l What role do paradigm shifts play in the progression of scientific knowledge?

When referring to a particular area of knowledge, a paradigm is the name given to the collected, relevant 
and widely accepted theories, understandings and practices (and so on) that characterize that topic at that 
time. In the late nineteenth century, the paradigm of knowledge about motion had been centred on the 
work of Galileo and Newton (and others).

In his 1962 work ‘The Structure of Scientific Revolutions’ the American philosopher of science Thomas 
Kuhn suggested that a paradigm shift occurs when, for whatever reason, an existing paradigm is 
replaced with a new paradigm. In science, this might occur after a significant new discovery, or after a 
completely new, and probably widely unexpected, theory is developed.

A totally new way of thinking about existing knowledge requires great imagination and individuality, 
which many would describe as genius. Einstein’s theory of relativity was possibly the greatest paradigm 
shift in the history of physics.

Human nature is such that it is usually difficult for people, who may have spent many years living with a 
particular paradigm, to accept something totally new, which contradicts what they had previously believed.

 ATL A5A: Thinking skills 

Providing a reasoned argument to support a conclusion
Apart from relativity, another famous paradigm shift in physics knowledge was the confirmation that 
the Earth was not at the centre of the Universe.

Describe another paradigm shift (of any kind, perhaps from your studies in other IB Diploma subjects) 
and explain why you think it had significant and far-reaching effects.

	■ Lorentz transformations

SYLLABUS CONTENT

 The postulates of special relativity lead to the Lorentz transformation equations for the coordinates of 
an event in two inertial reference frames as given by:

 x′ = γ(x – vt)

 t′ = γ(t – 
vx
c2)

 where

 γ  = 
1

(  1 –
 v2

c2) 

 ◆ Space–time The 
combination of space and 
time into a single entity 
that is used to describe 
the fabric of the Universe. 
Fundamentally, in 
relativity, time and space 
are not independent of each 
other. They are observed 
differently depending 
on the relative motion of 
an observer. 

 ◆ Paradigm The 
complete set of concepts 
and practices etc. that 
characterize a particular 
area of knowledge at a 
particular time. When 
these change significantly, 
it is described as a 
paradigm shift. 
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In Newton’s model of the Universe, we used Galilean transformation equations to move from one 
reference frame to another, allowing us to change one coordinate into another (from x, y, z and t 
to x′, y′, z′ and t′). We can do the same in Einstein’s relativistic Universe, but we must instead use 
the Lorentz transformation equations, as follows (for the x-direction only). The equations can be 
used to transform x-coordinates and t-coordinates of a single event, but only if the origins of the 
two reference frames coincided at t = 0 s.

If in reference frame S the coordinates of an event are x and t, in reference frame S′, which has 
relative velocity of v compared to S, the coordinates (x′, t′) of the same event are given by:

x′ = γ(x – vt)

and

t′ = γ (t – 
vx
c2 )

γ is known as the Lorentz factor. It can be calculated using the following equation.

Lorentz factor:

γ  = 
1

(  1 – v
2

c2)
The factor involves a ratio, so it does not have any units.

For the purposes of your IB Diploma Physics course, you do not need to know the origin of these 
three equations.

γ is always greater than one. For everyday macroscopic speeds, v << c, so that γ has a value very 
close to one, which shows us that relativistic effects are not significant in our daily lives. For 
speeds close to the speed of light, γ becomes significantly greater than one, so that relativistic 
effects dominate. See Figure A5.7.
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	■ Figure A5.7 Graph showing how the Lorentz factor, γ, varies with speed, v (shown as v/c).

 ◆ Lorentz transformation 
The equations, involving 
the Lorentz factor, used to 
calculate the new position 
and time coordinates, 
or spatial and temporal 
intervals, when transferring 
from one relativistic 
reference frame to another.

 ◆ Lorentz factor, γ Scaling 
factor that describes 
the distortion of non-
invariant quantities when 
moving between different 
relativistic reference 

frames: γ = 
1

(  1 – v
2

c2)
DB

DB
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a Calculate the Lorentz factor for a relative speed of 1.50 × 108 m s−1 (0.50c).
b An event in reference frame S occurs at x = 5000 m and t = 2.0 s. Calculate when and 

where the same event occurs as observed from a rocket (reference frame S′) which has 
a relative velocity of 0.50c.

c State what assumptions you have made to answer part b.

Answer

a γ  = 
1

(  1 – v
2

c2) = 
1

(  1 – (1.50 × 108)2

(3.00 × 108)2) = 1.15

b x′ = γ(x − vt) = 1.15 × (5000 – [0.50 × 3.00 × 108 × 2.0]) = −3.5 × 108 m

 t′ = γ(t – 
vx
c2 ) = 1.15 × (2.0 – 

0.50 × 3.00 × 108 × 500

(3.00 × 108)2 ) = 2.3 s

c It was assumed that the two frames of reference were coincident at t = 0 s.

 WORKED EXAMPLE A5.4

Tools 3: Mathematics

Use units where appropriate: light year

Astronomical distances are huge. The nearest star to Earth, 
other than our Sun, (Alpha Proxima), is 4.02 × 1016 m away. 
It becomes convenient to use larger units than metres and 
kilometres in astronomy. The following are non-SI units.

The light-year (ly) is the distance travelled by light in one 
year: 1 ly = (3.00 ×108) × 365 × 24 × 360 = 9.46 ×1015 m

(A light-year is defined to be exactly a distance of 
9 460 730 472 580 800 m.)

In light-years, the distance to Alpha Proxima is 4.25 ly.

Using the light-year as the unit of distance makes many 
relativity questions easier to answer.

The parsec is another widely used unit for distance in 
astronomy (see Topic E.5).

DB

 ◆ Light-year, ly Unit 
of distance used by 
astronomers equal to the 
distance travelled by light 
in a vacuum in 1 year.

According to a rest observer in reference frame S, a rocket reaches a point 20 light-years 
away after 30 years. This gives (x, t) coordinates for the rocket as (20 ly, 30 y). Another 
reference frame S′ is moving at 0.50c relative to S. Determine the coordinates of the rocket 
according to an observer in S'. (The two reference frames were coincident at t = 0.)

Answer
We have already calculated γ = 1.15 for v = 0.50c.
x' = γ(x – vt) = 1.15 × [20 ly – (0.50c × 30 y)] = 1.15 × (20 ly – 15 ly) = 5.8 ly

t′ = γ(t – 
vx
c2 ) = 1.15 × (30 y – 

0.50c × 20 ly
c2 ) = 1.15 × (30 y – 10 y) = 23 y

Therefore, according to an observer in reference frame S', the rocket has only travelled 
5.8 ly in 23 years, which means that it is travelling at only 0.25c. This example is 
straightforward because the unit being used (ly) allows c to be cancelled easily.

 WORKED EXAMPLE A5.5
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One observer records an event at x = 250 m and t = 1.7 × 10−6 s. Determine the coordinates 
of this event as recorded by a second observer travelling at 0.75c to the right according to 
the first observer. Assume the frames of reference were coincident at t = 0.

Answer

γ  = 
1

(  1 – v
2

c2) = 
1

(  1 – 0.752 ) = 1.51

x' = γ (x – vt)

 = 1.51 × (250 – [0.75 × (3.00 × 108) × 1.7 × 10–6] = –200 m

t' = γ(t – 
vx
c2 ) 

 = 1.51 × (1.7 × 10–6 – 
0.75 × ( 3.00 × 108) × 250

(3.00 × 108)2 ) = 1.6 × 10–6 s

WORKED EXAMPLE A5.6

Equations for transforming distances and time intervals between two events

Often, we are interested in the differences in x-coordinates and t-coordinates between events. That 
is, distances and time intervals. The transformation equations (Δx to Δx′) and Δt to Δt′) are similar 
to those shown above:

Distance between two events:

Δx′ = γ (Δx – vΔt)

Time interval between two events:

Δt′ = γ (Δt – 
vΔx
c2 )

For each of these problems assume one-dimensional motion and assume that, in each case, the 
observers start timing when the origins of the two reference frames coincide.

8 Imagine a situation where a rocket passes the Earth at 0.5c. There are two observers – one in 
the Earth’s frame of reference and the other in the rocket’s frame of reference.
a Calculate the value of γ.
b A star explosion event occurs at a point 20 light-years from the Earth. The rocket passes 

the Earth heading towards the star. According to the Earth-based observer the rocket 
passes the Earth 20 years before the light arrives.

 Determine x′ and t′ coordinates of the explosion event for the observer in the rocket’s 
reference frame.

9 From Earth, the Milky Way galaxy is measured to be 100 000 light-years in diameter, so the 
time taken for light to travel from one side of the Milky Way to the other is 100 000 years.

 Calculate the diameter of the Milky Way for an observer in a distant galaxy moving at a 
speed of 0.2c away from Earth.

 Assume that they are travelling in the same plane as the measured diameter of the 
Milky Way.
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10 According to Earth-based astronomers a star near the centre of the Milky Way exploded 800 
years before a star 2000 ly beyond it.

 Determine how much later the second explosion is according to a rocket travelling towards 
the explosions at 0.2c.

11 In a laboratory an electron is measured to be travelling at 0.9c. According to an observer 
in the laboratory at t = 9.6 × 10−9 s it is at a position of x = 2.6 m down the length of a 
vacuum tube.

 Calculate the value of the Lorentz factor and use it to work out the time and position of the 
electron according to an observer in the electron’s reference frame.

12 Two inertial observers are travelling with a relative velocity of 0.8c and both see two events 
occur. According to one observer the events occur 4.2 m apart and with a time interval of 
2.4 × 10−8 s between them.

 According to the other observer, determine the spatial (Δx′) and temporal (Δt′) intervals 
between the two events.

 ◆ Inertial observer 
An observer who is 
neither accelerating 
nor experiencing a 
gravitational field.

 ◆ Spatial To do with the 
dimensions of space. A 
spatial interval is a length 
in space.

 ◆ Temporal To do with 
time. A temporal interval is 
an interval of time.

Clock synchronization

If we wish to compare times of events at different locations in the same reference frame, we 
need to synchronize the clocks. That is, we need to make sure that both / all clocks in the same 
reference frame always show exactly the same time.

The simplest method is for a flash of light (or a sound) to originate exactly midway between the 
two clocks and the clocks are both started when the flash of light is detected. The flashes of light 
are received simultaneously.
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	■ Figure A5.8 Synchronizing two equidistant clocks

The arrangement seen in Figure A5.8 may not be practicable and it is more likely that the clocks 
are placed at different distances from the flash of light. See Figure A5.9. If the distances are 

known (L1, L2), then the clocks can be synchronized by setting them initially to 
L1

c
 and 

L2

c
, and then 

starting the clocks from those values when the flash is received.
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	■ Figure A5.9 Synchronizing two clocks at different distances

 ◆ Synchronized Two 
clocks are said to be 
synchronized if according 
to an observer they are 
reading the same time.
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Now consider how an observer in a different reference frame, S′, would detect the process seen 
in Figure A5.8. See Figure A5.10. An observer who sees the clocks moving will see one clock 
moving towards the flash and the other clock moving away from the flash. Remember that the 
speed of light, c, is the same in all reference frames.

L1 L2

S

L1 – v t L2 + v t

v v
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	■ Figure A5.10 Clocks cannot be synchronized by an observer with a velocity relative to them

As seen in reference frame S′, the light takes time to travel outwards from the flash and, in 
this time, one clock is further from the source of the flash than the other clock, so that the light 
cannot reach the two clocks at the same time in S′ (simultaneously). In reference frame S′ the two 
clocks will not be synchronized, and the clock on the left will read an earlier time than the one on 
the right.

In other words, the observer in reference frame S thinks that two events (light arriving at the two 
clocks) are simultaneous, but the observer in reference frame S′ records that the event at the left-
hand clock occurred first.

Simultaneity

SYLLABUS CONTENT

 The relativity of simultaneity.

The previous section has shown that we need to reconsider our ideas about whether two or more 
events occur at the same time (are simultaneous) and the order of events. Consider Figure A5.11, 
which shows a similar situation to Figure A 5.10, but this time the figure shows a flash of light sent 
from the centre of a train carriage (Event 0) in both directions to mirrors at the end of the carriage. 
The light beams are then reflected back (Events 1 and 2) to their origin (Event 3).

Event 3

Event 3

Event 2

Event 1

Event 0

ν

ν

ν

ν

Events 1
and 2

Event 0

S S’

	■ Figure A5.11 Simultaneous and non-simultaneous events
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The reference frame shown on the left-hand side (S) is that of an observer on the train. Both beams 
of light travel equal distances in equal times. The observer will record that:
l The pulses are sent out simultaneously.
l The pulses reach each end of the carriage simultaneously.
l The pulses return to observer S and are recorded simultaneously.

The reference frame shown on the right-hand side is that of an observer on the ground outside the 
train (S′). The observer in S′ will record that:
l The pulses are sent out simultaneously.
l The pulse that travels down the carriage against the motion of the carriage must arrive at the 

end of the carriage (Event 1) before the pulse that travels up the carriage (Event 2) because it 
must have travelled a shorter distance at the same speed.

l However, the observer in S′ still sees the pulses return to observer S simultaneously because 
the effect is reversed for the reflected rays.

If two (or more) events occur at the same place at the same time, then they are simultaneous for 
all observers in all reference frames.

If two (or more) events occur at different places, then it is possible that they could be 
simultaneous for one observer in one reference frame, but not be simultaneous for other 
observers in other reference frames.

We will return to the concept of simultaneity when discussing space–time diagrams.

A spacecraft travelling at 0.6c passes a space-station and at that moment clocks in both 
locations are set to zero. A short time later the spacecraft passes a point which is 3000 m 
away from the origin of the space-station’s reference frame. Determine what time a clock 
on the spacecraft will record for this event.

Answer

t′ = γ(t – 
vx
c2 ) 

with

γ  = 
1

(  1 – v
2

c2) = 1.25

and time in reference frame of space-station,

t′ = 1.25 × (1.67 × 10–5 – 
0.6 × 3.00 × 108 × 3000

(3.00 × 108)2 ) = 1.34 × 10–5 s

 WORKED EXAMPLE A5.7
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13 A light clock is a concept sometimes used as a way of 
comparing observations that are made by observers in 
two different inertial reference frames. A light clock is 
a very simple device that reflects a light beam between 
two parallel mirrors separated by a fixed distance, d. 
The speed of light in a vacuum is constant for all 
observers, but the path length taken by the light varies. 
See Figure A5.12; one physicist (Rachel) is in the rocket, 
while another (Mateo) is hiding in the cloud.

    	■ Figure A5.12

 One of the diagrams in Figure A5.13 shows the path of 
the light beam as seen by Rachel, while the other is seen 
by Mateo, who sees the rocket moving to the right with 
speed v. Which is which?

14 According to Mateo the time that the light pulse takes to 
travel from M1 to M2 is Δt. Therefore, state how far the 
rocket moves sideways in this time.

15 Use a Galilean transformation to determine the speed of 
the light beam according to Mateo.

16 Using Newtonian physics, calculate how far the light 
beam has to travel when reflecting between M1 and M2, 
according to Mateo.

17 Mateo sees the rocket moving sideways with speed v. In 
terms of c and Δt, how far has the light beam travelled 
from M1 and M2 according to Mateo?

18 According to Rachel in the rocket, the time taken to 
travel from M1 to M2 is Δt′. Utilizing Pythagoras’s 
theorem, use your understanding of the postulates of 
Newtonian physics to derive an expression for Δt in 
terms of Δt′, v and c.

19 Explain in terms of the constancy of the speed of light, 
why the two observers must disagree about the time it 
takes for the light beam to travel between M1 and M2.

d d

ν

ν

M2

M1

M2

M1

    	■ Figure A5.13

Velocity addition transformations

SYLLABUS CONTENT

 Lorentz transformation equations lead to the relativistic velocity addition equation as given by:

 u′ = 
u – v

(1 – 
uv 
c2 ) 

Apart from times and distances, we need to know how to make velocity transformations between 
different frames of reference. Earlier in this topic we used the Galilean velocity transformation: 
u′ = u – v, but for situations in which relativistic effects are significant, we need to use the 
following equation:

u′ = 
u – v

(1 – 
uv
c2 )

u is a velocity of an object in one reference frame (S), u′ is the velocity of the same object as seen 
by an observer who is in a reference frame (S′) moving with a velocity v with respect to the first 
reference frame. Remember that u′ must always be less than c.

Note that if u and/or v are small compared to c, the equation reduces to the Galilean form.

DB
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There is no need to understand the origin of this equation, although it is linked to the 
Lorentz transformations.

Two particles are seen from an external 
reference frame to be travelling towards 
each other, each with a velocity of 0.60c 
(Figure A5.14).

0.60c

–0.60c

	■ Figure A5.14 Two particles

An observer with one particle measures 
the velocity of the other particle; determine 
what speed they record.

Answer

u′ = 
u – v

(1 – uv
c2 ) 

 = 
0.60c – –0.60c

1– 
(0.60c × –0.60c)

c2

 

 = 
1.2c 

1– 
–0.36c2

c2

 = 
1.2
1.36c = 0.88c

The situation is symmetrical. Observers 
with each particle travelling at 0.60c will 
measure the speed of the other to be 0.88c.
It is very easy to miss out the negative signs 
when doing this calculation. Remember that u 
and v are both vectors and so can be positive 
or negative depending on their direction.

 WORKED EXAMPLE A5.8

Two rockets are observed from an external reference 
frame (S) to be travelling in the same direction – the first 
is measured to be travelling through empty space at 0.75c, 
and a second rocket, which is sent after it, is measured to 
be travelling at 0.95c (Figure A5.15).

0.75c0.75c

0.95c

	■ Figure A5.15 Two rockets

Calculate what an inertial observer travelling with the 
first rocket would measure the approach of the second 
rocket to be.

Answer

u′ = 
(u – v)

(1 – uv
c2 )

 = 
(0.95c – 0.75c)

1 – (0.95c × 0.75c)
c2

 

= 
0.20c

1 – (0.71c2

c2 )
 = 

0.20
0.29c = 0.69c

 WORKED EXAMPLE A5.9
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Some of these questions refer to photons (light ‘particles’) 
and atomic particles, which have not yet been discussed in 
this course. However, no detailed knowledge is needed to 
answer the questions.

20 A rocket travelling at one-tenth of the speed of light away 
from Earth shines a laser beam forwards into space.
a An observer inside the rocket accurately measures the 

speed of the light beam photons. What value would 
you expect them to obtain?

b An observer floating stationary, relative to the Earth, 
also accurately measures the light beam photons. 
State what value they will obtain.

21 Two rockets are flying towards each other; each are 
measured by an observer on Earth to be moving with a 
speed of 0.7c.

 How fast does an observer in one rocket think that the 
other rocket is travelling?

22 If you were in an incredibly fast spaceship that 
was travelling past a space-station at 0.35c and you 
accelerated a proton inside the ship so that it was 
travelling forwards through the ship at 0.95c, relative to 
the ship. Determine the speed an observer in the space-
station would measure the proton to have.

23 In an alpha-decay experiment the parent nucleus may 
be considered to be stationary in the laboratory. When 
it decays, the alpha particle travels in one direction with 

a velocity of 0.7c while the daughter nucleus travels in 
exactly the opposite direction at 0.2c.

 According to an observer travelling with the daughter 
nucleus, calculate how fast the alpha particle is travelling.

24 In a beta particle decay experiment an electron and an 
anti-neutrino that are produced happen to travel away in 
exactly the same direction. In the laboratory reference 
frame, the anti-neutrino has a velocity of 0.95c and the 
electron has a velocity of 0.75c.

 What is the anti-neutrino’s velocity according to an 
observer travelling in the electron’s reference frame?

25 Protons in CERN’s Large Hadron Collider travel in 
opposite directions around the ring at over 0.999 000 0c.

 According to an observer travelling with one group of 
protons, how fast are the approaching protons travelling?

26 Two light beams are travelling towards each other in 
exactly opposite directions. According to a laboratory 
observer their relative velocity is 2c.

 Calculate how fast an observer travelling in the reference 
frame of one of the light beam’s photons measures the 
speed of the approaching light beam’s photons to be.

27 In a space race two spaceships pass a mark and are 
measured by the race officials at the mark to be 
travelling in the same direction and travelling at 0.6c and 
0.7c respectively.

 According to the faster spaceship, calculate how fast the 
other ship is moving.

	■ Time dilation

SYLLABUS CONTENT

 Time dilation as given by: Δt = γΔt0.
 Proper time interval.

We have already seen that observers in relative motion will not agree about measurements of time. 
We will now consider the measurement of time intervals in more detail.

An observer in reference frame S measures a time interval, Δt, between successive ticks of a 
clock that is stationary in their reference frame. Another observer in reference frame S′ moving 
with relative velocity, v, will measure a greater time interval for the same ticks, as given by the 
Lorentz transformation:

Δt′ = γ(Δt – 
vΔx
c2 )

(As shown previously.)

However, since the ticks of the clock occur at the same place, Δx = 0, so that the equation can 
be simplified:

369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   158369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   158 04/01/2023   22:2704/01/2023   22:27



H
L O

N
LY

A.5   Relativity 159

If in reference frame S the time interval between two events that occur at the same place, 
which is stationary in that reference frame, is Δt, then in reference frame S′, which has relative 
velocity of v compared to S, the time interval between the same two events will be observed to 
be Δt′ = γΔt.

Since the Lorentz factor, γ, is always greater than one, the time intervals between the ticks of 
a clock in a reference frame (S′) that is moving relative to where the clock is at rest (reference 
frame S) are greater. This is known as time dilation.

Imagine that a rocket is travelling at 
2.0 × 108 m s−1 away from Earth.
a The rocket carries a clock which ticks 

once every second. Calculate the time 
interval between ticks of the clock as 
observed on Earth.

b How would your answer change if the 
clock was on Earth and observed from 
the rocket?

Answer
a Δt' = γΔt

  γ = 
1

(  1 – v
2

c2) = 1.7

 Δt' = γΔt = 1.7 × 1.0 = 1.7 s
 1.0 s on the rocket corresponds to 

1.7 s on Earth.
b The situation is symmetrical: 1.0 s on 

Earth corresponds to 1.7 s on the rocket.

 WORKED EXAMPLE A5.10

It is important to realize that time dilation refers to all processes, not just the ticking of a clock. 
Time proceeds at different rates for frames of reference that are moving relative to each other, but 
this only becomes relevant at very high speeds. In this course we will not be considering what 
happens to accelerating frames of reference, or frames of reference that are moving closer together.

 ATL A5B: Research skills 

The ‘twin paradox’ is a widely used situation used when discussing time dilation. Research into this 
thought experiment, explain why it is described as a paradox, and outline how it is resolved.

TOK

Knowledge and the knower
l Does knowledge always require some kind of rational basis?

A paradox is a situation, question or statement that contains an embedded contradiction. For example: 
Perhaps the most famous example of a simple paradox is ‘this statement is false’. What might paradoxes 
suggest to us about the nature or reason and its value in determining what is true?

Proper time interval

It should be clear that the magnitude of a time interval between two events depends on whether the 
observer is moving with respect to the events being observed. If the observer is in the same frame 
of reference as the events, this corresponds to the shortest possible time interval, which is called the 
proper time. If the observer is moving with respect to the events, the time interval will be greater.

A proper time interval, Δt0, is the time interval between two events that take place at the same 
location as the observer.

 ◆ Time dilation Relative 
to an observer who sees 
the two events occurring 
in the same place. All 
other observers measure 
an increase in the time 
interval between two 
events. 

 ◆ Twin paradox A 
paradox that appears to 
challenge special relativity, 
based on the impossibility 
that two twins should each 
find that they are older than 
the other. One twin remains 
on Earth while the other 
travels at high speed to a 
distant star and returns. 

 ◆ Proper time interval 
The time interval between 
two events as measured by 
an observer who records 
the two events occurring at 
the same point in space. It 
is the shortest time interval 
between events measured 
by any observer.
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We can then re-write the time-dilation formula:

time dilation:

Δt = γΔt0

You need to try to imagine yourself in the reference frame of each observer – are the x, y and z 
coordinates of the two events the same? If they are, then this observer measures the proper time 
between the two events.

28  In a laboratory, an electron is accelerated by a potential difference of 100 kV. Its speed is 
then measured by timing how long it takes to pass between two different points measured in 
the laboratory as being 5.00 m apart. Is the observer in the electron’s reference frame or the 
observer in the laboratory reference frame recording proper time?

29  A rod measured in its rest frame to be one metre in length is accelerated to 0.33c. The rod 
is then timed as it passes a fixed point. Is the observer at the fixed point or the observer 
travelling with the rod measuring proper time?

30  The same rod is timed by both observers as it travels between two fixed points in a 
laboratory. If the observers are recording when the front of the rod passes each fixed point, is 
either observer measuring the proper time?

31  In a third experiment the two observers start timing when the front of the rod passes the first 
point and stop timing when the end of the rod passes the second point. Is either observer 
measuring the proper time?

	■ Length contraction

SYLLABUS CONTENT

 Length contraction as given by:

 L = 
L0

γ
 Proper length.

Suppose that we observe an object in another reference frame, S′, which is moving relative to our 
reference frame, S. The length of the object, a rod for example, Δx′, can be determined in reference 
frame S′ from a measurement of the position of its ends.

We know from the Lorentz transformation equation that Δx′ = γ(Δx – vΔt) (as seen above), where Δx 
is the length of the rod as observed from reference frame S. Assuming that the measurement of the 
positions of both ends of the rod are done at the same time, Δt = 0, so that the equation simplifies:

If in reference frame S′, the length of an object, which is stationary in that reference frame, is 
recorded to be Δx′, then in reference frame S, which has relative velocity of v compared to S, 
the length will be recorded as:

Δx = 
Δx′
γ

Since γ is always greater than one, any length in another reference frame, which is moving relative 
to us, will always be less than the length we would measure if the object was in our own reference 
frame. This is called length contraction.

DB

 ◆ Length contraction The 
contraction of a measured 
length of an object relative 
to the proper length of the 
object due to the relative 
motion of an observer. 

 ◆ Time dilation formula 
Δt = γΔt0, where Δt0 
represents the proper time 
interval as measured by an 
observer who sees the first 
and second events occur in 
the same place.
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The length of an object measured in a 
spacecraft travelling at 20% of the speed of 
light away from Earth is 1.00 m. Determine 
what length would be detected by an 
observer on Earth.

Answer

 γ  = 
1

(  1 – v
2

c2) = 1.02

Δx = 
Δx′
γ  

= 
1.00
1.02 = 0.980 m

Because the situation is symmetrical, a 
1.00 m length on Earth would be recorded 
as 0.980 m from the spacecraft.

 WORKED EXAMPLE A5.11

Proper length

The magnitude of a length between two points depends on whether the observer is moving with 
respect to the observations. If the observer is in the same frame of reference as the object, this will 
correspond to the longest possible length, which is called the proper length, L0. If the observer is 
moving with respect to the object, the length will decrease.

The proper length of an object, L0, is its length when stationary in the same reference frame as 
the observer.

We can then re-write the length contraction formula as:

length contraction: L = 
L0 
γ

32 In a laboratory, an electron is accelerated by a potential difference of 100 kV. Its speed is then 
measured by timing how long it takes to pass between two different points measured in the 
laboratory as being 5.00 m apart.

 Is an observer in the electron’s reference frame, or the observer in the laboratory reference 
frame recording the proper length between the two points?

33 A rod measured in its rest frame to be one metre in length is accelerated to 0.33c. The rod is 
then timed as it passes a fixed point.

 Is the observer at the fixed point or the observer travelling with the rod measuring proper 
length between the start and finish events?

34 The same rod is timed by both observers as it travels between two fixed points in 
the laboratory.

 If the observers are recording when the front of the rod passes each fixed point, is either 
observer measuring the proper length for the distance between the start and finish events?

35 In a third experiment the two observers start timing when the front of the rod passes the first 
point and stop timing when the end of the rod passes the second point.

 Is either observer measuring the proper length for the distance between the start and 
finish events?

36 A rod is measured to have a proper length of exactly 1.00 m.
 Calculate how long you would measure it to be if it was to fly past you at 0.80c.

37 The time taken for the rod in question 36 to pass a fixed point in the laboratory is 2.5 × 10−9 s.
 Determine what time interval an observer travelling with the rod would measure between the 

same two events.

 ◆ Proper length The 
proper length of an object 
is the length measured by 
an observer who is at rest 
relative to the length being 
measured. The proper 
length is always the longest 
length measurable by 
any observer. 

 ◆ Length contraction 
formula L = L0/γ, where 
L represents the length 
and L0 represents the 
proper length.

DB

Top tip!
It may seem strange 
that relativistic effects 
increase time intervals 
but decrease lengths. 
For example, from 
observations of a 
spacecraft travelling 
at very high speed 
away from Earth, time 
expands but lengths 
contract (both as seen 
from Earth). This 
is because we are 
considering a clock 
at rest in the Earth’s 
reference frame, 
but a length at rest 
in the spacecraft’s 
reference frame.
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38 Fatima flies through space and, according to Fatima, her height is 1.60 m. Fatima flies 
headfirst past an alien spaceship and the aliens measure her speed to be 0.80c.
a How tall will the aliens on their spaceship measure Fatima to be?
b Oliver takes 6.1 × 10−9 s to fly past the same aliens at 0.90c. According to the aliens what 

time interval does it take Oliver to fly past them?

39 In a space race, a spaceship, measured to be 150 m long when stationary, is travelling at 
relativistic speeds when it crosses the finish line.
a According to the spaceship it takes 7.7 × 10−7 s to cross the finishing line. Calculate how 

fast it is travelling in terms of c.
b Determine what time interval the spaceship takes to cross the finishing line according to 

an observer at the finishing line.
c According to an observer at the finishing line, how long is the spaceship?
d According to the observer at the finishing line, how fast is the spaceship travelling?

40 In the same race as question 39 a sleek new space cruiser takes only 2.0 × 10−6 s to cross the 
finish line according to the race officials at the line. They measure the space cruiser to be 
450 m long. How long is the space cruiser according to its sales brochure?

	■ The muon-decay experiment: a test of special relativity

SYLLABUS CONTENT

 Muon-decay experiments provide experimental evidence for time dilation and length contraction.

The muon particle effectively provides us with a tiny clock that travels at a speed very close to the 
speed of light.

A muon (μ) is an unstable subatomic particle. Muons are produced naturally in the Earth’s 
atmosphere as a result of collisions between atmospheric particles and very high-energy cosmic 
radiation that is continually bombarding the planet. This occurs at about 10 km above the Earth’s 
surface; the muons produced have an average speed of around 0.995c in the Earth’s frame 
of reference.

Top tip!
You do not need to understand or remember the nature of muon particles. However, an understanding 
of this section requires some knowledge of the concept of half-life, which is not described fully until 
Topic E.3. A brief outline follows:

Because they are unstable, muons exhibit random radioactive decay into other particles. Mathematically, 
decay is expressed by the concept of half-life which is the time taken for half of any given number of 
muons to decay. The half-life of muons as observed in the frame of reference of the Earth’s surface is 
1.56 × 10−6 s. This means that:
l After one half-life (1.56 × 10−6 s), half of the muons are still undecayed and half of the muons 

have decayed.

l After two half-lives (2 × 1.56 × 10−6 s), 
1
2 × 

1
2 = (12)2

 = 
1
4 of the muons are still undecayed.

l After three half-lives (3 × 1.56 × 10−6 s), 
1
2 × 

1
2 × 

1
2 = (12)3

 = 
1
8 of the muons are still undecayed.

l After n half-lives (n × 1.56 × 10−6 s), 
1
2 × 

1
2 × 

1
2 × … (= 

1
2)n

 of the muons are still undecayed.

 ◆ Muon decay 
experiment An important 
experiment supporting 
both time dilation and 
length contraction. The 
experiment compares 
the levels of high-energy 
muons found in the 
atmosphere at around 
10 km with those found at 
the Earth’s surface, using 
the muon half-life as a 
means of measuring time.

 ◆ Muon Unstable 
elementary subatomic 
particle. 

 ◆ Half-life (radioactive) 
The time taken for the 
number of unstable 
particles to be reduced 
to half.

 ◆ Radioactive decay 
(radioactivity) 
Spontaneous and random 
change of an unstable 
particle.
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Muon decay and the predictions of classical physics

The time taken for the muons to travel the 10 km from the upper atmosphere down to the Earth’s 
surface is calculated simply as:

t = 
x
v
 = 

(10 × 103)
(0.995 × 3.00 × 108)

 = 3.35 × 10–5 s

During this time, most of the muons will have decayed, so that only a very small fraction arrives 
at the Earth’s surface. We can determine that fraction by calculating the number of half-lives 
involved as shown after the next Tools box.

Tool 3: Mathematics

Carry out calculations involving logarithmic and exponential functions

If we wish to determine the value of y in the exponential 
equation y = xa, where a is not a whole number, we need to 
take logarithms:

log y = a × log x

For example, if y = 3.47.4,

log y = 7.4 × log 3.4 = 7.4 × 0.5315 = 3.933

 y = antilog of 3.933 = 8.6 × 103

Alternatively, natural logarithms, ln, could be used.

Number of half-lives elapsed as muons travel down to the Earth’s surface, n
total time
half-life

 = 
(3.35 × 10–5)
(1.56 × 10–6) = 21.5

The fraction reaching surface,

 f = (12)21.5

log f = 21.5 log (12) = −6.47

Fraction ( f ) = 3.37 × 10−7. 

Classical physics predicts that only about 1 muon reaches the surface for every 
3 million that are created in the upper atmosphere.

But, in reality, a far greater proportion of muons are detected than this 
classical physics calculation predicts. In fact, the fraction of the muons from 
the upper atmosphere reaching the Earth’s surface is approximately 0.2 (two 
in every 10). In order to understand this, we need to replace classical physics 
with a relativistic interpretation.

Muon decay using relativity and time dilation

In the Earth reference frame, the proper length is 10.0 km and the speed of the 
muons is 0.995c. An observer in this frame of reference would also measure 
the time interval for the muons’ travel, Δt, to be 3.35 × 10−5 s. However, an 
observer in the muons’ frame of reference would be measuring the proper time 
interval (Δt0).

Δt = γΔt0

v = 0.995c

Simultaneously
monitor count
at ground level

Measure muon
count at 10km height.

Out of three million
particles at 10km,
how many will
reach the Earth?

μ   

μ   1 muon

L0 = 10km

3000000
muons

	■ Figure A5.16 Using classical physics to 
predict muon count on Earth’s surface

 ◆ Classical physics 
Physics theories that 
predated the paradigm 
shifts introduced 
by relativity and 
quantum physics.
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with:

γ  = 
1

(  1 – v
2

c2) = 
1

(  1 – 0.9952c2

c2 ) = 10

so that:

3.35 × 10−5 = 10Δt0

Δt0 = 3.35 × 10−6 s

Alternatively, this can be calculated from the time dilation of the half-life.

number of half-lives = 
total time
half-life

 = 
(3.35 × 10–6)
(1.56 × 10–6)

 = 2.15

The fraction reaching surface = (12)2.15

= 0.23.

This is consistent with actual measurements, thus providing experimental evidence for time dilation.

Muon decay using relativity and length contraction

In the muon’s frame of reference, the 10.0 km thickness of the lower atmosphere is contracted.

L = 
L0

γ
 = 

10 × 103

10
 = 1000 m

Then:

t = 
x
v
 = 

1000
(0.995 × 3.00 × 108)

 = 3.35 × 10–6 s

So, the fraction remaining to reach the Earth’s surface is once again 0.23. In this analysis, from the 
muon’s reference frame, the rest observer perceives what we measure to be 10 km of atmosphere to 
be only 1 km.

Experimental confirmation of this result has provided evidence in support of the concept of 
length contraction.

41 Some muons are generated in the Earth’s atmosphere 8.00 km above the Earth’s surface as 
a result of collisions between atmospheric molecules and cosmic rays. The muons that are 
created have an average speed of 0.99c.
a Calculate the time it would take the muons to travel the 8.00 km through the Earth’s 

atmosphere to detectors on the ground according to Newtonian physics.
b Calculate the time it would take the muons to travel through the atmosphere according to 

a relativistic observer travelling with the muons.
c Muons have a very short half-life. Explain how measurements of muon counts at an 

altitude of 8.0 km and at the Earth’s surface can support the theory of special relativity.

42 In a high-energy physics laboratory electrons were accelerated to a speed of 0.950c.
a How long would scientists in the laboratory record for these electrons to travel a distance 

of 2.00 km at this speed?
b Calculate the time this takes in the reference frame of the electrons.

369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   164369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   164 04/01/2023   22:2704/01/2023   22:27



H
L O

N
LY

A.5   Relativity 165

Space–time
In Newton’s Universe, time and space are both invariant – they have fixed intervals that do not 
vary throughout either space or time. This means that in classical physics we can measure space 
and time independently. As we have seen, this is not true in a relativistic universe. If time and 
distance are not fixed, unvarying quantities in a relativistic universe, what quantities can we rely 
on? The answer is: space–time intervals.

In relativity, space and time are joined to form a single four-dimensional (x, y, z and t) concept 
called space–time.

This is very difficult to visualize, but space–time diagrams (discussed later) are very helpful.

TOK

The natural sciences
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?

We have seen throughout this topic and elsewhere in Theme A that sometimes physics produces results 
that seem to contradict our commonsense expectations but must logically be true. What are the different 
roles of imagination and intuition in making scientific knowledge? How do they relate to reason as a way 
of knowing?

In essence: things cannot move through space without also moving through time, simply because 
it takes time to move anywhere. Conversely, we cannot measure time without referring to things 
moving through space. If everything stayed in exactly the same place and nothing moved, we 
would have no indication that time was passing.

Space–time was a concept first introduced by Minkowski in 1908. He was Einstein’s former 
mathematics teacher. Einstein initially rejected the idea of space–time but then realized its 
importance and used it as a major stepping stone in the discovery of general relativity.

	■ Space–time interval

SYLLABUS CONTENT

 The space–time interval Δs between two events is an invariant quantity as given by: (Δs)2 = (cΔt)2 – Δx2 .

In classical physics, a distance, Δs, between two points, the length of a rod for example, in three-
dimensional space (x, y, z) can be calculated using Pythagoras’s theorem: (Δs)² = Δx² + Δy² + Δz². 
Although the coordinates of its ends may change when seen in different frames of reference, the 
length of the rod is always the same (invariant).

Similarly, a ‘distance’ (Δs) between two points in four-dimensional space–time (x, y, z, t) can be 
calculated from (Δs)² = c²Δt² − Δx² − Δy² − Δz². (Note: do not worry about the signs used here; 
different sources of information commonly use different sign conventions.) You are not expected 
to explain the origin of this equation.

The ‘distance’ Δs is called a space–time interval.

Since we are restricting direction to the x-direction only, space–time interval squared:

(Δs)2 = (cΔt)2 – Δx2

Different (inertial) observers may measure different time intervals and different distances 
between events, but they will agree on the space–time interval between events.

 ◆ Space–time diagrams 
Graphs showing variations 
of objects’ positions 
with time, adapted to 
compare different frames 
of reference. 

 ◆ Space–time interval, Δs  
A space–time interval 
combines both the spatial 
and temporal elements 
of space–time into a 
single value.

DB
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We know that an event that is measured to have coordinates (x, t) in the S reference frame can have 
different coordinates (x′, t′) in the S′ frame of reference. But observers in both reference frames 
will agree that the quantities [c2(Δt)2 – (Δx)2] and [c2(Δt′)2 – (Δx′)2] are equal.

c2(Δt′)2 – (Δx′)2 = c2(Δt)2 – (Δx)2

The importance of this will become clearer when we draw space–time diagrams in the next section.

A single laser pulse is made to trigger two explosion events as it travels through a long 
vacuum tube. The two events are 99 m apart and the time for the light to travel this distance 
is 3.3 × 10−7 s. Determine the space–time interval squared between the two events.

Answer
(Δs)2 = (cΔt)2 – Δx2 = [(3.00 × 108)2 × (3.3 × 10–7)2] – 992 = 0.0 m2

 WORKED EXAMPLE A5.12

The space–time interval for any two events linked by a photon travelling in a vacuum is always 
zero. Two events linked by an object travelling slower than c will have a positive space–time 
interval, while two events that are too far apart for a photon to travel between the two events in the 
time interval between them have a negative space–time interval.

Determine the space–time interval squared 
for an electron that is fired with a speed of 
5.93 × 10−7 m s−1 across a gap of 5.00 m.

Answer

Δt = 
Δx
v  = 

5.00
5.93 × 107 

 = 8.43 × 10–8 s
(Δs)2 = (cΔt)2 – Δx2

 = (3.00 × 108)2 × (8.43 × 10–8)2 – 5.002

 = 6.14 × 102 m2

The fact that the space–time interval 
between any two events is constant for all 
observers allows us to calculate how long a 

time an observer travelling in the electron’s 
reference frame will record between the two 
events. In this reference frame the electron is 
stationary and the start and finish lines move 
towards it with the start and finish events 
occurring at the electron.
This means that this observer is recording 
proper time and Δx′ = 0:
 (Δs)2 = (cΔt′)2 – (Δx′)2

 (Δt′)2 = 
(Δs)2

c2  

 Δt′ = 
6.14 × 102

(3.00 × 108)2
 
= 8.26 × 10–8 s

 WORKED EXAMPLE A5.13

We have seen that proper time interval and proper length can be considered as invariant quantities.
l a proper time interval, Δt0, is the time between two events that take place at the same location 

as the observer, so that Δx = 0. The space–time interval can then be written as:

Δs2 = c2Δt0
2 – Δx2 = c2Δt0

2 – 02 

Δs2 = c2Δt0
2

l the proper length of an object, L0, is its length when stationary in the same reference frame as 
the observer, so that Δt = 0. The space–time interval can then be written as:

Δs2 = c2Δt2 – Δx2 = c202 – Δx2 = – Δx2

Δs2 = – Δx2

The fact that Δs2 is negative is to do with how Δs2 is defined.
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	■ Space–time diagrams

SYLLABUS CONTENT

 Space–time diagrams.
 The angle between the worldline of a moving particle and the time axis on a space–time diagram is 

related to the particle’s speed as given by: tan θ = 
v
c.

The graphical representation of events seen in Figure A5.17 is called a space–time diagram. There 
are some similarities (but not many) with distance–time graphs. The axes represent the reference 
frame (coordinate system) of a specific inertial observer.

Space–time diagrams can be a very powerful method of explaining relativistic 
physics. They contain a lot of information, so we will try to build up the parts 
before putting a complete diagram together.

Space–time diagrams are normally drawn with the distance, x, on the horizontal 
axis and time, t, on the vertical axis. Although the vertical axis could just show 
time, more commonly it shows the speed of light multiplied by time, ct, because, 
as we will explain, this simplifies interpretation of the diagram with respect to 
space–time intervals. The units of the vertical axis, ct, are m, which is the same as 
on the horizontal axis. The scales on both axes are the same.

Events are represented as points in space–time. Just like an ordinary graph, the 
coordinates of the event are read off from the axes. In Figure A5.17 it is clear that, 
for an inertial observer in reference frame S, Event 0 occurs before Event 1. Event 0 
occurs at x = 0, ct = 0. Event 1 occurs at x = x1, t = t1 (ct1).

Events that occur on the same horizontal line are simultaneous. Events that occur on the same 
vertical line occur at the same location.

World lines

An object travelling through space–time can be imagined as a series of consecutive 
events. If we join up these events with a line, then we are plotting an object’s path 
through space–time. We call this path the object’s world line. In Figure A5.18 a straight 
world line is drawn showing that the object is moving through space with constant 
velocity relative to the observer. This particular world line does not pass through the 
origin because the object is observed a short time after the observer started their clock.

Consider Figure A5.19, which shows world lines with different gradients.

Since:

v = 
x
t

the gradient of a world line is given by:

ct
x

 = 
c
v
 

So, the steeper the gradient, the slower the object is travelling. The units are the same on each axis 
so that the gradient has no units.

An object that is stationary as seen by an observer in the same reference frame will appear as a 
vertical line because its x-coordinate does not change (Line 1). Line 2 represents a moving object. 
Line 3 represent faster movement. 

Event 1

Event 0
(0,0) x1 x

ct

ct1 (x1, ct1)

	■ Figure A5.17 Space–time diagram for 
an inertial reference frame, S, showing 
two events and their coordinates

world line

ct

x

	■ Figure A5.18 Space–time diagram 
showing how a series of events joined 
together produces an object’s world line

 ◆ World line The path 
that an object traces on a 
space–time diagram. 
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Line 4 is a central feature of space–time diagrams. It has a gradient of 1. 
(Assuming equal scales, the line will be at angle of 45° to both axes.) 
It represents v = c, that is, motion at the speed of light, which can only be 
light itself. 

All inertial observers agree on the value of c, so all observers must agree on 
the world line for light.

Note that it is not possible for a world line to have an angle θ of greater than 
45°, because that would represent an object moving with a speed greater 
than the speed of light.

Angles between world lines and ct-axis
Looking at Figure A5.19, we can see that:

tan θ = 
x
ct

 = 
v
c

The angle between the world line of a moving object and the ct-axis on a space–time diagram is 
related to the object’s speed as given by:

tan θ = 
v
c
, θ = tan–1 (vc)

Adding another frame of reference to a space–time diagram

This is what makes space–time diagrams so useful. Representing a second inertial reference 
frame on the same diagram is straightforward because the background space–time does not 
change and events remain in the same places, making it possible to compare how different 
observers perceive the same events.

The world lines seen in Figure A5.19 represent observations made of four objects in a particular 
frame of reference, S. Now let us consider how to represent the motion of any of those objects, 
number 2 for example, in its own frame of reference, S′, which is moving to the right with a speed 
v (= c tan θ).

If we were to draw a separate space–time diagram for S′, the world line of object 2 would be a 
vertical line, showing that it was stationary in its own frame of reference. However, the intention 
here is to draw and compare two (or more) frames of reference on the same diagram.

When we add the S′ frame of reference to the original S frame of reference, its space–time axis 
(ct′), which represents being stationary in its own frame of reference, must coincide with its world 
line in S. Its other space–time axis (x′) must be placed so that the pair of axes are symmetrical 
about the ct = x and ct′ = x′ line. See Figure A5.20.

The axes of the S′ frame of reference are tilted and not perpendicular to each other. To determine 
the coordinates of an event we draw lines parallel to the S′ axes, just as we do in the S frame of 
reference, as seen in Figure A5.17.

The coordinates of event 1 in S, x1 and ct1, transform to x′1 and ct′1 in S′.

Space–time diagrams like these give an immediate visualization that x1 ≠ x′1 and t1 ≠ t′1.

Space–time diagrams can be understood in a similar way to the graphs that you are used to, except 
that the grid lines are skewed rather than vertical and horizontal.

See Figure A5.21 in which, in reference frame S′, Events 1 and 2 occur at the same place, but 
at different times. The same two events in reference frame S occur at different places and 
different times.

Event 0

ct
1 2 3

4

θ

x

ct = x (v = c)

	■ Figure A5.19 Straight world lines

DB
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Now consider Figure A5.22, in which Events 3 and 4 are simultaneous for an observer in reference 
frame S′, but at different locations. The same two events in reference frame S occur at different 
locations and different times.

ct’ = x’

θ

θ

(0,0)

Event 0’

Event 1

ct

ct1

x1

x’1

x

x’

ct’

ct’1

	■ Figure A5.20 Space–time diagram showing 
the additional axes for reference frame S′ in blue

Event 1

Event 2

ct

ct’ S’

x

x’

Event 3

Event 4

ct’

ct1

S’

(0,0)

x’

ct

x

	■ Figure A5.21 Space–time diagram with 
dashed blue lines representing separate 
world lines for different points that are 
each stationary in reference frame S′

	■ Figure A5.22 Space–time diagram with 
dashed blue lines representing separate 
world lines for different points that occur 
at the same time in reference frame S′

Use Figure A5.23 to determine the speed of the reference frame shown in blue relative to 
the other reference frame.

0
0

1.0

2.0

3.0

5.0

4.0

x/m

ct2/m

ct
/m

x2/m

1.0 2.0 3.0 4.0

θ

	■ Figure A5.23

Answer

tan θ = 
v
c 

3.0
5.0 = 

v
c 

v = 0.60c

 WORKED EXAMPLE A5.14
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Use the Lorentz transformation equations 
to show that the x′-line has a gradient of v/c, 
and hence confirm that the angle between 

the x- and x′-axes is given by: tan θ–1 = (vc), 
as shown in Figure A5.24.

ct’

(0,0)

adj = ∆x

opp = c∆t
x’

ct

x
θ

	■ Figure A5.24 Space–time diagram showing 
the calculation of the angle formula

Answer
The equation for the x′-axis in terms of 
x and t can be found by setting t′ = 0 and 
using the Lorentz transformation for t′:

t′ = γ(t – 
vx
c2 ) = 0

So, the bracket = 0

t = 
vx
c2

ct = (vc) x
which is of the form y = mx

gradient = (vc) = 
cΔt
Δx  

= 
opp
adj

tan θ = 
opp
adj  

= (vc)
θ = tan–1 (vc) as required

 WORKED EXAMPLE A5.15

Remember how an observer could demonstrate that two 
events were simultaneous (see Figure A5.11). Draw a 
space–time diagram with reference frame S representing 
the observer on the train and S' representing the reference 
frame on the platform.
The light rays are sent out in opposite directions, so we 
need to draw a positive and a negative x-axis to allow us 
to position both the events (Figure A5.25).
Observer S sees:
l The pulses are sent out simultaneously (Event 0).
l The pulses reach each end of the carriage 

simultaneously (Events 1 and 2).
l The pulses return to observer S simultaneously 

(Event 3).
Observer S' sees:
l The pulses are sent out simultaneously (Event 0).
l The pulse that is fired down the carriage against the 

motion of the carriage must arrive at the end of the 
carriage (Event 1) before the pulse that is fired up 
the carriage arrives at the other end of the carriage 
(Event 2).

l However, S' still sees the pulses return to observer S 
simultaneously (Event 3); the geometry of the space–

time diagram gives us exactly the same outcome, 
demonstrating that events with no space–time interval 
are simultaneous for all observers, but events that occur 
in two separate places can be simultaneous for some 
observers but not for others.

Event 0

(0,0)

Event 1Event 2

Event 3

ct’

ct’3ct3

ct’2

ct1 = ct2
ct’1

x2x1

x’

ct

x
x’1

S
S’

	■ Figure A5.25 Space–time diagram for the thought experiment 
considering simultaneity, carried out in Figure A5.11. The red lines 
represent the world lines of the two reflecting light rays. The grey 
axes represent the inertial reference frame of the train carriage, S, 
while the blue axes represent the inertial frame of the platform, S’, 
with the train moving to the left. The dashed intersections with the 
timeline of each observer give their version of the order of events.

 WORKED EXAMPLE A5.16
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Lines of constant space–time interval

We have seen that space–time interval is in invariant quantity:

Δs2 = c2Δt2 – Δx2 = c2Δt′2 – Δx′2

This means that we can draw lines of constant space–time interval (sometimes called invariant 
hyperbole) on space–time diagrams.

Figure A5.26 shows four different frames of reference 
(travelling at different velocities) in different colours. The 
dotted lines are two examples of lines of constant space–time: 
Δs2 = 1 and Δs2 = −1.

Calculations using the coordinates (in any frame of 
reference) of any point on a line of constant space–time 
interval will give the same numerical result.

First consider the Δs2 = −1 line. The points at which the dotted 
line crosses all the x-axes corresponds to t = 0 and so on, so 
that all these points, in their different frames of reference, must 
have coordinates of (1, 0). c2Δt2 – Δx2 = −1 and so on, with t = 0.

If observers in each of the reference frames were measuring 
the length of a stationary rod, with one end at the origin of 
their reference frame (0, 0), they would all record the same 
proper length of the rod, 1 m.

(0,0) (1,0)

(1,0)

(0,1)

(0,1)

∆s2 = 1

∆s2 = –1

(1,0)

(0,1)

(1,0)

(0,1)

ct

x

ct’ ct’’ ct’’’

x’’’

x’’

x’

	■ Figure A5.26 Two lines of constant space–time interval

We can see immediately that:

The scales of the axes on space–time diagrams are not equal for different frames of reference.

The scales expand with greater velocity, as can be seen by comparing the lengths between the red 
dots in Figure A5.26.

Now consider the Δs2 = +1 line. The points at which the dotted line crosses all the ct-axes 
corresponds to x = 0 and so on, so that all these points, in their different frames of reference must 
have coordinates of (0, 1). c2Δt2 – Δx2 = 1 and so on, with x = 0.

43 a Use a ruler, calculator and Figure A5.27 to complete 
Table A5.1.

	■ Table A5.1

Event Coordinates in S (x, ct) Coordinates in S′ (x′, ct′)

A (0, 0) (0, 0)

B (0.4, 0.4)

C (1.6, 1.1) (1, 0)

D

E (0, 1)

F

G

b List the order in which the events occur according 
to observers in both reference frame S and reference 
frame S'.

(0,0) (1,0)
A

(0,1)

ct

x

B

E

F

G

C D

(0,1)

(1,0)

∆s2 = 1

∆s2 = –1

ct’

x’

	■ Figure A5.27 Space–time diagram showing seven events, 
labelled A to G, from two different reference frames
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Simultaneity in space–time diagrams

Remember that all inertial observers will agree that two events are 
simultaneous if they occur in the same place, but they may disagree as to 
the order of two events that occur at two different points in space. Figure 
A5.28 shows a space–time diagram with four different events. According 
to one observer, Event 0 occurs first followed by Events 1 and 2 occurring 
simultaneously, with Event 3 happening last. However, for the other observer 
Events 0 and 1 both occur simultaneously followed by Events 2 and 3 
occurring simultaneously.

Nature of science: Models

Visualization of models

The visualization of events in terms of space–time diagrams is an enormous advance in understanding 
the concept of space–time.

The Lorentz transformations we use to describe how we transfer from one reference frame to another 
are highly mathematical and make the topic very difficult to interpret in a non-mathematical way. The 
geometry of space–time diagrams appears initially quite confusing, but with practice provides an entirely 
different way of approaching relativity. This new dimension means that aspects of relativity become 
significantly more accessible – in particular, space–time diagrams readily explain whether or not events 
are simultaneous in different reference frames and explain the order of events seen by different observers.

With more practice, space–time diagrams also explain concepts such as time dilation and length 
contraction but they can also be used to understand relativistic velocity additions and to visualize why it 
is impossible to exceed the speed of light in a vacuum.

Time dilation in space–time diagrams

Look at a space–time diagram for the muon experiment (Figure A5.29). Using the angle formula 
actually gives an angle of 44.9° for v = 0.995c, but ct′ is drawn at less than this for clarity.

Event 1

Event 0

Δs2 = c2Δt’2

cΔt’

S’cΔt

S

ct

x

ct’

x’

    

Event 0 is the formation of a muon by the incoming cosmic 
radiation, while Event 1 is the arrival of the muon at the 
Earth’s surface. The black reference frame S is the Earth 
reference frame, while the blue reference frame S′ is that of 
the muon. An observer travelling with the muon measures 
the proper time between Events 0 and 1. To measure this on 
the scale of the vertical ct-axis we follow the dashed line of 
constant space–time interval from Event 1 to where it crosses 
the ct-axis, where it can be easily calculated by measuring 
the interval labelled cΔt′. The interval according to the 
observer in reference frame S can be calculated using cΔt.

	■ Figure A5.29 Space–time diagram of the muon-decay experiment. 

Event 0

Event 1

Event 2

Event 3

ct’

x’

ct

x

	■ Figure A5.28 Space–time diagram comparing 
simultaneity in different reference frames
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One of the problems with space–time diagrams is that the scales on the axes are not the same. 
We could use Lorentz transformations to carefully mark the scales on each axis, but there is a neat 
little trick that allows us to avoid this.

In the muon reference frame, Event 1 occurs a time Δt′ after Event 0, and both events occur at 
x′ = 0. This is because in the muon reference frame the rest observer will see the stationary muon 
formed in the atmosphere (Event 0) and then the Earth’s surface colliding with the stationary 
muon (Event 1) – the muon is stationary throughout. Thus, the observer measures the spatial 
separation between the two events to be zero, so the time, Δt′, is the proper time between the two 
events, shown correctly to scale on the ct-axis.

This occurs at a specific space–time interval, where Δs2 = c2Δt′ 2, and we can follow the dashed 
line that joins all the points with this same space–time interval. Where this crosses the vertical 
ct-axis it marks the equivalent interval as measured on the scale of the ct-axis. On the space–time 
diagram this is labelled cΔt′.

In the Earth reference frame, S, the time interval between Events 0 and 1 is significantly longer 
and can be found from the vertical coordinate of Event 1. This is marked as cΔt on the ct-axis. 
Since both measurements have been correctly scaled onto the ct-axis their lengths can now be 
directly compared, and it is clear that the proper time interval Δt′ is shorter than the stretched (or 
dilated) Δt time interval. Careful measurement from the ct-axis would show that cΔt = γcΔt′. Note 
that this equation may appear to be the wrong way round because S′ is measuring proper time.

44 Use the space–time diagram in Figure A5.30 and the Lorentz transformation equations to do 
the following calculations.

Event 1

Event 0

cΔt’

cΔt’ S’

cΔt

x = 10 ly

30º

30º

S

ct

x

ct’

x’

	■ Figure A5.30

a the velocity of an object that has a world line at 30°
b the value of γ for this speed
c the time, t, at which an observer in reference frame S will record the object to have 

travelled 10 ly (Event 1) at this speed
d the value of c∆t between Event 0 and Event 1.
e The graph is drawn correctly to scale. Measure the length of cΔt and cΔt′ on the ct-axis 

and show that the ratio of the measured lengths 
cΔt
cΔt′

  γ.

f State which reference frame is measuring proper time.
g Use time dilation to calculate the value of cΔt'.
h Mark the position of 14 ly on both the vertical black axes (S reference frame) and blue 

axes (S' reference frame) to show that the scales on the axes are different.

369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   173369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   173 04/01/2023   22:2704/01/2023   22:27



H
L O

N
LY

174 Theme A: Space, time and motion

Length contraction in space–time diagrams

Once again let us turn to the muon experiment as shown in Figure A5.31. The length being 
measured is the distance between the formation of the muons in the Earth’s atmosphere and the 
surface of the Earth.

Event 0

Event 0’

Worldline for
Earth’s surface

Worldline for
atmosphere

S’

Δs2 = L’2

L0

42º

S

L’

ct’

x’

ct

x
     

	■ Figure A5.31 Space–time diagram for the muon-
decay experiment used to demonstrate length contraction. 
The instantaneous separation between the atmosphere 
and the Earth’s surface in the muon reference frame 
must be measured in each reference frame.

In the previous section, the length contraction equation was harder to derive than the time-dilation 
equation because it required one more key piece of information – in order to measure a length 
correctly we must measure the position of each end of the length at the same time. In other words, 
the two space–time events used to determine the two ends of the length in a given reference frame 
must occur simultaneously in that reference frame.

This length is straightforward to measure in the Earth reference frame because it is simply the 
horizontal separation between the vertical worldline of the Earth’s atmosphere and the world line 
of the Earth’s surface. These are shown on the space–time diagram as the two vertical black axes. 
Because each is stationary in the Earth reference frame, the separation between them is a proper 
length and is labelled L0 on the diagram, where it could easily be measured on the x-axis.

In the muon reference frame, S′, the distance between the Earth’s atmosphere and the Earth’s 
surface can be measured using simultaneous events 0 and 0′, where the world line of the 
atmosphere and the world line of the Earth’s surface each cross the x′-axis. In the muon reference 
frame both events occur when t′ = 0, so they can be used to correctly measure the separation, L′ – 
it could be measured off the scale on the x′-axis but we would need to calculate the scale to do this.

Instead, we can sketch on the curve that links all the points with space–time interval Δs2 = −L′2. 
Extending this to the x-axis gives the separation between Events 0 and 0′ on the x-axis scale, 
where it can easily be measured. It can clearly be seen that the proper length is much larger than 
the contracted length, L′, confirming that length contraction occurs. Careful measurement would 
also show that:

L′ = 
L0

γ
Once again, the space–time diagram’s geometry has been able to represent the dynamics 
of relativity.

369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   174369917_05_IB_Physics 3rd_Edn_SEC_A_5.indd   174 04/01/2023   22:2704/01/2023   22:27



H
L O

N
LY

A.5   Relativity 175

45 In Figure A5.31 the angle between the x and x′-axes is also 42°.
a Calculate the relative velocity of the two frames of reference.
b Calculate the value of γ.
c Calculate the length of L′, if L0 = 1.0 m.
d Using a ruler, measure the ratio of L0 / L′ to confirm that this gives the value of γ.

46 Einstein’s first postulate stated that the laws of physics are the same in all inertial reference 
frames. This means that we should be able to show on a space–time diagram that an object 
that is stationary in reference frame S′ will also be measured as having a contracted length 
by an observer in S.

 Use Figure A5.32 to show that this is indeed the case by marking on the length as measured 
by S' on the x' axis and using the space–time interval curve to mark on the x'-axis the 
equivalent length as measured by S. Hence, use the measured lengths along the x'-axis to 
estimate the value for γ.

Event 0
Event 0’

S’

Δs2 = L’2

30º

ct’

x’

S

ct

x

	■ Figure A5.32
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176 Theme B: The particulate nature of matter

Thermal energy transfersB.1

• How do macroscopic observations provide a model of the microscopic properties of a substance?
• How is energy transferred within and between systems?
• How can observations of one physical quantity be used to determine the other properties of a system?

Guiding questions

Thermal energy, internal energy and heat
These three terms are often used interchangeably, which can be confusing! Unfortunately, 
different teachers and different books have varying interpretations, so it is important to clarify, 
from the beginning of this topic, exactly how these terms will be used in this course.

All substances contain particles / molecules which can have individual kinetic energies and 
potential energies. There are more details about this later in this topic. We will describe the total 
of all these particle energies as the internal energy of a substance. We will not describe the energy 
inside substances as thermal energy, or heat.

Energy is always transferred from hotter objects to cooler objects. We will describe this 
transfer as thermal energy, although the word ‘heat’ is also widely used to describe this type of 
energy transfer.

TOK

The natural sciences
l Does the precision of the language used in the natural sciences successfully eliminate all ambiguity?

Ambiguities

There is, perhaps, nowhere else in the study of physics where such important terms have such ambiguous 
uses. It is interesting to consider how this has arisen, why it is not corrected, and whether it is truly 
important.

If you understand the theory of particle energies inside matter, does it really matter if your teacher calls 
it ‘internal energy’, while a book refers to is as ‘thermal energy’ and your friend calls it ‘heat’? To what 
extent is precise language important to our understanding of underlying physics?

TH
E IB LEARNER PRO

FILE

 ◆ Ambiguity Open to 
different interpretations.

	■ Kinetic theory of matter

SYLLABUS CONTENT

 Molecular theory in solids, liquids and gases.

 Density, ρ, is given by:  ρ = 
m
V.
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The essential idea that all matter contains countless billions of particles constantly moving 
(in various ways), with forces between them when they get close enough, is possibly the most 
important theory in the whole of science. The microscopic kinetic theory of matter is the starting 
point that can be used to help explain so much of what we observe in our macroscopic everyday 
life. To begin with, it can explain the different properties of solids, liquids and gases.

Solids, liquids and gases

The ‘particles’ we are referring to in the kinetic theory are usually molecules, but they could 
also be ions, or atoms. Figure B1.1 shows a simplified visual model of particle arrangements. 
Table B1.1 offers generalized comments on the major differences.

solidliquidgas

	■ Figure B1.1 Particle arrangements

	■ Table B1.1 Differences between particles in solids, liquids and gases

 Solid Liquid Gas

Arrangement 
of particles

regular patterns no pattern no pattern

Forces 
between 
particles

attractive and large enough 
to keep particles in their 
positions

some particles have enough 
energy to overcome attractive 
forces

negligible (except in collisions) 
under most conditions

Separation of 
particles

close together still close together much further apart

Motion of 
particles

vibrate in fixed positions some limited random movement 
is possible

all move in random directions 
and usually with high speeds

Density

Clearly, the more massive the individual particles are, and/or the closer they are together, the 
greater will be the total mass of a given volume of a substance.

density = 
mass

volume
 ρ = 

m
V  

SI unit: kg m−3

When solids and liquids are heated to a higher temperature, they will usually expand slightly in 
size because there will be a very small increase in the separation of particles. This means that 
there will be a small decrease in their densities.

When gases are heated, they will only expand if they are in a container that will allow that 
to happen.

 ◆ Kinetic theory of 
matter All matter is 
composed of a very large 
number of small particles 
that are in constant motion. 

 ◆ Ions An atom or 
molecule that has gained or 
lost one or more electrons. 

 ◆ Atoms The 
particles from which 
chemical elements are 
composed. They contain 
subatomic particles. 

DB

 ◆ Expand Increasing in 
size. An expansion of a gas 
is an increase in volume. 
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178 Theme B: The particulate nature of matter

	■ Table B1.2 Typical values for densities (gases at 0 °C and normal atmospheric pressure)

Substance Density / kg m−3

helium 0.18

air 1.23

carbon dioxide 1.98

wood (pine, approx.) 500

ethanol 810

ice 910

water (at 20 °C) 998

water (at 4 °C) 1000

sea water (approx.) 1030

aluminium 2710

average density of Earth 5520

iron 7870

gold 19 300

black hole 1 × 1015

The particles in solids and liquids can be considered to be as close together as possible, that is, 
they are effectively ‘touching’ each other. Since gases are about 1000 × less dense than solids and 
liquids, their molecules are typically 10 molecular diameters apart from each other.

1 Calculate the density of olive oil in SI units, if a mass of 
125 g has a volume of 137 cm3.

2 An iron bar has the dimensions 5.0 × 5.0 × 25.0 cm. What 
is its mass?

3 Explain how we can conclude from Table B1.2 that the 
molecules in air are approximately 10 times further apart 
than the molecules in water.

4 Outline why ice floats on water. (Refer to buoyancy 
forces from Topic A.2.)

5 Water has its maximum density at 4 °C. How does this 
affect the formation of ice on, for example, a lake in very 
cold weather?

6 In everyday life the volume of liquids is more often 
measured in litres, l, (and cl and ml) rather than in m3 or 
cm3. 1 litre is a volume of 1000 cm3.

 Determine the volume, in litres, of some ethanol which 
has a mass of 1.0 kg.

7 It is common practice in many Asian countries to see 
people making merit by placing gold leaf on Buddhist 
images, as shown in Figure B1.2.

	■ Figure B1.2 Placing gold foil on a statue of Buddha

 Gold is extremely malleable – meaning that it can 
be hammered relatively easily into different shapes, 
including very thin foil (approximately 2 × 10–7 m).

 Predict what area of gold foil of thickness 1.80 × 10−5 cm 
can be made from each 1.0 g of gold.
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Temperature

SYLLABUS CONTENT

 Temperature difference determines the direction of the resultant thermal energy transfer between 
bodies.

 Kelvin and Celsius scales are used to express temperature.
 A change in temperature of a system is the same when expressed with the Kelvin or Celsius scales.

 Kelvin temperature is a measure of the average kinetic energy of particles: Ek = 
3
2kBT.

	■ Macroscopic understanding of temperature
In everyday life, temperature is a number obtained from a thermometer, which informs us how 
hot, or cold, something is. But this is a long way from an acceptable scientific definition. Thinking 
a little more deeply, we realize that temperature values tell us something about energy transfer: 
Energy always flows spontaneously from a hotter place to a colder place. As we have already 
noted, we will call this a flow of thermal energy.

The resultant flow of thermal energy is always from higher temperature to lower temperature.

Consider an isolated system such as shown in Figure B1.3. If there is no net transfer of thermal 
energy between A and B, then they must be at the same temperature, and we describe them as being 
in thermal equilibrium. Similarly for B and C. If B is in thermal equilibrium with A and C, then A 
and C are also in thermal equilibrium with each other, and at the same temperature.

Consider the simple example of a system of two objects (or substances) at different 
temperatures able to transfer thermal energy between themselves, but isolated from 
everything around them (their surroundings). The hotter object will transfer energy to the 
colder object and cool down, while at the same time the colder object warms up. As the 
temperature difference between the two objects gets smaller, so too does the rate of thermal 
energy transfer (as represented by the gradients of the graphs). This is represented in 
Figure B1.5, which shows how the temperature of two objects (A and B) might change when 
they are placed in good thermal contact with each other. Being in ‘thermal contact’ means 
that thermal energy can be transferred between them, by any means. But the phrase is most 
often used when referring to significant physical contact.

	■ Figure B1.4 This 
thermogram, taken 
using infrared radiation, 
uses colour to show 
different temperatures in 
a saucepan on a cooker. 
The scale runs from 
white (hottest) through 
red, yellow, green and 
blue to pink (coldest)

B

A

Time

Te
m

pe
ra

tu
re

	■ Figure B1.5 Two objects 
(A and B) at different 
temperatures, insulated 
from their surroundings but 
not from each other, will 
reach thermal equilibrium

Eventually A and B will reach the same temperature. If the temperatures have stopped changing 
and both objects are at the same temperature, the objects are in thermal equilibrium and there 
will be no net flow of thermal energy between them. In any realistic situation, it is not possible 
to completely isolate / insulate two objects from their surroundings, so the concept of thermal 
equilibrium may seem to be idealized.

20 ºC

20 ºC

20 ºC

A

B

C

	■ Figure B1.3 Thermal 
equilibrium: same temperature, 
no flow of thermal energy

 ◆ Thermal equilibrium 
All temperatures within a 
system are constant. 

 ◆ Thermal contact 
Objects can be considered 
to be in thermal contact 
if thermal energy (of any 
kind) can be transferred 
between them. 
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180 Theme B: The particulate nature of matter

The concept of hotter objects always getting colder, and colder objects always getting hotter, 
suggests an important concept: eventually everything will end up at the same temperature.

Temperature scales

Celsius scale of temperature
A temperature scale needs two fixed points. For the Celsius scale, these are the freezing point 
and the boiling point of pure water (under specified conditions). An instrument for measuring 
temperature, a thermometer, can then calibrated by marking these two points as 0 °C and 100 °C, 
and then dividing the interval between them into one hundred equal divisions. Higher and lower 
temperatures can then be determined by extrapolation. 

Kelvin scale of temperature
The choice of the two fixed points on the Celsius scale is arbitrary and mainly for convenience. 
However, there is a more logical scale – the Kelvin scale – that is widely used in science, 
but in everyday life, people around the world have become used to the Celsius scale (and 
Fahrenheit scale).

There is a temperature at which the kinetic energy of all particles reduces to (almost) zero. This 
is known as absolute zero and it is discussed in more detail in Topic B.3. On the Celsius scale 
absolute zero has the value of –273.15 °C. This temperature is the lower fixed point, zero, of the 
Kelvin temperature scale, which is sometimes described as the absolute temperature scale.

Zero kelvin (0 K) is the lowest possible temperature (= –273.15 °C)

The upper fixed point of the Kelvin scale also effectively uses the melting point of pure water 
which, for convenience, is given the value of +273.15 K. This scale defines the SI unit of 
temperature, the kelvin, K. Defining the Kelvin temperature scale in this way means that a change 
of temperature has the same numerical value in both the Celsius and the Kelvin scales. Table B1.3 
compares some Celsius and kelvin temperatures (to the nearest whole number).

The symbol T is used for temperature in kelvin. Θ is often used for a temperature in 
degrees Celsius.
	■ Table B1.3 A comparison of temperatures in degrees Celsius and Kelvin

Temperature °C K

absolute zero −273  0

melting point of water 0 273

body temperature 37  310

boiling point of water 100 373

Temperature in kelvin, T/K = temperature in Celsius, Θ/°C + 273

Common 
mistake
0 °C is simply the 
freezing point of pure 
water. It has no other 
meaning. It is not a ‘true’ 
zero. For example, it 
would be wrong to think 
that 20 °C was double the 
temperature of 10 °C.

 ◆ Celsius (scale of 
temperature) Temperature 
scale based on the melting 
point (0 °C) and boiling 
point (100 °C) of pure water.

 ◆ Thermometer An 
instrument for measuring 
temperature. 

 ◆ Kelvin scale of 
temperature Also 
known as the absolute 
temperature scale. 
Temperature scale based 
on absolute zero (0 K) 
and the melting point of 
water (273 K). The kelvin, 
K, is the fundamental 
SI unit of temperature. 
T (in K) = 0 °C + 273. 

 ◆ Absolute zero 
Temperature at which 
(almost) all molecular 
motion has stopped (0 K or 
−273 °C).

DB
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a The freezing point of ethanol is –114 °C. Convert this temperature into kelvin.
b  The melting point of aluminium is 933 K. Convert this temperature to degrees Celsius.
c  On a cold night the temperature dropped from +10 °C to −10 °C. Calculate this change 

of temperature in kelvin.

Answer
a T = −114 + 273 = 159 K
b Θ = 933 − 273 = 660 °C
c  (–10) – (+10) = −20 K

 WORKED EXAMPLE B1.1

Tool 2: Technology

Use sensors

Electronic sensors respond to a particular physical 
quantity by producing a corresponding voltage. That 
voltage must then be converted to digital form before 
it can be understood, processed and displayed by 
appropriate software. There are several possibilities, 
including where a separate data logger/interface, 
is connected between the sensor and a computer. 
See Figure B1.6.

Alternatively and more conveniently, the sensor may 
be connected to a corresponding all-in-one unit which 
processes and displays results. In some cases, a mobile 
phone app can be used. Bluetooth connections are 
also available.

The advantage of using sensors in this way are obvious:
l Data can be collected over very short times (less 

than a second), or times which are otherwise 
inconveniently long.

l A large amount of data can be gathered.
l The data can be stored.
l The data can be very quickly processed and 

graphs drawn.

The sensors which are in common use in physics 
experiments at this level include:
l position and motion
l pressure
l temperature
l sound level
l light level
l current and voltage
l magnetic field.

computerinterface box

www.africanews.com

boiling water

	■ Figure B1.6 Separate sensor, interface and computer
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182 Theme B: The particulate nature of matter

Measuring temperature, using sensors

In principle, any physical quantity which varies with 
temperature could be used to construct a thermometer. 
However, it is better to use a physical quantity that varies 
significantly and regularly over a wide range of temperatures. 
The most common types of thermometer involve:
l variation in length of a liquid along a thin (capillary) tube
l variation in pressure of a fixed volume of gas
l variation of electrical resistance
l variation in the voltage generated by wires of different 

metals joined together
l variation in infrared radiation from a surface.

The part of the thermometer which is used to measure 
the temperature is placed in good thermal contact with 
the material whose temperature is to be measured (except 
for infrared thermometers). After sufficient time for 
the thermometer to reach thermal equilibrium with the 
material, a reading can be taken. Other sources of thermal 
energy should be avoided. For example, when measuring 
air temperature, the thermometer should not be receiving 
thermal energy directly from the Sun.

Electronic resistance thermometers (sensors) have an 
obvious advantage in that they can provide immediate 
digital data when they are connected to a computer 
through an interface.

8 Convert the following kelvin temperatures into 
degrees Celsius: a 175 b 275 c 10 000.

9 The world’s highest and lowest recorded weather 
temperatures are reported to be 56.7 °C (California – see 
Figure B1.7) and −89.2 °C (Antarctica).
a State values for these temperatures in kelvin.
b  Some hot water at 68 °C cools down to 22 °C. What is 

this change of temperature in kelvin?

	■ Figure B1.7 The world’s highest temperature 
to date was recorded in California, USA.

10 The volume of a gas was 67 cm3 when the temperature 
was 22 °C.
a If the volume is proportional to the absolute 

temperature, calculate the volume if the temperature 
increases to 92 °C.

b Predict the volume if the gas temperature could be 
reduced to 0 K.

11 A student calibrated an unmarked liquid-in-glass 
thermometer. The liquid expands up a thin capillary tube 
as it gets hotter. She has correctly marked the upper and 
lower fixed points as 0 °C and 100 °C. The two marks 
were 10.7 cm apart.
a She then wanted to use her thermometer to measure 

room temperature and she left it in the laboratory for 
10 minutes. The level of the liquid was then 2.6 cm 
above the lower fixed point.

 Explain why the thermometer was left undisturbed 
for 10 minutes.

b Calculate a value for room temperature.
c State an assumption that you have to make to answer 

part b.

	■ Microscopic understanding of temperature
A true understanding of temperature is to be found in the kinetic theory of matter. 
Consider the example of two samples of the same gas, as shown in Figure B1.8. 
Suppose that the molecules on the right have a lower average kinetic energy (and 
speed) than the molecules on the left. After they have collisions, the faster moving 
molecules will slow down and the slower molecules will speed up (conservation of 
momentum in elastic collisions). In this way energy is transferred from the left to the 
right. This is equivalent to a transfer of thermal energy, so we must conclude that the 
left-hand side of the figure represents a higher temperature. Eventually, the average 
energies and speeds on both sides will become equal and a macroscopic interpretation 
would be that they were in thermal equilibrium at the same temperature.

Higher temperature Lower temperature

thermal energy transfer

	■ Figure B1.8 Energy transfers 
between molecules
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Average particle speed indicates different temperatures when we compare samples of the same 
gas. Increasing temperature corresponds to greater average speed. More generally, when we 
compare different gases, we need to consider the average kinetic energy of the particles, rather 
than their speeds.

Temperature (K) is proportional to the average random translational kinetic energy, Ek, of 
particles in a gas.

All gases, at the same temperature, contain particles with the same average translational 
kinetic energy.

The particles in most gases are molecules, which means that they also have other forms of 
kinetic energy (not just translational), for example, rotational kinetic energy and vibrational 
kinetic energy.

The all-important mathematical connection between macroscopic measurements of kelvin 
temperature, T, and the microscopic concept of individual molecular kinetic energies is provided 
by the Boltzmann constant in the following equation:

Average random translational kinetic energy of a gas particle: E = 
3
2
kBT

kB is known as the Boltzmann constant. It has the value 1.38 × 10−23 J K−1

Top tip!
In Topics A.2 and A.3 we discussed collisions between macroscopic objects, describing the collisions 
as either elastic (total kinetic energy of the objects is conserved) or inelastic. During inelastic collisions, 
energy is transferred to the surroundings, dissipated, mostly in the form of internal energy and thermal 
energy. That is, energy is transferred from the ordered kinetic energy of countless billions of particles 
moving together in the same direction in the objects as a whole, to the disordered random kinetic 
energies of individual particles.

Energy dissipation is a macroscopic concept and cannot be applied to microscopic particle collisions. 
Total kinetic energy can only decrease in a collision between two particles if it is used to cause ionization 
(see Topic B.5).

Calculate the average kinetic energy of translation of gas molecules at room temperature.

Answer
Using 20 °C (293 K) as room temperature,

Ek = 
3
2kBT = 1.5 × (1.38 × 10–23) × 293 = 6.1 × 10–21 J

 WORKED EXAMPLE B1.2

The energy of particles in liquids and solids is more complicated because of the significant forces 
between the particles. In general, however, the following is always true:

A temperature rise is equivalent to the particles gaining kinetic energy.

DB

DB

 ◆ Vibrational kinetic 
energy Kinetic energy due 
to vibration/oscillation.

 ◆ Boltzmann constant, 
kB Important constant that 
links microscopic particle 
energies to macroscopic 
temperature measurements. 

LINKING QUESTION
l How is the 

understanding of 
systems applied 
to other areas 
of physics?
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184 Theme B: The particulate nature of matter

12 Consider the gas in the previous worked example. If the particles have a mass of 
5.3 × 10−26 kg, use the equation for linear kinetic energy to estimate their average speed.

13 The surface temperature of the Sun is 5800 K. Calculate the average kinetic energy of the 
particles it contains, assuming that the equation in Worked example B1.2 can be applied.

14 A cylinder of gas contains gas molecules moving with an average speed of 400 m s−1, which is 
characteristic of their temperature of 20 °C. If the cylinder is then put on an aircraft which is 
moving at 200 m s−1, discuss what will happen to the average speed of the gas molecules and 
the temperature of the gas.

15 Nitrogen and oxygen are the two principal gases in air. Oxygen molecules are slightly more 
massive than nitrogen molecules. Explain how the average speeds of the molecules will 
compare in the air you are breathing.

TOK

Knowledge and the knower
l How do we acquire knowledge?
l To what extent are technologies merely extensions to the 

human senses, or do they introduce radically new ways of 
seeing the world?

Sense perception (of temperature)

‘Information’ received directly by receptors in the human 
body and then processed by our brains, is described as 
sense perception.

It is often said that we have five senses (hearing, sight, smell, 
touch and taste), but we also have a limited ability to detect 
changes in temperature and the flow of thermal energy into, 
or out of, our bodies. Most people are able to estimate the 
approximate temperature of the air around them.

However, this ‘way of knowing’ using sense perception can be 
unreliable. Whether we are hot or cold is a very common topic of 
conversation, but people in the same environment can sometimes 
disagree about the temperature that they sense. Being able to 

consult an instrument capable of measuring the temperature (a 
thermometer) has obvious advantages, in everyday life as well as 
in scientific experiments. However, such reliable measurements 
were not possible until about 300 years ago.

     
	■ Figure B1.9 Fahrenheit 

with his thermometer

A German physicist, Daniel Fahrenheit (Figure B1.9) invented 
the first accurate thermometer in 1709. He used the expansion of 
mercury along a thin tube.

	■ Internal energy
All substances contain moving particles. Moving particles have kinetic energy. The particles 
might be moving in different ways, which gives rise to three different forms of kinetic energy:
l  Particles might be vibrating about fixed positions (as in a solid) − this gives the particles 

vibrational kinetic energy.
l  Particles might be moving from place to place (translational motion) − this gives the particles 

translational kinetic energy in liquids and gases.
l  Molecules might also be rotating − this gives the molecules rotational kinetic energy.

Particles can have potential energy as well as kinetic energy. In solids and liquids, it is the electrical 
forces (between charged particles) that keep particles from moving apart or moving closer 
together. Wherever there are electrical forces there will be electrical potential energy in a system, 
in much the same way as gravitational potential energy is associated with gravitational force.  

 ◆ Sense perception 
How we receive 
information, using the five 
human senses.
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If the average separation of the particles in a solid or liquid increases, so too does their potential 
energy (and the total internal energy of the substance.)

In gases, however, the forces between molecules (or atoms) are usually negligible because of the 
larger separation between molecules. This is why gas molecules can move freely and randomly. 
The molecules in a gas, therefore, usually have negligible electrical potential energy – all the 
energy is in the form of kinetic energy.

So, to describe the total energy of the particles in a substance, we need to take account of both the 
kinetic energies and the potential energies. This is called the internal energy of the substance and 
is defined as follows:

The internal energy of a substance is the sum of the total random kinetic energies and total 
potential energies of all the particles inside it.

In the definition of internal energy given above, the word ‘random’ means that the particle 
movements are disordered and unpredictable. That is, they are not linked in any way to each other, 
or ordered – as their motions would be if they were all moving together, such as the particles in a 
macroscopic motion of a moving object. The particles in a moving object have both the ordered 
kinetic energy of macroscopic movement together and the random kinetic energy of internal energy.

Nature of science: Theories

Caloric fluid

An understanding of thermal energy and internal energy depends on the kinetic theory of matter, but that 
theory is less than 200 years old. Before that, ‘heat’ was often explained in terms of a vague invisible 
‘caloric fluid’ that flowed out of a hot object, where it was concentrated, to a colder place where it was 
less concentrated.

This is an example of one of many serious scientific theories that were developed to explain observed 
phenomena, but which were never totally satisfactory because they could not explain all observations. 
The earlier ‘phlogiston’ theory of combustion is another such theory related to heat and combustion.

Looking back from the twenty-first century, these theories may seem unsophisticated and inaccurate 
(but imaginative!). However, they should be judged in the context of their times, and at the time of these 
theories (seventeenth and eighteenth centuries) the kinetic theory of matter had not been developed, so 
the current understanding of the flow of thermal energy was not possible.

Thermal energy

SYLLABUS CONTENT

 Conduction, convection and thermal radiation are the primary mechanisms for thermal energy transfer.

Thermal energy is the name we give to the transfer of energy because of a temperature difference: 
a net flow from hotter to colder.

There are three principal ways in which thermal energy can be transferred:
l Thermal conduction. In which kinetic energy is transferred between particles.
l Convection. In which differences in the densities of liquids and gases result in their movement.
l Thermal radiation. In which electromagnetic radiation is emitted by surfaces.

We will discuss each of these in detail in the next three sections.
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186 Theme B: The particulate nature of matter

	■ Thermal conduction

SYLLABUS CONTENT

 Conduction in terms of the difference in kinetic energy of particles.
 Quantitative analysis of rate of thermal energy transferred by conduction in terms of the type of 

material and cross-sectional area of the material and the temperature gradient as given by:

 
ΔQ
Δt  = –kA 

ΔT
Δx

As mentioned earlier in this topic, when gas particles (usually molecules) have elastic collisions, 
the slower moving particles gain kinetic energy and the faster moving particles lose kinetic 
energy. In this way, over time, there will be a net transfer of energy from a place where particles, 
on average, are moving faster to a place where they are moving slower on average. That is, 
from hotter to colder. Such a transfer will continue until the whole of the gas has particles with 
the same average kinetic energy, when thermal equilibrium has been reached and a constant 
temperature reached.

Similar ideas can be applied to the transfer of energy between particles in liquids and solids. 
This type of thermal energy transfer, from particle to particle, is called thermal conduction. 
Figure B1.10 gives an impression of thermal conduction through a solid, although vibrations and 
increasing kinetic energy are not easily represented in a single picture!

Thermal conduction occurs because of the transfer of kinetic energy between particles.

	■ Figure B1.10 Thermal conduction through a solid

In solids, the particles vibrate in fixed positions, with forces between them. In Figure B1.10, the 
particles on the left-hand side are vibrating faster and have greater vibrational kinetic energy (on 
average) because the solid is at a higher temperature. Energy is transferred through the solid, to 
the right, because of the forces / interactions between particles.

Solids are generally better thermal conductors than liquids, and liquids conduct better than 
gases. This can be explained by considering the closeness of particles and the strength of forces 
between them.

Table B1.4 lists various substances and their thermal conductivities, which are explained later in 
this topic. A larger number means that the substance is better at conducting thermal energy: more 
energy is transferred under similar conditions. (Metals are good conductors because they contain 
many free / delocalized electrons.)

 ◆ Conduction (thermal) 
Passage of thermal energy 
through a substance as 
energy is transferred from 
particle to particle.

Common 
mistake
Many students think that 
thermal conduction only 
occurs in solids. This is 
not true, although some 
solids, especially metals, 
are by far the best 
thermal conductors. See 
Table B1.4.

Consider again Figure 
B1.10. The solid bar 
has gained its thermal 
energy by conduction 
from the hot gas in 
the flame.
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	■ Table B1.4 Typical thermal conductivities at room temperature (some approximate)

Substance
Thermal conductivity 

/ W m−1 K−1

vacuum 0.00

carbon dioxide 0.15

air 0.025

polyurethane foam 0.03

paper 0.05

rubber 0.13

wood 0.15

common plastics 0.2

water 0.59

concrete and brick 0.72

glass 0.86

carbon 1.7

ice 2.1

iron 84

aluminium 237

copper 385

We often describe a substance as being either a good thermal conductor or a good thermal 
insulator (poor conductor). However, these are not precisely defined terms, although it should be 
clear from looking at Table B1.4 that the last three are much better at conducting thermal energy 
than any of the rest. These three would be described as good thermal conductors; the rest are 
usually described as insulators.

16 How can you explain that a vacuum has a thermal 
conductivity of zero?

17 The last three substances in Table B1.4 are all good 
conductors of thermal energy. State what they have 
in common.

18 Compare the ability of air, water, glass and copper to 
conduct thermal energy. (Determine ratios.)

19 Explain why a metal door handle will often feel cooler 
than a plastic handle at the same temperature.

20 Discuss whether you would describe carbon as a 
conductor, or an insulator.

21 Explain the choice of materials in the manufacture of the 
frying pan shown in Figure B1.11.

	■ Figure B1.11 Frying pan

22 Outline the transfers of thermal energy represented in 
Figure B1.12.

cup of
coffee

	■ Figure B1.12 Transfer of thermal energy

 ◆ Insulator (thermal) A 
material that significantly 
reduces the flow of thermal 
energy.
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188 Theme B: The particulate nature of matter

23 Wetsuits are made from neoprene foam rubber (see 
Figure B1.13). Suggest how this can keep the surfer from 
getting too cold.

	■ Figure B1.13 Surfer wearing a wetsuit

Quantitative treatment of thermal conductivity

Consider Figure B1.14, which represents the flow of thermal 
energy by conduction through an isolated system of a specimen 
of a single substance, which has an area A, and a thickness Δx. 
The symbol Q will be used for thermal energy.

A flow of thermal energy occurs because the left-hand side is at 
a higher temperature than the right-hand side: TH > TC. 

The rate of thermal energy flow, ΔQ / Δt, will be proportional 
to the temperature difference, ΔT, and the area, A, but inversely 
proportional to the thickness, Δx. It also obviously depends on 
the thermal properties of the substance involved. In summary:

Rate of transfer of thermal energy by conduction:
ΔQ
Δt

 = kA
ΔT
Δx

k is a constant, different for each substance. It is called the thermal conductivity of the substance 
(as shown in Table B1.4). Unit: W m−1 K−1.
ΔQ
Δt

 is a flow of energy per second (a power) so it is measured in watts.

area A

∆x

TCTH

thermal energy, Q

	■ Figure B1.14 Thermal energy flowing through a block

DB

 ◆ Thermal conductivity, k  
Constant that represents 
the ability of a substance to 
conduct thermal energy. 
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The outside brick wall (single layer) of a house is 4.85 m × 2.88 m. It contains a closed glass 
window of dimensions 1.67 m × 1.23 m. On a hot afternoon the outside air temperature is 
34.0 °C, while it is 27.0 °C inside the room.
Use the equation above to calculate the flow of thermal energy through:
a the wall of thickness 25 cm
b the window of thickness 4.5 mm.
Use data from Table B1.4.

Answer

a 
ΔQ
Δt  

 = kA 
ΔT
Δx

  = 0.72 × ((4.85 × 2.88) – (1.67 × 1.23)) × 
7.0

0.25 

  = 2.4 × 102 W into the room.

b 
ΔQ
Δt  

 = kA 
ΔT
Δx

    = 0.86 × (1.67 × 1.23) × 
7.0

0.0045 

  = 2.7 × 103 W into the room.
The thermal conductivities of brick and glass are similar. Much more thermal energy flows 
through each cm2 of the glass because it is significantly thinner.
It should be noted that these calculations considerably overestimate the magnitude of 
thermal energy flows. This is because the surface temperatures of the glass and brick 
cannot be assumed to be the same as the surrounding air temperatures (as was done in 
answering the question).

 WORKED EXAMPLE B1.3

The best insulator for limiting thermal energy flowing out of, or into, homes is air. See Table B1.4. 
However, if the air can move, thermal energy can also be transferred by convection currents (see 
next section). Various kinds of foam consist mainly of air, but the foam limits the movement of 
that air. Figure B1.15 shows polyurethane foam between the outer and inner walls of the outside of 
a house. Similar insulation can be used under the roof and below the ground floor.

Parallel sheets of glass (known as double glazing), as seen in Figure B1.16, can be used to trap 
air and limit thermal energy flow through a window. Obviously, no foam can be put between the 
sheets of glass, but convection is limited by keeping the separation small. Double glazing has the 
added benefit of reducing the transfer of sound.

	■ Figure B1.15 
Foam insulation 
in a ‘cavity wall’.

	■ Figure B1.16 
Double glazing
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190 Theme B: The particulate nature of matter

24 In an experiment to measure the thermal conductivity of a disc of wood, a sample of area 
65 cm2 was used, with a thickness of 5.2 mm. When the surfaces of the wooden disc were 
kept at 0 °C and 100 °C, the flow of thermal energy through the wood was determined to 
be 16 W.

 Use this data to calculate a value for the thermal conductivity of the wood.

25 In 10 minutes, a total of 275 J of thermal energy was conducted through a block of material 
of area 12.5 cm2 when it had a temperature gradient of 4.2 °C cm−1 across it.
a Determine a value for the thermal conductivity of the material.
b Would you describe this material as a conductor or an insulator?
c Suggest a material it might have been.

26 a  If 5.6 W of thermal energy was flowing through each square metre of the insulating 
polyurethane foam seen in Figure B1.15, calculate the temperature difference between its 
surfaces if the foam had a thickness of 7.8 cm.

b Determine a value for the outside temperature if the thickness of the brick walls was 
10.9 cm and the inside temperature of the outer brick wall was 5.4 °C.

c Determine the inside temperature of the interior wall.
d  Sketch the arrangement and annotate your drawing with all the known data.

	■ Thermal convection

SYLLABUS CONTENT

  Qualitative description of thermal energy transferred by convection due to a fluid density difference.

When part of a fluid (gas or liquid) is heated, there will be a localized decrease in density. 
Because of increased buoyancy (see Topic A.2), the warmer part of the fluid will then rise and 
flow above the cooler part of the fluid, which has a slightly greater density. This movement of 
thermal energy in a fluid is called thermal convection. It is common for convection to produce 
currents and a circulation of a gas or liquid. Figures B1.17 and B1.18 show two common laboratory 
demonstrations of convection.

Thermal convection is the transfer of thermal energy because of the movement of a fluid due to 
changes in density.

movement
of hotter
water

movement
of cooler
water

coloured dye

	■ Figure B1.17 Demonstrating convection in water 	■ Figure B1.18 Demonstrating convection in air

 ◆ Convection Passage of 
thermal energy through 
liquids and gases due to the 
movement of the substance 
because of differences 
in density.
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There are large number of examples of convection currents, including:
l The water in heaters, saucepans, kettles, and so on, is supplied with energy (by thermal 

conduction) near the bottom of the container. The heated water rises, to be replaced by cooler 
water, which in turn will be heated. Convection currents ensure that the thermal energy 
spreads evenly throughout the water. See Figure B1.19.

l Room heaters are placed near to the floor, but air-conditioners are near the ceiling.
l The coolest part of a refrigerator is near the bottom.
l Water is mixed in the oceans and lakes by convection currents.
l Molten material in the Earth’s core circulates because of convection.
l Convection currents occur in the very hot cores of stars, including the Sun.
l Formation and movement of clouds and storms depend on convection.
l The Earth’s climate and weather patterns are controlled by convection.
l The direction of winds near coasts depends on convection.
l Smoke usually rises because of convection, but a lack of convection can make air pollution 

problems worse.

27 Outline how the experiment shown in Figure B1.18 is 
demonstrating convection in air.

28 Figure B1.20 shows a tube of water being heated near to 
the water surface. A metal gauze is keeping some ice at 
the bottom of the tube.

Bunsen
burner

steam
boiling water

water

ice

metal gauze

     
	■ Figure B1.20 Tube of 

ice being heated

a Explain what this demonstration shows us about the 
transfer of thermal energy in water.

b Predict and explain how the observations will change 
if the gauze is removed, allowing the ice to rise, and 
the water is heated at the bottom of the tube.

29 Convection currents in the air often flow from the sea 
towards the land. This is because, in the daytime, the 
land changes temperature quicker, and gets warmer, than 
the sea. Sketch an annotated diagram to help to explain 
this phenomenon.

30 Discuss what features of the clothing of the Antarctic 
explorer seen in Figure B1.21 keep the explorer warm.

	■ Figure B1.21 Antarctic explorer

31 Outline the cooking process (in terms of thermal energy 
transfers) for the pizza seen in Figure B1.22.

	■ Figure B1.22 Pizza oven

	■ Figure B1.19 Convection 
of water in a saucepan
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192 Theme B: The particulate nature of matter

 ATL B1A: Thinking skills 

Being curious about the 
natural world
Under certain weather conditions, the normal 
convection currents which rise from the Earth’s 
surface can be greatly reduced. This can result 
in trapping air pollutants that would usually 
disperse. Use the search term ‘temperature 
inversion’ to research into this phenomenon and 
write a 200–300 word summary. 	■ Figure B1.23 The polluting effects of a 

temperature inversion over Almaty in Kazakhstan

	■ Thermal radiation

SYLLABUS CONTENT

 Quantitative description of energy transferred by radiation as a result of the emission of 
electromagnetic waves from the surface of a body, which in the case of a black body can be modelled 
by the Stefan–Boltzmann law as given by: L = σAT4, where L is the luminosity, A is the surface area 
and T is the absolute temperature of the body.

 The emission spectrum of a black body and the determination of the temperature of the body using 
Wien’s law: λmaxT = 2.9 × 10–3 mK, where λmax is the peak wavelength.

All matter / objects emit electromagnetic waves because of the movement of charged particles 
within their atoms. (There is no need to understand this process.) This is called thermal 
radiation. Electromagnetic waves are explained in Topic C.2. Most commonly this radiation is 
called infrared, but if the temperature is hot enough, visible light is also emitted.

A flame (Figure B1.24) is an obvious example, producing significant amounts of electromagnetic 
radiation: we can detect the infrared by holding a hand near the flame, and detect the light with 
our eyes. Figure B1.4 showed the infrared emitted by a saucepan.

Although it is true to say that thermal radiation is emitted continuously by all matter at all 
temperatures, we tend to only notice it coming from hot objects. The power of the emitted 
radiation from any surface depends on:

Top tip!
This section on thermal 
radiation requires some 
understanding of waves, 
radiation and spectra, 
all of which are covered 
in Theme C. If you have 
not been introduced to 
these topics before, it 
may be better to delay 
the study of this section 
(thermal radiation) until 
after Topics C.2 and C.3 
have been studied.

 ◆ Emit To send out from 
a source.

 ◆ Thermal radiation 
Electromagnetic radiation 
emitted because of the 
movement of charged 
particles in the atoms of all 
matter at all temperatures. 
Most commonly, infrared.

 ◆ Infrared 
Electromagnetic radiation 
emitted by all objects 
(depending on temperature) 
with wavelengths longer 
than visible light. 

	■ Figure B1.24 Thermal radiation from a flame

1 Surface temperature The radiated power is proportional 
to the fourth power of the surface temperature (in kelvin), 
T4. This means, for example, a metal bar at 600 K (323 °C) 
will emit 24 = 16 times as much radiation as the same bar 
at 300 K (23 °C).

2 Surface area The radiated power is proportional to the 
area, A.

3 Nature of the surface See next section.

Note that the emitted power is not dependent on the chemical 
nature of the material.
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Good absorbers and good emitters of 
thermal radiation

Dark surfaces, especially black, are the best absorbers of 
thermal radiation. White and shiny surfaces reflect and 
scatter radiation well, so that they are poor absorbers. 
(Scattering is explained later in this topic.) The Sydney 
Opera House (Figure B1.25) is a poor absorber of thermal 
radiation. (The word absorption describes something taking 
in something else, a sponge absorbing water, for example.)

Any surface which is a good absorber of radiation will 
also be a good emitter. Black surfaces emit and absorb 
radiation well; white surfaces are poor at absorbing 
and emitting.

	■ Figure B1.25 Sydney Opera House.

 ◆ Absorption When the 
energy of incident particles 
or radiation is transferred 
to other forms within 
a material. 

 ◆ Black body An idealized 
object that absorbs all 
the electromagnetic 
radiation that falls upon 
it. A perfect black body 
also emits the maximum 
possible radiation.

 ◆ Black-body radiation 
(spectrum) Radiation 
emitted from a ‘perfect’ 
emitter. The characteristic 
ranges of different 
radiations emitted at 
different temperatures 
are commonly shown in 
graphs of intensity against 
wavelength.

Black bodies

A perfect black body is the term we use to describe an object which has a surface which 
absorbs all of the infrared and light (and other electromagnetic radiation) that falls on it.

No light is reflected, so we are unable to see a black body, except in outline (unless it is also 
hot enough to emit visible radiation: light). This is easily defined and understood; however, a 
perfect black body is also a perfect emitter of thermal radiation, but what exactly does that mean? 
Obviously, it cannot mean that all of the energy in the surface is emitted instantaneously!

All surfaces emit a range of different wavelengths with different powers, and this varies with 
temperature. A perfect black body emits the maximum possible thermal radiation, and this is best 
described graphically by a black-body emission spectrum, as shown in Figure B1.26, for three 
different high temperatures. A curve for 300 K (27 °C) would be too small to show on the scale 
of this graph and it would have its maximum value at a wavelength of about 10 × 10−6 m, which is 
well off the horizontal scale to the right.

We can see from the graph that, as temperatures increase, more power is emitted and the 
wavelength at which the maximum power is emitted, λmax, becomes smaller.

At 3000 K, only a small proportion of the emitted radiation is visible light. This proportion 
increases with temperature and, if the surface it hot enough, some ultraviolet radiation will also 
be emitted.

If an object is heated (without chemical reactions occurring), a metal bar for example, it will begin 
to emit visible light (the red end of the spectrum) at about 850 K. If the temperature rises, other 
colours will be emitted, combining to give the overall effects seen in Figure B1.27.

Note that ‘perfect’ emitters are called black bodies, but that does not mean that they will always 
appear black. The Sun has a surface temperature of about 5800 K and it is a good example of a 
black body, so we may assume that it absorbs all the radiation falling on it; however, it is so hot 
that it emits enormous quantities of visible light. We are familiar with the visible spectrum, but its 
full black-body spectrum extends into the infrared and ultraviolet.
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	■ Figure B1.26 Black-body emission spectra at three different temperatures
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	■ Figure B1.27 Colours of hot surfaces

Since everything emits thermal radiation, all bodies are continuously emitting and receiving 
radiation. In practice, we may assume that one of these is insignificant compared to the other. 
For example, the radiation absorbed by the Sun is insignificant compared to the energy it emits. 
However, this is not true when we consider the Earth. See next Topic B.2: Greenhouse effect.

The total power, P, emitted (across all wavelengths) from a perfect black body of surface area A 
can be calculated from the Stefan–Boltzmann law:

power emitted from a black body, P = σAT4

σ is known as the Stefan–Boltzmann constant. It has the value of 5.67 × 10−8 W m−2 K−4

 ◆ Stefan–Boltzmann law 
An equation that can be 
used to calculate the total 
power radiated from the 
surface of a black body, 
P = σAT4. σ is known as 
the Stefan–Boltzmann 
constant.

DB
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When referring to celestial objects (stars, for example), the emitted power is usually called 
luminosity, as discussed below.

A metal wire is heated (by an electric current) to a uniform 632 °C. If its length, l, is 80 cm 
and its radius, r, is 1.6 mm, calculate the total power it radiates into its surroundings.
Assume that it acts as a perfect black body (which is almost true).

Answer
Surface area, A = 2πrl 
= 2π × 0.0016 × 0.80 = 8.04 × 10−3 m2

P = AσT4 = (8.04 × 10−3) × (5.67 × 10−8) × (632 + 273)4 = 3.1 × 102 W

DB

 WORKED EXAMPLE B1.4

Top tip!
We can also use the same equation for the energy absorbed by an object from its surroundings:

P
A

 = σT4

If the surrounding temperature is Ts, then the overall (net) radiant energy flow per second from, or to, a 
black body of area A is: P = σAT 4 – σATs

4.

For example, using this equation, we can calculate that a black-body surface at 100 °C radiates thermal 
energy at a rate of 1.1 kW m−2.

At the same time, if the surrounding temperature is 20 °C, it will be receiving energy at a rate of 0.42 kW m−2.

Tool 2: Technology

Use sensors

Infrared scanners and hand-held thermometers 
(Figure B1.28) have become commonplace in recent 
times. They detect the thermal radiation emitted by our 
skins and other surfaces. Their advantages are obvious: 
they are quick and easy to use, and they do not involve 
any physical contact. But they have their limitations.

Infrared scanners assume that all skin behaves as a perfect 
black body. That is, the results from skins of different 
colours or textures are approximately the same. The 
radiation coming from the skin is focused onto a detector 
which effectively determines the power and calculates the 
corresponding temperature of the emitting surface.

If the distance between the skin and the detector 
increases, the detector may receive less radiation from 
each square millimetre but may receive from a greater 
overall area: it depends on the geometry of the situation. 	■ Figure B1.28 Infrared thermometer

 ◆ Celestial objects Any 
naturally occurring objects 
that can be observed 
in space.
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196 Theme B: The particulate nature of matter

Wien’s displacement law
There is a straightforward inverse relationship between surface temperature, T, and the 
wavelength at which the maximum power is received, λmax.

T ∝ 
1
λmax

This is known as Wien’s displacement law:

λmaxT = 2.9 × 10–3 mK

Determine the temperature corresponding to a surface which emits its maximum power 
with a wavelength of 5.8 × 10−7 m. 

Answer
λmaxT = 2.9 × 10−3

5.8 × 10−7 × T = 2.9 × 10−3

T = 5.0 × 103 K This is consistent with Figure B1.26.

 WORKED EXAMPLE B1.5 ◆ Wien’s displacement 
law Relationship between 
absolute temperature and 
the wavelength emitted 
with maximum power 
by a black body at that 
temperature.

DB

Although a ‘perfect’ black body is an idealized concept, the 
following may approximate to the ideal:
l very hot objects
l dark and dull surfaces
l water
l human skin
l ice
l soil
l vegetation

In Topic B.2, we will introduce the numerical concept of 
emissivity: the ratio of the power radiated per unit area by 
a surface compared to that of an ideal black surface at the 
same temperature.

	■ Figure B1.29 The Great Lakes in North America 
appearing dark / black from Space

32 Give an everyday example of:
a a dark surface being good at absorbing 

thermal energy
b a dark surface being good at emitting thermal energy
c a white or shiny surface being good at reflecting 

thermal energy
d a white or shiny surface being poor at emitting 

thermal energy.

33 a Calculate the maximum thermal power radiated away 
from each square centimetre of a coffee cup which 
has a surface temperature of 40 °C.

b Explain why your answer will be an overestimate of 
the actual power emitted.

34 An object’s surface is at 25 °C. Determine the 
temperature (°C) to which it would have to be heated in 
order to double the thermal radiation that it radiates.

35 A water storage tank is in sunlight most of the day and 
its surface reaches a constant temperature of 36 °C. At 
night the surroundings cool to 23 °C. Estimate the net 
flow of radiant thermal energy from each square metre of 
the tank’s surface assuming that the surface temperature 
remains constant.
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36 An (unclothed) human body has an average skin 
temperature of about 35 °C.
a Estimate a value for the area of the skin of a 

typical adult.
b i Show that the power emitted from this area is 

about 1 kW. 
ii What assumption did you need to make? 

c 1 kW is a large radiated power, outline why the body 
does not cool down quickly. What assumption do you 
need to make?

37 At what wavelength is the maximum infrared power 
emitted from your skin?

38 Explain how emergency ‘survival blankets’, as seen in 
Figure B1.30, can protect people against dangerous loss 
of thermal energy. They are made of thin plastic sheets 
with reflective coatings. 	■ Figure B1.30 Survival blankets for long distance runners

Thermal radiation and stars

SYLLABUS CONTENT

 The concept of apparent brightness, b.
 The luminosity of a body as given by: b = 

L
4πd2.

Luminosity
As explained previously, the power emitted by a celestial body (across all wavelengths) is called 
its luminosity. The Stefan–Boltzman law can be restated with respect to stars as:

luminosity of a star (or other body), L = σAT4

The Pole Star (north), Polaris, has a surface area of 8.5 × 1021 m2 and a surface temperature 
of 6.0 × 103 K.
a Determine an approximate value for its luminosity.
b  Compare its luminosity to that of the Sun (3.8 × 1026 W).

Answer
a L = σAT4  (5.67 × 10–8) × (8.5 × 1021) × (6.0 × 103)4  6.2 × 1029 W

b 
6.2 × 1029

3.8 × 1026  1600

  Polaris has a luminosity about 1600 times greater than the Sun.

 WORKED EXAMPLE B1.6

 ◆ Luminosity 
(stellar) Total power 
of electromagnetic 
radiation emitted by a star 
(SI unit: W).

DB
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198 Theme B: The particulate nature of matter

We can write Polaris’s luminosity as L = 1600 L⊙

Luminosity of stars is often given in terms of the luminosity of the Sun, L⊙

L⊙ = 3.8 × 10
26 W

There is no conduction or convection across the near-vacuum of space and the stars can be 
considered to be perfect black bodies. There is also no significant absorption of thermal energy 
in space (except where the distances are enormous). All this means that developing a basic 
understanding of thermal energy transfers across space is fairly straightforward.

All stars (except the Sun) appear as point sources of light. The only differences we can see with 
telescopes are their brightness and slight differences in colour. More than 2000 stars can be seen 
in Figure B1.31. Some may appear larger than others in the picture, but this effect is only because 
they are brighter.

     

	■ Figure B1.31 Sagittarius 
Star Cloud taken from 
the Hubble telescope

There are two possible reasons why one star may appear brighter than 
another. The brighter star may be emitting more power (more luminous), 
and/or it may be closer to Earth.

Differences in the colours of stars seen in Figure B1.31 may be attributed to 
differences in surface temperatures, as explained above. 

Sirius is the brightest star in the night sky. Observations of its spectrum 
show that λmax = 2.92 × 10−7 m. Using Wien’s law, astronomers can 
determine that it has a surface temperature of 9930 K. Figure B1.27 
confirms that Sirius will appear slightly blue in colour. To locate Sirius 
in the night sky we can use a star map, which highlights groups of 
stars (constellations). Sirius can be seen close to the constellation of 
Orion, with its well-known three stars apparently in a line – Orion’s belt. 
See Figure B1.32.

Betelgeuse

Orion’s belt

Sirius

Orion

	■ Figure B1.32 Locating Sirius in the night sky

 ◆ Star map Two-
dimensional representation 
of the relative positions of 
stars as seen from Earth.
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B.1   Thermal energy transfers 199

Apparent brightness and intensity
We could describe the luminosity of a star as its actual brightness, but that is different from what 
we detect here on Earth, which is called a star’s apparent brightness. Stars of equal luminosity 
will have different apparent brightnesses on Earth if they are different distances away. Consider 
Figure B1.33, which represents three stars of equal luminosity at different distances from Earth. If 
the apparent brightness of star A is b, then apparent brightness of star B is b/22, while star C has an 
apparent brightness of b/32.

Earth

A
3d

2d

d

B

C

	■ Figure B1.33 Comparing apparent brightnesses

Apparent brightness is a measure of the intensity of the radiation from the star which 
reaches Earth. SI unit: W m−2

The intensity, I, of radiation (or waves) is the power, P, transferred through unit area 
(perpendicular to the direction of energy transfer).

intensity = 
power
area  

I = 
P
A 

SI unit: W m−2

A solar panel close to the Earth’s surface 
has dimensions 3.2 m × 1.6 m. How much 
total power is received when the intensity 
of radiation falling perpendicularly on the 
panel is 739 W m−2?

Answer

I = 
P
A 

739 = 
P

(3.2 × 1.6) ⇒ P = 3.8 × 103 W

 WORKED EXAMPLE B1.7

If we assume that thermal radiation from a star like the Sun 
spreads out equally in all directions without absorption, 
then at a distance d from the star, the same total power, 
L, is passing through an area 4πd2 (the surface area of an 
imaginary sphere), as shown in Figure B1.34.

apparent brightness: b = 
L

4πd 2

The apparent brightness of the Sun is important information 
in Topic B.2.

This equation is an example of an inverse square law (the 
apparent brightness is inversely proportional to the distance 
squared), of which there are several in this course.

	■ Figure B1.34 A star’s radiation spreading out

imaginary sphere
of surface area 4   d2

(not to scale)

star

luminosity, L
d

planet
π

DB

 ◆ Inverse square law For waves / energy / particles / fields 
spreading equally in all directions from a point source without 
absorption or scattering, the intensity is inversely proportional to the 
distance squared, I ∝ 1/x2 (Ix2 = constant). 

 ◆ Apparent brightness, b 
Intensity (power / area) of 
radiation received on Earth 
from a star (SI unit: W m–2). 

 ◆ Intensity, I Wave 
power / area: I = P/A 
(SI unit: W m−2).
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200 Theme B: The particulate nature of matter

Figure B1.35 shows an alternative visual representation: radiation is spreading out from a point 
source equally in all directions, but without absorption. The same power passes through greater 
areas as it travels away from the source.

An inverse square law represents the fact that a physical quantity is divided by 22 if the distance 
from a source is doubled and divided by 32 if the distance from a source is trebled, and so on.

Source

r

2r

3r

	■ Figure B1.35 Radiation spreads to cover four times the area at twice the 
distance (2r) and nine times the area at three times the distance (3r)

More generally, intensity: I ∝ 
1
r2 

or Ir2 = constant

Tool 3: Mathematics

Linearize graphs

Straight lines are much easier to understand and analyse than curved lines, but when raw 
experimental data are plotted against each other (x and y, for example), the lines are often 
curved rather than linear.

Data that give an x–y curve can be used to draw other graphs to check different possible 
relationships. For example:
l A graph of y against x2 could be drawn to see if a straight line through the origin is 

obtained, which would confirm that y was proportional to x2.

l A graph of y against 
1
x that passed through the origin would confirm that y was 

proportional to 
1
x. In which case x and y are said to be inversely proportional to 

each other.

l A graph of y against 
1
x2 passing through the origin would represent an inverse 

square relationship.

Figure B1.36 shows graphs of the most common relationships.

369917_06_IB_Physics 3rd_Edn_SEC_B_1.indd   200369917_06_IB_Physics 3rd_Edn_SEC_B_1.indd   200 04/01/2023   20:4504/01/2023   20:45



B.1   Thermal energy transfers 201

x0

Proportionality

Inverse proportionality

gradient = = constant
y
x

0

y

1
x

x0

1
x2

redraw

0

y

1
x

0

gradient = = constant
y
x2

y
1/x2

0

y

x0

redraw

0

y

x20

gradient = = constant (= yx)
y

1/x

0

y

1
x2

x0

redraw

0

y

0

gradient = = constant (= yx2)

0

y

x0

redraw

0

y

x0

gradient = = constant
y
x

0

y

	■ Figure B1.36 Some common graphical relationships, showing how curves can be replotted to produce straight lines

LINKING QUESTION
l Where do inverse square relationships appear in other areas of physics?

Forces around point sources in gravitational and electric fields follow inverse square laws (Topics D.1 
and D.2).
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202 Theme B: The particulate nature of matter

The star Betelgeuse has a luminosity of 126 000 L⊙ and an apparent brightness of 
1.4 × 10−7 W m−2. Determine its distance from Earth.

Answer

b = 
L

4πd2 

1.4 × 10–7 = 
(126 000 × 3.8 × 1026)

4πd2  ⇒ d = 5.2 × 1018 m

 WORKED EXAMPLE B1.8

Determining astronomical distances
The distance to ‘nearby’ stars can be determined from geometrical calculations made with 
measurements of the apparent locations of the stars at different times of the year (explained in 
Topic E.5), But this method is not possible with most stars because they are so far away that there 
is no detectable movement in their apparent locations: most stars remain in exactly the same 
positions as seen on a map of the stars. See Figure B1.32 for an example of part of a star map.

In principle, the equation b = 
L
4πd 2

 can be used to determine the distance, d, to any star if we 

measure its apparent brightness, b, but only if we know its luminosity, L. However, for most stars 
we have no direct way of knowing their luminosities.

Fortunately, astronomers have identified a few ‘standard candles’. These are stars which have 
known luminosities, including a type of supernova and Cepheid variables, as explained below.

Nature of science: Patterns and trends

Cepheid variable stars, a type of 
‘standard candle’

In 1908, Henrietta Swan Leavitt (see Figure B1.37) discovered 
that a certain type of star, called a Cepheid variable, had a 
variable luminosity, the maximum value of which could be 
determined from the time period of its variation (typically a 
few days).

	■ Figure B1.37 Henrietta Swan Leavitt

Figure B1.38 shows the graphical relationship between the periods 
of Cepheid variable stars and their luminosity as multiples of the 
Sun’s luminosity, L⊙.
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	■ Figure B1.38 Cepheids’ variable luminosities

From the graph, for a period of 30 days, the luminosity,  
L ≈ (1.0 × 104) × (3.83 × 1026) ≈ 3.8 × 1030 W. If a Cepheid variable 
star has an apparent brightness of 8.4 × 10–8,

b = 
L

4πd 2

8.4 × 10–8 = 
3.8 × 1030

4πd2  
⇒ d ≈ 1.9 × 1018 m

This distance is approximately 200 light years. A light year is the 
distance travelled by light in one year.

 ◆ Standard candles 
Term used by astronomers 
to describe the fact that 
the distance to a galaxy 
can be estimated from 
a knowledge of the 
luminosity of a certain 
kind of star within it.
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B.1   Thermal energy transfers 203

Tool 3: Mathematics

Use units where appropriate: Light year

Astronomical distances are huge. The nearest star to Earth, 
other than our Sun, (Alpha Proxima), is 4.02 × 1016 m away. 
It becomes convenient to use larger units than metres and 
kilometres in astronomy. The following are non-SI units.

The light year (ly) is the distance travelled by light in 
one year: 

1 ly = (3.00 ×108) × 365 × 24 × 360 = 9.46 ×1015 m

(A light year is defined to be exactly a distance of 
9 460 730 472 580 800 m.)

In light years, the distance to Alpha Proxima is 4.25 ly.

The parsec is another widely used unit for distance in 
astronomy (see Topic E.5).

DB

39 The surface area of the Sun is 6.1 × 1018 m2 and it has a 
surface temperature of 5780 K.
a Determine the total thermal power that it emits 

(luminosity).
b Describe the colour of the visible light emitted by 

the Sun.

40 The star Betelgeuse, seen in Figure B1.32, has a surface 
temperature of 3500 K.
a Describe its colour.
b At what wavelength does it emit radiation at the 

greatest rate?

41 If a star has a luminosity which is 1000 times greater 
than the Sun and a surface temperature of 15 000 K, 
predict its surface area compared to the Sun.

42 An LED lamp emits light energy equally in all directions 
with a total power of 4.1 W.
a Calculate the intensity falling on a book which is 

2.34 m away.
b Determine the distance from the lamp where the 

intensity is 0.40 W m−2.

43 The star Antares is 550 light years from Earth and it has 
a luminosity of 2.9 ×1031 W.
a Calculate its apparent brightness as viewed from 

Earth. (Antares is the 15th brightest star in the sky.)

b Its radius is approximately 700× the radius of the Sun 
(7.0 × 108 m). Calculate its surface temperature.

c Suggest why this star is described as a ‘red (super) 
giant’. Figure B1.39 compares the size of Antares to 
the Sun.

Sun

Antares

     
	■ Figure B1.39 The size of 

Antares compared to the Sun

44 Outline the concept of a ‘standard candle’, as used to 
determine the distance to galaxies.

45 A certain type of supernova had a luminosity of 
1.4 × 1036 W. If its apparent brightness was 1.9 × 10−6 W m−2, 
determine its distance from Earth in light-years.

46 Calculating a distance in answers to questions similar 
to question 43 assumes that there is no absorption of 
thermal energy as it travels through space. However, 
there will certainly be some absorption over distances 
as large as these. Discuss how this could affect the 
calculated answer to question 43.

Nature of science: Observations

Understanding the Universe

Astronomers have developed an impressive understanding of 
the Universe, especially with recent technological advances in 
the detection of remote sources of radiation. Amazingly, all this 
knowledge has been deduced from thermal and electromagnetic 
radiation received on Earth, or satellites in orbit.

	■ Figure B1.40 Herschel Space Telescope (ESA: 2009–2013)
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204 Theme B: The particulate nature of matter

Heating and cooling

SYLLABUS CONTENT

 Quantitative analysis of thermal energy transfers, Q, with the use of specific heat capacity, c, using: Q = mcΔT.

The dotted blue straight line in Figure B1.41 shows how the temperature of an object, heated at a 
constant rate, would change  with time under the idealized circumstances of no thermal energy 
losses to the surroundings. The best way of supplying a constant power is with an electrical heater. 
The temperature rises by equal amounts in equal times. However, thermal energy losses to the 
surroundings are unavoidable, so the curved red line represents a more realistic situation. The 
curve shows that the rate of temperature rise decreases as the object gets hotter. This is because 
thermal energy losses are higher with larger temperature differences. If energy continues to be 
supplied, the object will eventually reach a constant temperature when the input power and rate 
of thermal energy loss to the surroundings are equal (assuming that there are no chemical or 
physical changes).

When something is left to cool naturally, the rate at which thermal energy is transferred away 
decreases with time because it also depends on the temperature difference between the object and 
its surroundings. See Figure B1.42.

room temperature
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m
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Time

	■ Figure B1.41 A typical graph of temperature 
against time for heating at a constant rate
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Time

	■ Figure B1.42 A typical graph of temperature against 
time for an object cooling down naturally to room 
temperature. Note how the gradient decreases with time

Tool 3: Mathematics

Interpret features of graphs: gradient

Figure B1.42 shows another example of determining rates of change from gradients of 
a graph. In this case, as can be seen on the figure, the gradients and rates of change are 
negative and decrease in magnitude with time. Three examples are shown in Figure B1.42, 
but ideally, larger triangles should be used.
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B.1   Thermal energy transfers 205

	■ Specific heat capacity
In order to compare how different substances respond to heating, we need to know how much 
thermal energy will increase the temperature of the same mass (1 kg) of each substance by the 
same amount (1 K, or 1 °C). This is called the specific heat capacity, c, of the substance. (The word 
‘specific’ is used here simply to mean that the heat capacity is related to a specified amount of the 
material, namely 1 kg.)

The specific heat capacity of a substance is the amount of energy needed to raise the temperature 
of 1 kg of the substance by 1 K. (SI Unit: J kg−1 K−1, but °C−1 can be used instead of K−1.)

The values of specific heat capacity for some common materials are given in Table B1.5.
	■ Table B1.5 Specific heat capacities of some common materials

Material Specific heat capacity / J kg−1 K−1

copper 390

aluminium 910

water 4180

air 1000

dry earth 1250

glass (typical) 800

concrete (typical) 800

steel 420

Substances with high specific heat capacities heat up slowly compared with equal masses of 
substances with lower specific heat capacities (given the same power input). Similarly, substances 
with high specific heat capacities will cool down more slowly. It should be noted that water has an 
unusually large specific heat capacity. This is why it takes the transfer of a large amount of energy 
to change the temperature of water and the reason why water is used widely to transfer energy in 
heating and cooling systems.

If a quantity of thermal energy, Q, was supplied to a mass, m, and produced a temperature rise of 
ΔT, we could calculate the specific heat capacity from the equation:

c = 
Q

mΔT
 

This equation is more usually written as follows:

thermal energy transferred, Q = mcΔT

When a substance cools, the thermal energy transferred away can be calculated using the 
same equation.

Figure B1.43 shows two laboratory experiments to determine specific heat capacities of a a metal, 
and b water, or another liquid. The energy is supplied by immersion heaters at a constant rate 
electrically and can be measured directly by a ‘joulemeter’. (Alternatively, the energy can be 
calculated from voltage × current × time. See Topic B.5.)

To use the equation shown above to determine specific heat capacity it is necessary to determine 
the amount of thermal energy that was transferred to raise the temperature of a known mass by a 
known amount.

 ◆ Specific heat capacity, c 
The amount of energy 
needed to raise the 
temperature of 1 kg of a 
substance by 1 K. 

Common 
mistake
The unit for specific 
heat capacity is very 
often written incorrectly 
by students.

DB

 ◆ Immersion heater 
Heater placed inside a 
liquid or object.
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	■ Figure B1.43 Determining the specific heat capacity of a a metal, b water

Suppose that in an experiment similar to that shown in Figure B1.43a, a metal block of 
mass 1500 g was heated for exactly 5 minutes with an 18 W heater. If the temperature of 
the block rose from 18.0 °C to 27.5 °C, calculate its specific heat capacity, assuming that no 
energy was transferred to the surroundings.

Answer

c = 
Q

mΔt 
and Q = Pt

c = 
18 × (5 × 60)

[1.5 × (27.5 – 18.0)] 
= 3.8 × 102 J kg–1 °C–1

 WORKED EXAMPLE B1.9

In making such calculations, it has to be assumed that all of the substance was at same 
temperature and that the thermometer recorded that temperature accurately at the relevant 
times. (The thermometer is measuring a temperature that is changing.) In practice, both of these 
assumptions might lead to significant inaccuracies in the calculated value. Furthermore, in 
any experiment involving thermal energy transfers and changes in temperature, there will be 
unavoidable losses (or gains) from the surroundings. If accurate results are required, it will be 
necessary to use insulation to limit these energy transfers, which in this example would have led 
to an overestimate of the substance’s specific heat capacity (because some of the energy input 
went to the surroundings rather than into the substance). The process of insulating something 
usually involves surrounding it with a material that traps air (a poor conductor) and is often 
called lagging.

Inquiry 2: Collecting and processing data

Interpreting results

In an experiment similar to that seen in Figure B1.43b, the temperature of 210 g of water rose 
from 22.4 °C to 30.7 °C when 7880 J were supplied.
1 Calculate a value for the specific heat of water.
2 Is this an accurate experiment? (Calculate percentage difference from the accepted value.)
3 Estimate the uncertainty in the raw data and then calculate the absolute uncertainty in the 

processed result.
4  Compare your answers to 2 and 3 and suggest why they are different.

 ◆ Lagging Thermal 
insulation.

369917_06_IB_Physics 3rd_Edn_SEC_B_1.indd   206369917_06_IB_Physics 3rd_Edn_SEC_B_1.indd   206 04/01/2023   20:4504/01/2023   20:45



B.1   Thermal energy transfers 207

	■ Thermal capacity
Many everyday objects are not made of only one substance, so that referring to a specific amount 
(a kilogram) of such objects is not useful. In such cases we refer to the thermal capacity of the 
whole object. For example, we might want to know the thermal capacity of a room and its contents 
when choosing a suitable heater or air conditioner. The thermal capacity of an object is the amount 
of energy needed to raise its temperature by 1 K. (Unit: J K−1 or J °C−1)

thermal capacity = 
Q
ΔT

 

How much thermal energy is needed to increase the temperature of a kettle and the water 
inside it from 23 °C to 77 °C if its thermal capacity is 4800 J K−1?

Answer
Q = thermal capacity × ΔT = 4800 × (77 − 23) = 2.6 × 105 J

 WORKED EXAMPLE B1.10

When answering these questions, assume 
that no energy was transferred to, or from, 
the surroundings.

47 Calculate how much energy is needed to 
raise the temperature of a block of metal 
of mass 3.87 kg by 54 °C if the metal has a 
specific heat capacity of 456 J kg−1 K−1.

48 Determine the specific heat capacity of 
a liquid that requires 3840 J to raise the 
temperature of a mass of 156 g by 18.0 K.

49 A drink of mass 500 g has been poured 
into a glass of mass 250 g (of specific heat 
capacity 850 J kg−1 °C−1) in a refrigerator.

 Calculate how much energy must be 
removed to cool the drink and the glass 
from 25 °C to 4 °C. (Assume the drink has 
the same specific heat capacity as water.)

50 A 20 W immersion heater is placed in a 
2.0 kg iron block at 24 °C for 12 minutes.

  Calculate the final temperature. (Specific 
heat capacity of iron = 444 J kg−1 °C−1.)

51 An air conditioner has a cooling power 
of 1200 W and is located in a room 
containing 100 kg of air (specific heat 
capacity 1000 J kg−1 °C−1) at 30 °C.

 Determine the minimum possible 
temperature after the air conditioner has 
been switched on for 10 minutes.

52 A water heater for a shower is rated at 
9.0 kW. Water at 15 °C flows through it at a 
rate of 15 kg every 3 minutes.

 Predict the temperature of the water in 
the shower.

53 A burner on a gas cooker raises the 
temperature of 500 g of water from 24 °C 
to 80 °C in exactly 2 minutes.

 What is the effective average power of 
the burner?

54 If the thermal capacity of a room and its 
contents were 3.5 × 105 J K−1, estimate how 
long it would take a 2.5 kW heater to raise 
the temperature from 9 °C to 22 °C.

	■ Exchanges of thermal energy
Figure B1.5 showed the temperature–time graphs of two objects, originally at different 
temperatures, placed in good thermal contact so that thermal energy can be transferred relatively 
quickly, assuming that the system is insulated from its surroundings. Under these circumstances 
the thermal energy given out by one object is equal to the thermal energy absorbed by the other 
object. Exchanges of thermal energy can be used as an alternative means of determining a specific 
heat capacity, or in the determination of the energy that can be transferred from a food or a fuel. 

 ◆ Thermal capacity The 
amount of energy needed 
to raise the temperature 
of a particular object by 
1 kelvin. 
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208 Theme B: The particulate nature of matter

Calorimetry is the name used to describe experiments that try to accurately measure the 
temperature changes produced by various physical or chemical processes. Energy transfers can 
then be calculated if the masses and specific heat capacities are known. Calorimetric techniques 
may involve specially designed pieces of apparatus, called calorimeters, which are designed to 
limit thermal energy transfer to, or from, the surroundings.

A large metal bolt of mass 26.5 g was heated in an  
oven until it reached a constant temperature of 312 °C.  
(See Figure B1.44.)
It was then quickly transferred into 294 g of water 
initially at 22.1 °C.
The water was stirred and it reached a maximum 
temperature of 24.7 °C.
a Explain why it was necessary to stir the water.
b Calculate how much thermal energy was 

transferred from the bolt to the water. (Assume 
no energy went to the surroundings.)

c Determine a value for the specific heat capacity of the metal from which the bolt 
was made.

d Suggest which metal the bolt was made from.

Answer
a To make sure that all the water was at the same temperature.
b Q = mcΔT = 0.294 × 4180 × (24.7 – 22.1) = 3.20 × 103 J
c Thermal energy transferred to the water = thermal energy transferred from the bolt
  3.20 × 103 = (mcΔT)bolt = 0.0265 × c × (312 − 24.7)
 c = 4.20 × 102 J kg−1 °C−1

d Steel (see Table B1.5)

thermometer

thread used to
transfer hot bolt300 ml

250 ml

200 ml

150 ml

100 ml

50 ml

	■ Figure B1.44 A hot metal 
bolt placed in cold water

 WORKED EXAMPLE B1.11

When answering these questions, assume that no energy was 
transferred to, or from, the surroundings.

55 What mass of water with a temperature of 18 °C has 
to be mixed with 1.5 kg of water at 83 °C to produce a 
combined temperature of 55 °C?

56 5 coins, each of mass 8.8 g, were left in some boiling 
water for a few minutes. They were then very quickly 
transferred to 98 g of water at 20.7 °C. The water was 
stirred and its temperature rose to a maximum of 23.6 °C.

a Calculate the specific heat capacity of the metal alloy 
used in the coins.

b  Explain why the coins were transferred quickly.

57 When 5.6 g of wood was completely burned in a 
calorimeter the temperature of 480 g of water rose from 
22.7 °C to 64.6 °C.
a How much thermal energy was transferred to the 

water from the burning wood?
b Calculate a value for how much energy can be obtained 

from the combustion of a kilogramme of this wood.

 ◆ Calorimeter Apparatus 
designed for (calorimetry) 
experiments investigating 
thermal energy transfers. 
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B.1   Thermal energy transfers 209

	■ Changes of phase

SYLLABUS CONTENT

 A phase change represents a change in particle behaviour arising from a change in energy at 
constant temperature.

 Quantitative analysis of thermal energy transfers, Q, with the use of specific latent heat of fusion and 
vaporization of substances, L, using: Q = mL.

A phase of matter is a definite region of space in which all the physical and chemical properties 
of the substance contained in that space are the same. For example, a bottle containing water 
and oil has two different (chemical) phases of matter. A bottle containing water and ice has two 
different physical phases of matter.

(The word phase has another, totally different, meaning in physics: as explained in Topic C.1, the 
phase of an oscillation (or a wave) describes the fraction of an oscillation that has occurred since 
an agreed reference point.)

Water, ice and steam are commonly described as examples of the three states of matter. 
Generally, in physics, the terms ‘phase’ and ‘state’ tend to be used interchangeably.

When thermal energy is transferred to a solid it will usually get hotter. However, for many solid 
substances, once they reach a certain temperature they will begin to melt (change from a solid to a 
liquid), and while they are melting the temperature does not change (Figure B1.45), even as energy 
continues to be supplied. This temperature is called the melting point of the substance, and it has 
a fixed value at a particular air pressure (Table B1.6). Melting is an example of a phase change. 
Another word for melting is fusion.

Te
m

pe
ra

tu
re

Time

melting
point

liquid

all melted

melting

starts to melt

solid

	■ Figure B1.45 Temperature changes as a solid is 
heated and melted (note that the lines are curved only 
because of energy transferred to the surroundings)
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m
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Time

liquid
all solid

solid

solidifying

starts
to

solidify

	■ Figure B1.46 Temperature changes when 
a liquid cools and freezes (solidifies)

Similarly, when a liquid cools, its temperature will be constant at its melting point while it changes 
phase from a liquid to a solid (Figure B1.46). This process is known as solidifying or freezing. 
But be careful − the word ‘freezing’ suggests that this happens at a low temperature, but this is not 
necessarily true (unless we are referring to turning water into ice, for example). The phase changes 
of water are such common events in everyday life that we all tend to think of them as the obvious 
examples but, of course, many other substances can melt and freeze. For example, the freezing 
(melting) point of chocolate is variable but is approximately 30 °C to 40 °C, so many chocolates, 
but not all, will melt when in contact with skin, see Figure B1.47.

A change of phase also occurs when a liquid becomes a gas (or vapour), or when a gas (or 
vapour) becomes a liquid (Figure B1.48). A vapour is any gas at a temperature such that it can 
be condensed by pressure alone. The change of phase from a gas (or vapour) to a liquid can be by 
boiling or evaporation (it may also be called vaporization). Changing from a gas (or vapour) to a 

 ◆ Phase (of matter) 
A substance in which all 
the physical and chemical 
properties are uniform. In 
physics, the term phase 
change is used to describe 
changes between solids, 
liquids and gases of the 
same substance.

 ◆ States of matter Solid, 
liquid or gas (or plasma). 

 ◆ Melting Change from 
a solid to a liquid. Usually 
at a specific temperature 
(melting point).

 ◆ Fusion (thermal) 
Melting.

 ◆ Freeze Change from 
a liquid to a solid. Also 
called solidify.

 ◆ Evaporation The 
change from a liquid 
to a gas (vapour) at any 
temperature below the 
boiling point of the liquid. 
Occurs only at the liquid 
surface. 

 ◆ Vaporization Change 
from a liquid to a vapour 
(gas) by boiling or 
evaporation. A vapour 
is a gas which can be 
condensed by pressure.

 ◆ Boiling Change from 
a liquid to a gas / vapour 
throughout the liquid at a 
precise temperature.
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210 Theme B: The particulate nature of matter

liquid is called condensation. The temperature at which boiling occurs is called the boiling point 
of the substance, and it has a fixed value for a particular air pressure (see Table B1.6).

The shape of graph showing the temperature change of a liquid being heated to boiling will look 
very similar to that for a solid melting (Figure B1.45), while the graph for a gas being cooled will 
look very similar to that for a liquid freezing (Figure B1.46).

evaporating or boiling

condensing

melting (fusion)

freezing (solidification)

	■ Figure B1.48 Changes of phase	■ Figure B1.47 Melting chocolate

	■ Table B1.6 Melting points and boiling points of some substances (at normal atmospheric pressure)

Melting point Boiling point

Substance °C K °C K

water 0 273 100 373

mercury −39 234 357 630

alcohol (ethanol) −117 156 78 351

oxygen −219 54 −183 90

copper 1083 1356 2580 2853

iron 1538 1811 2750 3023

Melting, freezing, boiling and condensing are known as phase changes.

Boiling and evaporation

In a liquid the molecules will always have a range of different random kinetic 
energies that are continuously transferred in interactions / collisions between 
them. This means there will always be some molecules near the surface that 
have enough energy to overcome the attractive forces that hold the molecules 
together in the liquid. Such molecules can escape from the surface and this 
effect is called evaporation. See Figure B1.49.

Evaporation occurs only from the surface of a liquid and can occur at any 
temperature, although the rate of evaporation increases significantly with rising 
temperature (between the melting and boiling points).

Boiling occurs at a precise temperature – the temperature at which the molecules have enough 
kinetic energy to form bubbles inside the liquid. Boiling points can vary considerably with 
different surrounding air pressures.

Evaporation occurs from the surface of a liquid over a range of temperatures. Boiling occurs 
throughout a liquid at a precise temperature.

 ◆ Condense Change from 
a gas or vapour to a liquid.

LINKING QUESTION
l How can the phase 

change of water be 
used in the process 
of electricity 
generation?

This question links 
to understandings in 
Topic D.4.

some fast-moving molecules
escape from the liquid surface

the average KE decreases, so the
liquid cools

	■ Figure B1.49 Molecules leaving 
a surface during evaporation

LINKING QUESTION
l What role does 

the molecular 
model play in 
understanding other 
areas of physics?

This question links 
to understandings in 
Topics B.3 and B.4.
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B.1   Thermal energy transfers 211

The loss of the most energetic molecules during evaporation means that the average kinetic energy 
of the molecules remaining in the liquid must decrease (until thermal energy flows in from the 
surroundings). This microscopic effect explains the macroscopic fall in temperature (cooling) that 
always accompanies evaporation from a liquid.

Using the cooling effect of evaporation
Sweating – Our bodies produce tiny droplets of water on our skin. See Figure B1.52. When the 
water evaporates it removes thermal energy from our bodies and helps to keep us cool.

Cooling buildings – The cooling effect produced by water evaporating has been used for 
thousands of years to keep people and buildings cool. For example, in central Asia open towers 
in buildings encouraged air flow over open pools of water, increasing the rate of evaporation and 
the transfer of thermal energy up the tower by convection currents. The flow of air past people in 
buildings also encourages the human body’s natural process of cooling by sweating.

Refrigerators – Modern refrigerators rely on the cooling produced when a liquid evaporates. The 
liquid/gas used is called the refrigerant. Ideally it should take a large amount of thermal energy 
to turn the refrigerant from a liquid into a dense gas at a little below the desired temperature. 
In a refrigerator, for example, after the refrigerant has removed thermal energy from the food 
compartment, it will have become a gas and be hotter. In order to re-use it and turn it back into 
a cooler liquid again, it must be compressed and its temperature reduced. To help achieve this 
thermal energy is transferred from the hot, gaseous refrigerant to the outside of the refrigerator 
(Figure B1.50).

cold vapour
(low pressure)

cooling compartment

warm vapour

compressor/pump

heat exchanger
(refrigerant condenses

to a liquid)

expansion valve
(refrigerant evaporates)

	■ Figure B1.50 Schematic diagram of a refrigerator

Air-conditioners use the same principle as refrigerators.

Outdoor misting systems – Outdoor misting systems (see Figure B1.51) are becoming 
increasingly popular. Tiny water droplets are sprayed out of nozzles and quickly evaporate, 
cooling the air, or people on whom the droplets fall.

 ◆ Refrigerant Fluid 
used in the refrigeration 
cycle of refrigerators, 
air conditioners and 
heat pumps.
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212 Theme B: The particulate nature of matter

	■ Figure B1.51 Cooling mists in a restaurant

 ATL B1B: Communication skills 

Clearly communicate complex ideas in 
response to open-ended questions

Humidity and fans

The cooling effect of sweating on the human body is greatly 
affected by the humidity of the surrounding air.

Air contains unseen water vapour that has evaporated from 
plants and various water surfaces. At 20 °C each cubic metre 
of air can contain up to a maximum of 17 g of invisible water 
vapour. As the temperature increases, each cubic meter of air can 
contain more water. For example, at 30 °C the maximum is 30 g.

Humidity is a measure of the amount of water vapour in air 
compared to the maximum possible. For example, at 20 °C if 
there is 17 g m−3, the humidity is said to be 100%, but, if there 
is 8.5 g m−3, the humidity is 50%, which is often reported to be 
about the most comfortable humidity for people.

With greater humidity in the surrounding air, it is more difficult 
for water to be evaporated from the skin in the process of 
sweating, and so the cooling effects are reduced.

	■ Figure B1.52 Sweat cools us by evaporation

Fans can be very useful in helping to keep people cool, but they 
do not directly reduce temperatures.

Research and explain in your own words how a fan might help to 
keep someone cool.

 ◆ Humidity A measure of 
the amount of water vapour 
present in air. 
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B.1   Thermal energy transfers 213

58 Suggest why the boiling point of a liquid depends on the surrounding air pressure.

59 Some spaghetti is being cooked in boiling water in an open pan on a gas cooker. Discuss 
what happens if the gas flow is increased so that more thermal energy is transferred to 
the water.

60 Explain why wet clothes will dry more quickly outside on a windy day.

61 Why will water spilt on the floor dry more quickly if it is spread out?

Latent heat

To melt a solid, or boil a liquid, it is necessary to transfer thermal energy to the substance. 
However, as we have seen, melting and boiling occur at constant temperatures, so that the energy 
supplied is not being used to increase molecular kinetic energies (which change with temperature). 
Because there is no change of temperature, the thermal energy transferred during a phase change 
is called latent heat (latent means hidden).

The latent heat supplied is used to produce the molecular re-arrangements that characterize the 
differences between solids and liquids, and liquids and gases. Latent heat is used to overcome 
intermolecular forces and to increase molecular separations. This will increase molecular potential 
energies. In the case of melting, some forces are overcome and there is a slight increase in average 
separation, but in the case of boiling all the remaining forces are overcome as the molecules move 
much further apart.

When a liquid freezes (solidifies), the same amount of energy per kilogram is emitted as was 
needed to melt it (without a change in temperature). Similarly, boiling and condensing involve 
equal energy transfers.

The concept of specific latent heat brings a mathematical treatment to this subject:

The specific latent heat of a substance, L, is the amount of energy transferred when 1 kilogram 
of the substance changes phase at a constant temperature.  Q = mL SI units: J kg−1

The latent heat associated with melting or freezing is called specific latent heat of fusion, 
Lf. The latent heat associated with boiling or condensing is known as specific latent heat of 
vaporization, Lv.

As an example, the specific latent heat of fusion of lead is 2.45 × 104 J kg−1 and its melting point is 
327 °C. This means that 2.45 × 104 J is needed to melt 1 kg of lead at a constant temperature of 327 °C.

Experiments to determine specific latent heats (water is often used as a convenient example) have 
many similarities with specific heat capacity experiments. Usually, an electric heater of known 
power is used to melt or boil a substance – Question 65 overleaf describes such an experiment.

The latent heats of vaporization of water and ethanol are 2.27 × 106 J kg−1 and 8.55 × 105 J kg−1.
a State and explain which one is ‘easier’ to boil (at the same pressure).
b Calculate how much thermal energy is needed to turn 50 g of ethanol into a gas at its 

boiling point of 78 °C.

Answer
a It is ‘easier’ to boil ethanol because less energy is needed to turn each kilogram into a gas.
b Q = mL = 0.050 × (8.55 × 105) = 4.3 × 104 J

 WORKED EXAMPLE B1.13

 ◆ Latent heat Thermal 
energy that is transferred 
at constant temperature 
during any change of 
physical phase. 

DB

 ◆ Specific latent heat, 
Lf or Lv The amount of 
energy needed to melt 
(fusion) or vaporize 1 kg 
of a substance at constant 
temperature. 
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214 Theme B: The particulate nature of matter

62 Some water was heated in an open 2250 W electric kettle. 
When it reached 100 °C the water boiled and in the next 
180 s the mass of water reduced from 987 g to 829 g.
a Use these figures to estimate the latent heat of 

vaporization of water.
b  Explain why your answer is only an estimate. Is it an 

underestimate, or an overestimate?

63 The latent heat of fusion of a certain kind of chocolate 
is 1.6 × 105 J kg−1. Predict how much thermal energy is 
removed from you when a 10 g bar of chocolate melts in 
your mouth.

64 Outline why you would expect that the latent heats of 
vaporization of substances are  larger than their latent 
heats of fusion.

65 The apparatus shown in Figure B1.53 was used to 
determine the specific latent heat of fusion of ice. Two 
identical 50 W immersion heaters were placed in some 
ice in two separate funnels. The heater above beaker A 
was switched on, but the heater above B was left off. 
After 5 minutes it was noted that the mass of melted 
ice in beaker A was 54.7 g, while the mass in beaker B 
was 16.8 g.
a Explain the reason for having ice in two funnels.
b Use these figures to estimate the latent heat of fusion 

of ice.
c Suggest a reason why this experiment does not 

provide an accurate result.
d Describe one change to the experiment that would 

improve its accuracy.

66 0.53 g of steam at 100 °C condensed and then the water 
rapidly cooled to 35 °C.
a How much thermal energy was transferred from 

the steam:
i when it condensed
ii when the water cooled down?

b Suggest why a burn received from steam is much 
worse than from water at the same temperature 
(100 °C).

67 120 g of water at 23.5 °C was poured into a plastic tray 
for making ice cubes. If the tray was already at 0 °C, 
calculate the thermal energy that has to be removed from 
the water to turn it to ice at 0 °C.

  (The latent heat of fusion of water is 3.35 × 105 J kg−1.)

68 Clouds are condensed droplets of water and sometimes 
they freeze to become ice particles. Suppose a typical 
cloud had a mass of 24 000 kg:
a Determine how much thermal energy would be 

released if it all turned to ice at 0 °C.
b Discuss how your answer compares to a typical 

value of 5 × 109 J of energy released in a single 
lightning strike.

69 Some water and a glass container are both at a 
temperature of 23 °C and they have a combined thermal 
capacity of 1500 J K−1. If a 48 g lump of ice at −8.5 °C is 
placed in the water and the mixture is stirred until all the 
ice has melted, determine the final temperature.

 (The specific heat capacity of ice is 2.1 × 103 J kg−1 K−1. 
The latent heat of fusion of water is 3.35 × 105 J kg−1.)

beaker A

immersion
heater

to power
supply

timer

beaker B

immersion
heater

	■ Figure B1.53 An experiment to determine the latent heat of fusion of ice
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B.2   Greenhouse effect 215

Greenhouse effectB.2

• How does the greenhouse effect help to maintain life on Earth and how does human activity 
enhance this effect?

• How is the atmosphere as a system modelled to quantify the Earth–atmosphere energy balance?

Guiding questions

We use the term greenhouse effect to describe the fact that the Earth’s atmosphere keeps the 
planet warmer than it would be without the atmosphere. The effect of the Earth’s atmosphere 
is similar in some ways to how the glass in the walls and roof of a greenhouse keep the plants 
warmer than if they were left in the open air.

From the beginning, it is important to understand that the basic greenhouse effect is essential for 
life on Earth. However, human activity has changed, and continues to change, the atmosphere in 
ways that are making the Earth warmer. This is known as the enhanced greenhouse effect, or 
anthropogenic climate change.

A planet’s energy balance: an introduction

SYLLABUS CONTENT

 Conservation of energy.

The planets of the Solar System, including the Earth, have existed for billions of years, so it is 
reasonable to assume that they should each have reached a steady (average) temperature, over 
human timescales at least. This means that each planet should be receiving and emitting thermal 
energy at the same rate, assuming that there are no significant internal energy sources of its own.

Since the only thermal energy which can travel across Space is radiation, for a planet at constant 
average temperature,

radiant thermal energy received by a planet (or moon) = radiant thermal energy emitted by a 
planet (or moon) in the same time interval.

Figure B2.1 represents this energy balance for the Earth.

 ◆ Greenhouse effect 
The natural effect that a 
planet’s atmosphere has 
on reducing the amount 
of radiation emitted into 
space, resulting in a planet 
warmer than it would be 
without an atmosphere. 

 ◆ Greenhouse effect 
(enhanced) The reduction 
in radiation emitted into 
space from Earth due to an 
increasing concentration 
of greenhouse gases in 
the atmosphere (especially 
carbon dioxide) caused by 
human activities; believed 
by most scientists to be the 
cause of global warming.

 ◆ Anthropogenic climate 
change Changes in the 
climate due to human 
activities. Also called 
global warming.

 ◆ Solar System The Sun 
and all the objects that orbit 
around it.
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radiated away

from the Earth

radiation arriving

at the Earth from

the Sun

1.74 × 10
17

 W

atmosphere

(not to scale)

Earth

	■ Figure B2.1 Earth receiving and emitting radiation

In the rest of this topic, we will discuss the various factors which affect this energy balance, and 
how human activity is upsetting this balance on planet Earth.

We will begin by developing an understanding of the thermal energy (including light) arriving at 
the Earth and other planets from the Sun.

Tool 2: Technology

Identify and extract data from databases

A database is information (often extensive) which is 
stored electronically in a structured and organized way. 
A database will usually be continually updated with 
new data. There are many different types and sizes of 
database, which may be accessed in different ways, which 
might be only available to certain people (information 
within a school, for example).

Google’s ‘Bigtable’ is an example of an enormous 
database which helps to run internet searches, Google 
Maps and so on. At the other extreme, you may wish to set 
up and monitor your own physical fitness database on a 
Microsoft Excel spreadsheet.

There are a few areas of study in this course for 
which enormous quantities of data are readily 
available, including climate change, energy resources 
and astronomy.

Generate data from models and simulations

Many situations in physics can be reduced to simplified 
mathematical models. These provide the essential basis 
for understanding, but they can later be expanded to 
include more details.

Many computer simulations are available to visually 
represent these models. For example, the movement of 
a mass bouncing up and down on the end of a spring 
(Topic C.1). These simulations can be very useful in the 
learning process, especially when you can investigate the 
effects of changing the variables (for example, mass on 
spring, stiffness of spring, air resistance and so on).

While virtual experiments like these should not replace 
actual experimental work, they are guaranteed to quickly 
produce results which are consistent with the physics 
theory and they enable a wider range of tests to be carried 
out than would usually be done in a laboratory.

As we shall see, the word equation highlighted on page 215 
is the starting assumption for a mathematical analysis of the 
Earth’s surface temperature. Without too much difficulty, 
we will be able to predict the average surface temperatures 
of planets and moons with reasonable accuracy. But, as we 
are all now aware, relatively small changes in the Earth’s 
temperature can have disastrous effects. A simple model is 
inadequate for making predictions about how the Earth’s 
temperature and climate may change.

The factors affecting climate change are numerous, 
complicated and interconnected. Computer models are 
needed in order to cope with this complexity and the vast 
amount of data available.

 ◆ Simulation Simplified 
visualization (imitation) of 
a real physical system and 
how it changes with time. 
Usually part of a computer 
modelling process.
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B.2   Greenhouse effect 217

Luminosity and apparent brightness 
of the Sun: the solar constant

SYLLABUS CONTENT

 The solar constant, S.
 The incoming radiative power is dependent on the projected surface of a planet along the direction of 

the path of the rays, resulting in a mean value of the incoming intensity being S/4.

Using Wien’s law (Topic B.1), we can determine that the surface temperature of the Sun is 5780 K. 
Geometrical measurements made from Earth inform us that the Sun is an average distance of 
1.50 × 1011 m away, and it has a surface area of 6.05 × 1018 m2. With this information we can 
determine its luminosity, L⊙ (as defined in Topic B.1), assuming that its acts as a black body:

L⊙ = σAT4 = (5.67 × 10–8) × (6.05 × 1018) × 57804 = 3.83 × 1026 W

Knowing its luminosity, we can then calculate the apparent brightness, b, of the Sun just above the 
Earth’s atmosphere. See Figure B2.2.

b = 
L⊙

4πd2 
= 

3.83 × 1026

4π × (1.50 × 1011)2 
= 1.35 × 103 W m–2

The value of the intensity of thermal radiation (including light) from the Sun which 
passes perpendicularly through an area just above the Earth’s atmosphere, is called the 
solar constant, S.

The accepted average value for the solar constant of the Earth is 1.36 × 103 W m−2

1.36 × 103 W passes through
each square metre

6.4 × 106m
Thermal

radiation
from the

Sun

	■ Figure B2.2 Solar constant

Although S is called the solar constant, it is well-known to vary very slightly, by about 0.1% every 
11 years. However, it is not believed that this has a significant effect on the Earth’s climate. 

Different planets will have different solar constants. For example, Venus has a higher solar constant, 
2.6 × 103 W m−2, because it is closer to the Sun. Solar constant values change slightly with periodic 
changes in the behaviour of the Sun and variations in the distances of planets from the Sun.

This constant will play an important part in calculations concerning the greenhouse effect, later in 
this topic.

If a planet has a radius r, the incoming radiative intensity extends over a cross-sectional area of 
πr2, but the whole planet has a surface area of 4πr2 (the surface area of a sphere). This means that:

the mean value of the radiative intensity directed at the surface of the planet is: S × ( πr2

4πr2) = 
S
4

 ◆ Solar constant Intensity 
of the Sun’s radiation 
arriving perpendicularly 
on an area above the 
Earth’s atmosphere. 

DB
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In the case of the Earth:
S
4
 = 

1360
4

 = 340 W m–2

This would be the average intensity of thermal radiation reaching the Earth’s surface if it did not 
have an atmosphere.

Non-black bodies: albedo and emissivity

SYLLABUS CONTENT

 Albedo as a measure of the average energy reflected off a macroscopic system as given by:

 albedo = 
total scattered power
total incident power

 Earth’s albedo varies daily and is dependent on cloud formations and latitude.
 Emissivity as the ratio of the power radiated per unit area by a surface compared to that of an ideal 

black surface at the same temperature as given by: emissivity = 
power radiated per unit area

σT4

Before we can return to a discussion of the energy balances of planets (and moons), we have to 
consider how the surfaces of these bodies compare to the idealized concept of the surfaces of 
black bodies.

Although we can assume that the Sun, with its high surface temperature, behaves as a perfect 
black body, we cannot make the same assumptions for the Earth, or other planets and moons. 
We need to quantify the ability of non-black-body surfaces to:
l absorb, reflect and scatter thermal radiation; and
l emit thermal radiation.

To do this, we will introduce the two concepts of albedo and emissivity.

	■ Albedo
The surface of any planet or moon will reflect / scatter some of the thermal radiation that is 
incident upon it (arrives at the surface). We use the term albedo to quantify this:

albedo = 
total scattered power
total incident power  

(A ratio, so no units.)

Scattering can be considered to be unpredictable and small-scale random reflections. For example, 
a plane mirror reflects light so that images may be seen in it, but a mirror broken into many small 
pieces scatters light. A very smooth surface may reflect light, but a rough surface scatters light.

A perfect black body would have an albedo of 0: all incident thermal energy would be 
absorbed. An albedo of 1 would represent a surface which scatters all of the incident thermal 
radiation.

Table B2.1 lists approximate values for the albedos of the surfaces of some common materials, but 
there is a lot of variation from the surfaces of each material. The albedo of a surface also varies 
with the angle at which the incident radiation strikes the surface: albedo increases as the radiation 
is incident at greater angles to the perpendicular. This means that, at any particular location, there 
are variations during each day and at different times of the year. For the same reason, albedo will 
vary with different latitudes around the Earth.

DB

 ◆ Scattering Irregular 
reflections of waves or 
particles from their original 
path by interactions 
with matter.

 ◆ Albedo The total 
scattered or reflected 
power/total incident power 
(on part of a planet’s 
surface). Albedo depends 
on the nature of the surface 
and inclination of the 
radiation to the surface. 

 ◆ Incident wave, or ray 
Wave (or ray) arriving at an 
object or a boundary.
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	■ Table B2.1 Approximate albedo values

Material Albedo

(ocean) water 0.1

forest 0.1

road surface 0.1

soil 0.2

grass 0.3

desert sand 0.4

clouds (very variable) 0.5

ocean ice 0.6

snow 0.8
	■ Figure B2.3 Snow has high albedo, but water has low albedo

The Earth (including its atmosphere) has an average albedo of 0.315. That is, about 68.5% of the 
incident thermal radiation is absorbed by the Earth and its atmosphere.

Radiation of intensity 610 W m−2 was incident perpendicularly on the surface of a lake at midday.
a If the water had an albedo of 0.18 at that time, calculate how much energy was 

absorbed every second by each square metre.
b Describe how your answer would change much later in the day

Answer
a	 610	×	(1.0	−	0.18)	=	500	W	(110	W	was	reflected)
b Later in the day the radiation will be incident at a greater angle to the perpendicular. 

The albedo will increase and more radiation is reflected. The incident intensity will 
also decrease because the radiation passes through a greater length of the atmosphere. 
The answer to a will decrease.

 WORKED EXAMPLE B2.1

	■ Emissivity
The concept of emissivity compares the power of the thermal radiation emitted by a surface (from 
unit area) to that of a perfect black body at the same temperature (σT4). A surface with a greater 
emissivity emits thermal energy with more power, under the same conditions.

emissivity = 
power radiated per unit area

σT4  

Emissivity is a ratio, so it has no unit. 
The symbol e (or ε) is sometimes used 
for emissivity.

Table B2.2 lists approximate values for the 
emissivity of the surfaces of the same materials 
as seen in Table B2.1.

The average emissivity of the Earth and its 
atmosphere is estimated to be 0.61.

A black body has an emissivity of one.

	■ Table B2.2 Typical values for the emissivity of 
materials also seen in Table B2.1

Material Emissivity

(ocean) water 0.99

forest 0.97

road surface 0.96

soil 0.95

grass 0.91

desert sand 0.90

clouds (variable) 0.55

ocean ice 0.97

snow 0.94

 ◆ Emissivity The power 
radiated by an object 
divided by the power 
radiated from a black body 
of the same surface area 
and temperature.

DB
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Determine the average emissivity of a planet if it has an 
average	surface	temperature	of	−63	°C,	a	surface	area	
of 1.4 × 1014 m2 and it emits thermal energy at a rate of 
1.3 × 1016 W.

Answer

emissivity = 
power radiated per unit area

σT4  

 = 
(1.3 × 1016/1.4 × 1014)

5.67 × 10–8 × (273 – 63)4
 

 = 0.84

 WORKED EXAMPLE B2.2

1 580 W of thermal radiation is incident perpendicularly 
on photovoltaic solar panels of dimensions 1.86 × 2.12 m, 
similar to those seen in Figure B2.4 
a Calculate the intensity of the radiation.
b If the surface of the panels has an albedo of 0.21, 

determine the total rate at which the panels absorb 
thermal radiation.

c Describe how the albedo of the panels is minimized.
d State two reasons why it is best if the panels are 

perpendicular to the incident radiation.

	■ Figure B2.4 Photovoltaic panels

2 a State why it would be reasonable to expect that, if the 
temperature of the Earth’s surface were to rise, snow 
and ice would melt quicker.

b Conversely, explain why it would also be reasonable 
to expect that, if large amounts of snow and ice 
were to melt, the temperature of the Earth’s surface 
would rise.

3 Explain why the average albedo of ocean water will tend 
to increase
a in winter
b closer to the poles.

4 Discuss why the emissivity of clouds make them an 
important factor affecting the average emissivity 
of Earth.

5 A brick wall is 2.34 m high and 3.80 m long. The bricks 
have an emissivity of 0.72. At what rate is thermal energy 
radiated	away	from	the	wall	if	its	temperature	is	18	°C?

6 Show that the total power radiated away from the Earth’s 
surface is approximately 1 × 1017 W. (Assume surface 
temperature is 288 K. Radius of the Earth is 6.4 × 106 m.)

Modelling a planet’s energy balance
Having established an understanding of emissivity and albedo, we can now return to the subject of 
the energy balances of planets and moons.

We will take planet Earth as our first and most obvious example, but similar calculations are 
possible for other planets and moons.

Accurately modelling the Earth’s temperature is a very complex process, which, because of its 
enormous consequences, has preoccupied some of the best scientific minds and fastest computers, 
using enormous quantities of data, for decades. However, we can use the physics already discussed 
to make a broad prediction:
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We have the following relevant data:
l Solar constant = 1.36 × 103 W m−2

l Radius of the Earth = 6.4 × 106 m
l Average emissivity of the Earth (including its atmosphere) = 0.61
l Average albedo of the Earth (including its atmosphere) = 0.315

As explained near the start of this topic:

Radiant thermal energy received by a planet = radiant thermal energy emitted by a planet (in the 
same time interval).

We can now be more detailed:

solar constant × cross-sectional area of planet × (1 – albedo)  
= emissivity × σ × surface area of planet × T4

1.36 × 103 × πr2 × (1 – 0.315) = 0.61 × (5.67 × 10–8) × 4 × πr2 × T4

T	=	286		K	or	13	°C

The	current	mean	temperature	of	the	Earth’s	surface	is	288	K	(15	°C),	so	it	would	appear	that	our	
basic model is reasonably accurate.

Three things should be very clear:
l The values of emissivity and albedo have a fundamental effect on a planet’s temperature. They 

will have different values for a planet without an atmosphere.
l The values of emissivity and albedo on Earth are being changed by human activity.
l Small changes in the Earth’s temperature may produce large changes in the Earth’s climate, 

and such changes are mostly harmful to our lives.

Calculate a value for the average emissivity 
of the Moon. Assume that it has an average 
albedo of 0.12, and an average surface 
temperature of 274 K (but it should be noted 
that the Moon’s surface temperature is 
very variable and an average is not really 
accurately defined).

	■ Figure B2.5 The Moon

Answer
solar constant × cross-sectional area of Moon × (1 – albedo)  
= emissivity × σ × surface area of Moon × T4

1.36 × 103 × πr2 × (1 – 0.12) = emissivity × (5.67 × 10–8) × 4 × πr2 × 2744  
Mean emissivity = 0.94

 WORKED EXAMPLE B2.3
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7 To determine a value for the Earth’s surface temperature if it never had an atmosphere, we 
need to estimate values for emissivity and albedo under those conditions. Use estimated 
values of 0.9 (emissivity) and 0.3 (albedo) to make the calculation.

8 Determine a value for the surface temperature of the Earth if it never had an atmosphere and 
behaved as a perfect black body.

9 Calculate the average surface temperature of Mars, assuming that it has an average 
emissivity of 0.95 and an average albedo of 0.21. Its solar constant is 590 W m−2.

10 Suppose that climate change resulted in a 5% change in both the emissivity and the albedo of 
the Earth. Predict a new value for the maximum average surface temperature.

11 State the factors which will affect the surface temperatures of planets orbiting a distant star.

Nature of science: Models

Using computers to expand human knowledge

Trying to predict the future, or to answer the question ‘what would happen if …’ has always been a 
common and enjoyable human activity. But it seems that our predictions are usually much more likely to 
be wrong than right. This is partly because, in all but the simplest of examples, there are just too many 
variables and unknown factors. Of course, the inconsistencies of human nature play an important part 
when dealing with people’s behaviour, but accurately predicting events governed mostly by the laws of 
physics	–	such	as	next	week’s	weather	–	can	also	be	difficult.

Mathematical modelling is a powerful tool to understand a situation that can be represented by equations 
and	numbers.	But	even	in	the	simplest	situations,	there	are	nearly	always	simplifications	and	assumptions	
that result in uncertainty in predictions. When dealing with complex situations – such as predicting next 
month’s	weather,	the	value	of	a	financial	stock	next	year,	or	the	climate	in	50	years’	time	–	even	the	most	
able people in the world will struggle with the complexity and amount of data. The rapid increase in 
computing power in recent years has changed this.

Modern computers have computing power and memory far in advance of human beings. They are able to 
handle masses of data and make enormous numbers of calculations that would never be possible without 
them. They are ideal for making predictions about the future climate, but that does not necessarily 
mean that the predictions will turn out to be correct. Computer predictions are limited by the input data 
provided	to	them	and,	more	particularly,	by	the	specific	tasks	that	human	beings	have	asked	them	to	
perform. To check the accuracy of predictions, computer models can be used to model known complex 
situations from the past to see if they are able to predict what actually happened next. But predicting the 
past is always much easier than predicting the future.

	■ Effect of the Earth’s atmosphere: greenhouse effect
So far, we have modelled the Earth’s energy balance by treating the planet and its atmosphere as 
one system. In order to fully understand what is happening, we now need to consider transfers of 
energy within that system: between the Earth and its atmosphere. This is where a knowledge of 
the greenhouse effect becomes important.
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Nature of science: Models

Greenhouses and the Earth’s atmosphere

A greenhouse is a building for controlling the temperature 
of growing plants. The walls and roof are made of glass, or 
transparent	plastic.	A	significant	number	of	large,	impressive,	
ornate structures have been constructed over the last two 
centuries in colder countries, where there was much enthusiasm 
for growing plants, especially fruit and vegetables, native to hotter 
climates. See Figure B2.6.

	■ Figure B2.6 The Palm House at Schönbrunn Palace Park in Vienna

The major advantage of a greenhouse is that the temperature 
inside is hotter than outside. To understand the main reason why, 
we need to compare the radiation arriving at the greenhouse 
from the Sun to the radiation emitted from the contents of the 
greenhouse. See Figure B2.7.

visible light

short wavelength
infrared

long wavelength
infrared

Thermal
radiation
from
the Sun

	■ Figure B2.7 Thermal radiation in a greenhouse

We have already discussed the black-body spectrum from the 
Sun’s surface (at 5780 K) and most of this thermal radiation 
falling on the glass of the greenhouse (light and infrared) will 
be transmitted through into the inside, where it will raise the 
temperature of the contents. Some longer wavelengths will be 
reflected	back	by	the	glass.	Much	of	the	light	radiation	entering	
the	greenhouse	will	pass	back	out	of	the	glass	after	reflection	
from surfaces in the interior.

The ground, other surfaces, pots and plants inside the greenhouse 
will get warmer because of the thermal radiation (infrared) that 
they absorb. Then they transfer thermal energy to the air by 
conduction. Convection currents move the warmer air upwards, 
but it mostly remains within the greenhouse.

The thermal radiation emitted from the warmed contents of the 
greenhouse	comes	from	much	cooler	surfaces	(≈	300	K)	than	the	
Sun (infrared, but no light). The spectrum of this radiation is very 
different from that of the Sun. Most importantly, the infrared 
wavelengths are much longer and they are not able to pass back 
out through the glass. In this way we may describe thermal 
energy as being ‘trapped’ inside the greenhouse.

When you have completed this topic, discuss in pairs: how valid is 
the comparison between the physics of greenhouses described here 
and the physics of the Earth’s atmosphere? Is ‘greenhouse effect’ a 
useful term for these effects? To what extent might it mislead?

 ◆ Greenhouse Structure 
made mostly from a 
transparent material 
(usually glass) used for 
controlling plant growth. 

Comparing the radiation emitted by the Sun to the radiation emitted by 
the Earth

The spectrum of the black-body thermal radiation received from the Sun is very different from 
the thermal radiation spectrum radiated from the Earth’s much cooler surface, as can be seen in 
Figure B2.8. Note that the horizontal scale is not linear (it is logarithmic) and the relative height of 
the peak for the Earth’s spectrum has been greatly exaggerated for clarity.
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	■ Figure B2.8 Comparing the radiation emitted by the Sun to the radiation emitted by the Earth

Compared to radiation from the Sun, the thermal radiation from the Earth is at a much lower 
power, with much longer wavelengths.

Most of the radiation from the Sun passes through the Earth’s atmosphere, as can be interpreted 
from Figure B2.9.
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	■ Figure B2.9 The effect of the atmosphere on radiation arriving at the Earth’s surface from the Sun

Because of its different wavelength range, a smaller proportion of the infrared from the Earth’s 
surface is able to pass back out through the same atmosphere. However, over time, the temperature 
of the Earth’s surface adjusts so that the total thermal power received by the Earth (including its 
atmosphere) = total thermal power radiated by the Earth (including its atmosphere).

Energy flow through the Earth’s atmosphere

We have already seen that the mean intensity of thermal radiation arriving at the Earth from the 
Sun, averaged over the whole planet, over an extended period of time, is 340 W m−2. We have also 
noted that the mean albedo of the Earth and its atmosphere is 0.315, meaning that only 68.5% of 
that 340 (= 233 W m−2) is absorbed in the atmosphere or the Earth’s surface.

Figure B2.10 summarizes what happens to that 233 W m−2. You will find that numerical data varies 
slightly, depending on your source of information and its date. Note that data shows that the whole 
Earth, its surface and its atmosphere, are each receiving and emitting thermal energy at the same 
rates. Note that thermal energy transfer between the Earth’s surface and its atmosphere is not just 
by radiation. Convection is also very important.
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	■ Figure B2.10 Energy flow through the Earth’s atmosphere

The importance of the atmosphere should be clear from studying Figure B2.9. We will now 
consider how the atmosphere absorbs and radiates energy.

 ATL B2A: Research skills

Comparing, contrasting and validating information
Use the internet to research into data which either supports or conflicts with that shown in Figure 
B2.10. Is there much disagreement? Which sources do you think are the most reliable and/or up-to-
date? Do you think that different websites get their information from the same original sources?

	■ Greenhouse gases

SYLLABUS CONTENT

 Methane, CH4, water vapour, H2O, carbon dioxide, CO2, and nitrous oxide, N2O are the main 
greenhouse gases and each of these has origins that are both natural and created by human activity.

 The absorption of infrared radiation by the main greenhouse gases in terms of the molecular energy 
levels and the subsequent emission of radiation in all directions.

 The greenhouse effect can be explained in terms of either a resonance model or molecular 
energy levels.

The Earth’s atmosphere has been formed over millions of years by naturally occurring volcanic 
and biological processes and from collisions with comets and asteroids. The air in the atmosphere 
contains approximately (by volume) 78% nitrogen, 21% oxygen and 0.9% argon. There are also 
naturally occurring traces of many other gases, including carbon dioxide and water vapour. Some 
of these trace gases are called greenhouse gases because they play a very important part in 
controlling the temperature of the Earth in the greenhouse effect. Greenhouse gases absorb (and 
then re-emit) infrared radiation.

 ◆ Greenhouse gases 
Gases in the Earth’s 
atmosphere that absorb 
and re-emit infrared 
radiation, thereby affecting 
the temperature of the 
Earth. The principal 
greenhouse gases are 
water vapour, carbon 
dioxide, methane and 
nitrous oxide. Atmospheric 
concentrations of the last 
three of these have been 
increasing significantly in 
recent years. 
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There are many greenhouse gases but the four most important, in decreasing order of their 
contribution to the greenhouse effect, are:
l water vapour, H2O (but see Top tip!)
l carbon dioxide, CO2

l methane, CH4

l nitrous oxide (dinitrogen monoxide), N2O.

Nitrogen, oxygen and argon have no greenhouse effect (because they have non-polar molecules 
or atoms).

The relative importance of these gases in causing the greenhouse effect depends on their 
abundance in the atmosphere as well as their ability to absorb infrared radiation. Each of the gases 
has natural as well as human origins.

Carbon dioxide contributes most to the overall greenhouse effect. Methane and nitrous oxide 
absorb infrared radiation more strongly than carbon dioxide, but their concentrations in the 
atmosphere are much lower.

Molecules of the greenhouse gases absorb some of the thermal radiation (infrared) emitted 
by the Earth’s surface. Without these gases, the radiation would continue to travel away from 
the planet. The molecules will re-radiate the same energy a short time later, but in random 
directions, which means that about half is directed back towards the Earth’s surface, keeping it 
warmer than it would be without the greenhouse gases.

LINKING QUESTIONS
l What relevance do simple harmonic motion and resonance have to climate change?
l What limitations are there in using a resonance model to explain the greenhouse effect?

These questions link to understandings in Topics C.1 and C.4.

We will explain the absorption of infrared radiation by molecules of greenhouse gases by using 
carbon dioxide, CO2, as an example. See Figure B2.11.

Molecules of greenhouse gases absorb infrared radiation because the atoms within their molecule 
are not at rest – they vibrate at high frequencies. (See Topic C.1: they oscillate with simple 
harmonic motion, like masses connected by springs.) Figure B2.11 shows a simplified example of 
possible ways in which a carbon dioxide molecule can vibrate.

If the atoms in a molecule vibrate at the same frequency as the infrared radiation passing through 
the greenhouse gas, then energy can be absorbed (an example of an effect known as resonance 
– see Topic C.4), raising the molecule to a higher energy level. The energy is quickly released 
again as the molecule returns to its lower energy level, but the released energy is radiated in 
random directions.

Since most of the radiation from the Sun is at higher frequencies it is much less likely to be absorbed 
than the mostly lower frequencies of radiation emitted from the cooler surface of the Earth.

As we have said before, the greenhouse effect, as described above, is essential for life on Earth. 
Next, we will discuss how the situation is changing.

Top tip!
Water vapour is by far 
the most abundant of 
the greenhouse gases. 
However, for a variety 
of reasons, scientists 
do not believe that any 
future changes in water 
vapour concentrations 
in the atmosphere will 
significantly affect the 
Earth’s climate.

C

O

O

	■ Figure B2.11 A few 
possible molecular vibrations 
in carbon dioxide
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12 Write a word equation representing the energy balance of a greenhouse at constant temperature. 
Assume that the inside is hotter than the outside and that there are no open windows.

13 Consider Figure B2.9. Outline the reasons for the decreases of intensity at some wavelengths 
(because of water vapour in the atmosphere).

14 One natural frequency of vibration of a carbon dioxide molecule is 2.0 × 1013 Hz.
a Determine the wavelength of thermal radiation which this molecule will absorb.
b Explain why carbon dioxide can absorb radiation from the Earth but not from the Sun.

15 Use data from Figure B2.10 to show that it is representing an atmosphere in thermal equilibrium.

16 Many people are concerned about the increasing levels of methane in the atmosphere. Use 
the internet to research the reasons for these concerns.

Enhanced greenhouse effect: global warming

SYLLABUS CONTENT

 The augmentation of the greenhouse effect due to human activities is known as the enhanced 
greenhouse effect.

The population of the Earth passed eight billion towards the end of 2022, 
having quadrupled in less than a century. See Figure B2.12.

Understandably, everyone wants easy, enjoyable lifestyles, to be well fed, to 
be protected from heat and cold, to travel ... and so much more. All of these 
human activities involve transfers of energy. That energy has to be provided 
from somewhere and, after our activities, the energy is mostly dissipated into 
the surroundings and cannot be recovered.

For the last 300 years, we have been using the vast store of chemical potential 
energy available from the combustion (burning) of coal, oil and natural gas 
to power various types of machines and engines. These energy sources are 
called fossil fuels because they are made over the course of millions of years 
under the surface of the ground by the decomposition of once living material 
in the absence of oxygen. The enormous benefits to society from the use 
of fossil fuels (for example in the generation of electricity and in transport) 
are undeniable.

However, we have become increasingly aware of the considerable disadvantages of the continued 
use of fossil fuels. Most notably, the release of increased amounts of greenhouse gases (principally 
carbon dioxide) into the atmosphere is responsible for global warming.

Increased concentrations of greenhouse gases in the atmosphere results in more of the thermal 
energy that is radiated away from the Earth’s surface being absorbed in the atmosphere, some 
of which is re-radiated randomly back to the surface, increasing its average temperature.

This is known as the enhanced greenhouse effect. (Enhanced means increased.) It is currently 
believed that the enhanced greenhouse effect has resulted in increasing the average temperature 
of	the	Earth’s	surface	by	just	over	1	°C	during	the	last	60	years.	Further	rises	are	considered	to	
be inevitable.
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	■ Figure B2.12 Prediction of World population growth 
(source of data: UN World Population Prospects 2019)

 ◆ Fossil fuels (A fuel 
is a store of chemical or 
nuclear energy that can be 
used to do useful work.) 
Naturally occurring fuels 
that have been produced by 
the effects of high pressure 
and temperature on dead 
organisms (in the absence 
of oxygen) over a period 
of millions of years. Coal, 
oil and natural gas are all 
fossil fuels. 

 ◆ Global warming 
Increasing average 
temperatures of the Earth’s 
surface, atmosphere 
and oceans.

 ◆ Combustion (of fuels) 
Burning. Release of thermal 
energy from a chemical 
reaction between the fuel 
and oxygen in the air.

 ◆ Natural gas Naturally 
occurring fossil fuel: 
mixture of gases 
(mainly methane).
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The disadvantages of using fossil fuels have been well understood and discussed among scientists 
for well over 50 years. To begin with, attention was mainly on the polluting effects on their 
immediate environments and when accidents occurred, and the fact that they were non‑renewable 
sources: there was a limited supply (some predictions were made that supplies would be 
running low by now). In more recent times, the world’s attention has shifted to their effect on the 
global climate.

The burning of fossil fuels is almost certainly the greatest cause of the enhanced 
greenhouse effect.

With enormous quantities of relevant data available and the use of super-computers, nearly all 
scientists agree with the last two highlighted statements and their consequence: global warming. 
Curiously, some of the general public and some politicians have been less easy to convince. It is 
difficult to understand why.

Nature of science: Models

Simple and complex

The kinetic theory of gases is a model that can be applied successfully to relatively small amounts of 
gases in closed containers. The Earth’s atmosphere is also a gaseous system, but one which is vastly 
larger and more complex. Meteorologists use computer modelling to predict the weather in a particular 
location with reasonable accuracy up to about 10 days in advance. But predicting the climate of an 
entire planet with any certainty for many years in the future is a near impossible task. However, climate 
modelling	is	a	problem	which	has	understandably	attracted	an	enormous	amount	of	scientific	attention	
in recent years and, with the availability of better data and faster processing, together with international 
collaboration, long-term climate models are believed to have become more consistent and reliable. We 
will have to wait to see how accurate they are.

Figure B2.13 compares the levels of carbon dioxide in the atmosphere (in parts per million, ppm) 
with the Earth’s average surface temperature, which is represented by the difference of the annual 
average with the average over the hundred years of the twentieth century. The correlation is easy 
to see, and it is believed by scientists that increased carbon dioxide levels caused the increasing 
temperatures, although the data in this chart is not conclusive by itself. Variations in carbon 
dioxide levels correlate well with variations in temperature over tens of thousands of years, long 
before humans began burning fossil fuels in vast quantities. See Figure B2.14. However, one 
important aspect of Figure B2.13 is the unusually short timescales involved.

Atmospheric carbon dioxide and Earth’s surface temperature (1880–2019)
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 ◆ Non‑renewable energy 
sources Energy sources 
that take a very long time 
to form and which are 
being rapidly used up 
(depleted). Oil, natural gas 
and coal.

 ◆ Collaboration 
(scientific) Two or 
more scientists sharing 
information or working 
together on the same 
project.

 ◆ Climate model 
A complex computerized 
model that attempts to 
predict the future climate 
of the planet, especially 
how it will be affected by 
global warming.

 ◆ Correlation There is 
a correlation between 
two sets of varying data 
if they show similarities 
that would not be expected 
to occur because of 
chance alone. 

	■ Figure B2.13 Correlating 
the concentration of carbon 
dioxide in the atmosphere 
with the Earth’s temperature 
(source of data: NOAA 
Climate.gov; ESRL / ETHZ / 
NCEI)
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	■ Figure B2.14 There is a strong correlation between average global temperatures and the amount of carbon dioxide in 
the atmosphere (ppmv = parts per million by volume)

The correlation between increasing concentrations of greenhouse gases and rising global 
temperatures is well established and accepted by (almost) everybody. However, that does not mean 
that we can be 100% sure that global warming is caused by the release of more greenhouse gases. 
Obviously, controlled experiments to test such a theory cannot be carried out and we must rely on 
statistical evidence, computer modelling and scientific reasoning. In such cases, 100% certainty 
is never possible and individuals and societies must make informed judgements based on the 
best possible scientific evidence. Of course, some people will always choose to disagree with, or 
ignore, the opinions of the majority.

Tool 3: Mathematics

Determine the effect of changes to variables on other variables in 
a relationship

When the similarities between two sets of data are as clear as that seen in Figures B2.13 and 
B2.14, we describe it as a correlation. Without any further evidence, it is easy to believe that 
one effect (A) caused the other (B), which we would describe as cause and effect. However, 
it may be possible that effect A was caused by effect B, or maybe they are inter-dependent in 
some way. Two other possibilities need to be considered: both effects are a consequence of 
another cause (C), or maybe the correlation is just an unlikely random phenomenon, which 
has no known explanation.

It is also possible that A did cause B, but only because there was some other effect involved, 
that has not been identified. Greater certainty can only be gained by gathering further data.

369917_07_IB_Physics 3rd_Edn_SEC_B_2.indd   229369917_07_IB_Physics 3rd_Edn_SEC_B_2.indd   229 04/01/2023   22:2804/01/2023   22:28



230 Theme B: The particulate nature of matter

	■ Consequences of the enhanced greenhouse effect
These are well documented elsewhere and there is no intention to go into detail here. These inter-
connected consequences, which are expected to get worse, are mostly detrimental to the lives of 
people and animals on the Earth, although some places will be more affected than others, and 
richer countries will be better able to cope with the changes.
l Increasing temperatures of the oceans, land and atmosphere
l Climate change, melting snow and ice
l More frequent extreme weather conditions (storms, floods, drought, fires and so on)
l Rising sea levels with increased acid levels.

	■ Figure B2.15 Wildfires in Greece 2021 	■ Figure B2.16 Flooding in Germany 2021

TOK

Knowledge and the knower
l What criteria can we use to distinguish between knowledge, belief and opinion? Is the truth what the 

majority of people accept?
l Can probability become certainty?

The four bullet points listed above are empirical facts, based on very extensive measurements. But do 
we know for certain that they are a consequence of burning fossil fuels? Clearly, the vast majority of 
scientists and the general public now believe so. Ten or twenty years ago more people were doubtful, but 
the increasing weight of evidence is convincing.

At what point does something like this become accepted knowledge, or will there always be some 
uncertainty? It seems likely that, under any circumstances, some people will continue to believe that 
climate change is unconnected to burning fossil fuels.

	■ What are the possible solutions to climate change?
There is a wide range of actions that individuals and governments can take. These include:
l Support governments who will take appropriate and prompt action. (Including an increasing 

use of renewable energy sources – see below, discouraging energy-intense activities and 
investing in scientific research and development, for example, into ‘carbon capture’).

l Accept higher taxation as a method of discouraging energy intense activities and the use of 
fossil fuels.

l Invest in renewable energy sources for individual homes, such as solar panels on the roof.
l Use energy-efficient devices and use them less frequently.
l Improve home insulation against both hot and cold weather. See Figure B2.17.
l In colder countries: reduce the temperatures of homes and the hot water used in showers and 

washing machines.
l In hotter countries: increase the temperature settings on air-conditioners.

Common 
mistake
Many people wrongly 
believe that increasing 
global temperatures is 
a consequence of the 
basic greenhouse effect. 
More correctly, we 
should say that human 
activities are changing 
global temperatures 
because of an enhanced 
greenhouse effect.
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l Waste less (of everything, but especially food). Re-use 
items and resist the temptation to keep buying new things.

l Reduce methane emissions.
l Many populations could eat less, especially meat.
l Make public transport cheaper and more plentiful.
l Support businesses which are taking action against 

climate change.
l Use electric vehicles. Use smaller, fewer and less 

powerful vehicles.
l Limit travel (especially for pleasure).
l Recycle.
l Change lifestyles and expectations.
l Reforestation.	■ Figure B2.17 Improving insulation under the roof

 ATL B2B: Thinking skills 

Evaluating and defending ethical positions
Do people in rich and developed countries have any ethical authority to complain about the way in 
which fossils fuels are used in poorer countries?

Do we have individual responsibilities to take action against climate change? Is it acceptable to do 
nothing, or assume that the government will act on our behalf?

Would you be happy if the country where you lived took strong measures to try to limit climate 
change, while other countries did much less, or nothing?

LINKING QUESTION
l How do different 

methods of 
electricity 
production affect the 
energy balance of 
the atmosphere?

This question links 
to understandings in 
Topics B.2 and D.4.

World use of energy resources

Using more renewable energy sources should reduce our dependence on fossil fuels. As their 
name suggests, renewable energy sources will continue to be available to us in the future, because 
they are continuously being renewed by the energy arriving from the Sun. Their other major 
advantage is that they do not contribute to climate change.

Figure B2.18 shows recent information (2020) about the world’s energy resources. Other sources 
of information will show some variations from these figures, but the trends are generally agreed.

Oil
33.1%

Coal
27.0%

Gas
24.3%

Nuclear
4.3%

Hydropower
6.4%

Wind
2.2%

Other renewables
0.9%

Biofuels
0.7%
Solar
1.1%

84.3% of global energy
comes from fossil fuels
(in 2000 it was 86.1%)

15.7% from
low-carbon sources

11.4% from
renewables

	■ Figure B2.18 BP’s 2020 Statistical Review of World Energy (source of data: BP Statistical Review of World Energy)

Figure B2.19 shows how the uses of various energy sources has changed over the last 120 years. 
(1 TWh = 3.6 × 1015 J). There are justified high hopes for the continued rapid increases in the use of 
wind power and solar power, but currently they still amount to less than 4% of our global needs.

 ◆ Renewable energy 
Energy from sources that 
will continue to be available 
for our use for a very long 
time. They cannot be used 
up (depleted), except in 
billions of years, when 
the Sun reaches the end of 
its lifetime. 
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	■ Figure B2.19 Changes in energy consumption over 120 years (source of data: Vaclav Smil (2017) and BP Statistical 
Review of World Energy)

Perhaps the most important information that can be seen in Figure B2.19 is the increase in the 
planet’s overall demand for energy. Although the Covid pandemic has had a temporary effect in 
reducing demand, the overall trend is likely to continue upwards because the populations of poorer 
countries will understandably hope to match the living standards of those in richer countries.

Most of the energy for this increased demand has come from fossil fuels. Over the last 20 years, 
fossil fuels have continued to supply about 85% of the world’s increasing energy needs. This 
means that we are burning about 50% more fossil fuels now than in the year 2000. All this is 
despite the demand for a greater use of renewable energy sources. Fossil fuels remain plentiful and 
relatively cheap, millions of people around the world are employed in the fossil-fuel businesses, 
and we already have the systems and infrastructures in place to continue their use.

 ATL B2C: Communication skills 

Reflecting on the needs of the audience
Prepare a 5 minute presentation on the enhanced greenhouse effect which could be understood by  
10–12 year-old students. What simplifications will you need to make? How can you present the 
scientific information in an engaging and accessible way?

17 Use Figure B2.13 to estimate the percentage by which 
the concentration of carbon dioxide in the atmosphere 
increased in the 50 years between 1970 and 2020.

18 Sketch Sankey diagrams which show all the principal 
energy transfers that have resulted in:
a a wind generator producing an electric current
b an oil-fired power station producing an 

electric current.

19 Explain why hydroelectric power is considered to be a 
renewable energy source.

	■ Figure B2.20 What	a	2	°C	rise	in	ocean	temperature	could	do	to	the	
Hard Rock 2020 Super Bowl Stadium at Miami Beach, Florida
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B.2   Greenhouse effect 233

20 Use the internet to determine
a two reasons why increasing temperatures result in 

increasing sea levels
b the latest predictions for future sea levels.

21 a Discuss whether nuclear energy is renewable or 
non-renewable.

b Figure B2.21 shows how use of nuclear power has 
changed since the 1960s. Suggest some reasons why it 
is not used more widely.

c State what major incidents happened in 1986 and 2011 
which affected people’s opinions about nuclear power.

22 Use the internet to find the primary sources of energy 
used to generate electricity in the country where you live.

23 Would you like the government of the country where you 
live to take more action in an attempt to limit climate 
change? If not, why not? If yes, what changes would 
you recommend?

24 Use the internet to gain information and data about the 
risks associated with the generation of electricity from 
non-nuclear sources.
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	■ Figure B2.21 Use of nuclear power

Nature of science: Global impact of science

United Nations Climate Change Conferences

After years of relative inaction, at the time of writing, the urgent 
need	for	significant	and	widespread	action	on	climate	change	
finally	seems	to	have	become	widely	accepted,	especially	among	
younger people.

These important annual COP meetings involve detailed 
discussions about how the effects of climate change could be 
reduced. They involve scientists and representatives from the 
governments of most of the countries of the world.

Undoubtedly, important agreements are reached. Research online 
to	find	out	what	these	were	at	the	latest	COP	meeting.

However, there are many voices raised in opposition: Did the 
proposed changes go far enough? Was it all just talk? Is keeping 
temperature	rises	to	1.5	°C	already	impossible?	Why	were	some	
important countries apparently not fully involved? Will countries 
do in the future what they have promised to do? We will see. 	■ Figure B2.22 Activists at COP 26
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234 Theme B: The particulate nature of matter

Gas lawsB.3

• How are macroscopic characteristics of a gas related to the behaviour of individual molecules?
• What assumptions and observations lead to universal gas laws?
• How can models be used to help explain observed phenomena?

Guiding questions

At the beginning of Topic B.1 we introduced the kinetic theory of matter and explained that all 
gases contain particles (usually molecules) moving in random directions, usually at high speeds, 
as represented in Figure B3.1.

Because we can usually assume that there are no forces acting between the molecules (except in 
collisions), the physical properties of gases are much easier to study and understand than solids 
and liquids. As we will see, using an idealized model of the motion of molecules in a gas, we can 
use knowledge of dynamics (from Topic A.2) to predict the physical behaviour of gases. It will be 
important to understand this link between microscopic motions of molecules and the macroscopic 
properties of gases.

Under most conditions, all gases show similar physical behaviour. The (universal) gas laws is the 
name that scientists give to the straightforward relationships that describe the physical behaviour 
of all gases.

We can determine the following four physical properties of any gas in any container:
l volume, V
l temperature, T
l pressure, P (explained below)
l amount of gas, n, in terms of the number of gas molecules it contains (explained below).

In the kinetic theory of gases, the number of molecules in a gas is usually more useful information 
than their overall mass. The density of a gas may also be of interest but can be determined from 
mass / volume.

Before looking at the physical properties of gases, we need to explain more about two of the four 
properties in the above list: pressure and amount of a substance.

	■ Pressure

SYLLABUS CONTENT

 Pressure, P = 
F
A  where F is the force exerted perpendicular to the surface.

Generally, the effect of a force, F, often depends on the area, A, on which it acts. For example, 
when the weight of a solid pushes down on a surface, the consequences usually depend on the area 
underneath it, as well as the magnitude of the weight (see Figure B3.2).

Pressure is defined as perpendicular (normal) force per unit area: P = 
F
A

SI unit: pascal, Pa. 1 Pa = 1 N m−2

	■ Figure B3.1 Model of gas 
molecules in a container

 ◆ Gas laws Laws of 
physics relating the 
temperature, volume 
and pressure of a fixed 
amount of a gas: Boyle’s 
law, Charles’ law and the 
pressure law. 

 ◆ Pressure, P Force acting 
normally per unit area: 
pressure = force / area 
(SI unit: pascal, Pa). 
1 Pa = 1 N m−2. 

 ◆ Amount of gas The 
quantity of gas in a 
container, expressed in 
term of the number of 
particles it contains. 

A

F

FP =
A

	■ Figure B3.2 Calculation of 
pressure from force and area

DB ◆ Pascal Derived SI unit 
for pressure. 1 Pa = 1 N m−2.

369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   234369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   234 09/01/2023   22:2109/01/2023   22:21



B.3   Gas laws 235

The concept of pressure is needed to explain, for example, why one finger in Figure B3.3 will be 
less comfortable than the other. From Newton’s third law, we know that the forces on both fingers 
are the same.

	■ Figure B3.3 Same force, different pressure

A girl of mass 51 kg stands on one leg. If 
the effective area of her foot in contact with 
the ground is 62 cm2, calculate the pressure 
she is exerting on the ground.

Answer

P = 
F
A 

= 
(51 × 9.8)
62 × 10–4 = 8.1 × 104 Pa

 WORKED EXAMPLE B3.1

Figure B3.4 shows some water coming out of a container 
with three holes. This is often shown to students as a 
demonstration about pressure in liquids.

	■ Figure B3.4 Pressure with depth apparatus

a What conclusion should students reach after watching 
this demonstration?

b If the depth of the water is 26 cm and the area of the 
bottom of the container is 84 cm2, calculate:
i the volume of water in the container
ii the mass of water (density = 1000 kg m−3)
iii the weight of the water.

c Determine the pressure of the water at the bottom of 
the container. (Ignore the pressure due to the air above 
the water.)

Answer
a The pressure in the water increases with depth.
b i volume = depth × area = 0.26 × (84 × 10−4) = 

2.2 × 10−3 m3 (2.184 × 10−3 seen on calculator display)
ii mass = volume × density = 2.184 × 10−3 × 1000 = 

2.2 kg (2.184 seen on calculator display)
iii weight = mg = 2.184 × 9.8 = 21 N (21.403... seen on 

calculator display)

c P = 
F
A = 

21.403...
84 × 10–4 = 2.5 × 103 Pa 

To determine the total pressure at the bottom of the 
container we would need to add the pressure due to the 
water to the gas pressure of the air above the water surface 
(1.0 × 105 Pa).

 WORKED EXAMPLE B3.2
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236 Theme B: The particulate nature of matter

Pressure in gases

Our main concern in this topic is the pressure created by a gas in a container, but we explain gas 
pressure in a different way to the pressure under solids and liquids. Consider Figure B3.5.

Each collision of a molecule with the containing walls creates a tiny outwards 
force. The average forces are perpendicular (normal) to the surfaces. Because 
the molecular motions are random, each collision can result in a different sized 
force, but the enormous number of molecules colliding every second with a small 
area means that the average force / area will stay the same. That is, the pressure 
is constant. Note that molecules also collide with other molecules, but this simply 
re‑directs their motion and has no other overall effect.

Note that gas pressure acts in all directions, not just downwards. This is also true 
for the pressure in liquids.

The pressure of the air around us (atmospheric pressure) is 1.0 × 105 Pa at sea level. It decreases 
with height above the ground.

	■ Amount of a substance

SYLLABUS CONTENT

 The amount of substance, n, as given by: n = 
N
NA

, where N is the number of molecules and NA is the 
Avogadro constant.

The amount of a substance (symbol: n) is a measure of the number of atomic‑scale particles it 
contains. The nature of the ‘particles’ depends on the substance being considered. For example, 
the gas helium, He, consists of separate atoms, but most other gases are molecular. Examples 
include H2, O2, CO2, CH4 and N2.

Even very small amounts of gas can contain an enormously large number of particles (≈ 1019 or 
more). The SI unit of amount of a substance is more manageable. It is called the mole (mol):

One mole is the amount of a substance that contains exactly 6.022 140 76 × 1023 of its particles. 
This number is known as the Avogadro constant. It is given the symbol NA. For most 
calculations we can use a value of 6.02 × 1023.

Top tip!
Since 2018, the mole and the Avogadro constant have been defined only by the number shown above. 
Previously, the Avogadro constant was defined with reference to a standard substance: carbon. NA was 
the same number of particles as there are atoms in exactly 12 g of the isotope carbon‑12. (Isotopes are 
explained in Topic E.3.) This link has now been removed from the definition, but the number is still 
the same.

Figure B3.6 shows one mole of various substances. Figure B3.7 shows a ball which contains about 
0.25 moles of air at a pressure of about 9 × 104 Pa.

average
force

molecule

	■ Figure B3.5 Every molecular collision 
with a wall creates a tiny force on the wall

 ◆ Atmospheric pressure 
Pressure due to the motions 
of the gas molecules in the 
air. Can be considered as 
being due to the weight 
of the air above an area 
of 1 m2. Acts equally in 
all directions. 

DB

 ◆ Amount of substance, 
n Measure of the number 
of atomic‑scale particles 
(atoms or molecules) it 
contains (SI unit: mole).

 ◆ Mole, mol SI unit of 
amount of substance 
(fundamental).

 ◆ Avogadro constant, NA 
The number of particles 
in 1 mole of a substance: 
6.02 × 1023.
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	■ Figure B3.6 One mole of water (in the form 
of ice), sugar, copper and aluminium

	■ Figure B3.7 A football

If we know the number of particles in a substance, N, the number of moles, n, is determined by 
dividing by the Avogadro constant:

amount of substance in moles = 
number of particles
Avogadro constant

 n = 
N
NA

The molar mass of a substance is the mass which contains one mole. Usual unit: g mol−1. Table 
B3.1 shows some common molar masses.
	■ Table B3.1 Molar masses

Substance Molar mass / g mol−1

hydrogen molecules 2.02

helium atoms 4.00

carbon‑12 atoms 12.00

carbon atoms 12.01

water molecules 18.01

aluminium atoms 26.98

nitrogen molecules 28.02

oxygen molecules 32.00

carbon dioxide molecules 44.01

gold atoms 197.00

Top tip!
The molar mass of a substance depends on the number of particles (protons and neutrons) in the nucleus 
of each atom or molecule. (Details are provided in Topic E.3.) More massive atoms have more protons 
and neutrons, so that a mole of their atoms will have a greater mass. For example, carbon atoms usually 
have 12 particles, carbon dioxide molecules usually have 44 particles and hydrogen molecules usually 
have two particles.

A numerical example: an oxygen molecule has two atoms, each has 16 particles, each with a mass of 
1.67 × 10−27 kg.

Total mass of one mole (6.02 × 1023 particles) = 6.02 × 1023 × 2 × 16 × 1.67 × 10−27 = 3.2 × 10−2 kg (32 g)

DB

 ◆ Molar mass The mass 
of a substance that contains 
1 mole of its defining 
particles. 
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238 Theme B: The particulate nature of matter

a How many moles are there in 0.50 kg of molecular oxygen gas?
b How many molecules are there in 0.50 kg of the same gas?

Answer

a 
total mass

molar mass = 
0.50

32 × 10–3 = 16 mol (15.625 seen on calculator display)

b N = nNA = 15.625 × (6.02 × 1023) = 9.4 × 1024 molecules

 WORKED EXAMPLE B3.3

1 A car of weight 1500 kg has four tyres, each of which has 
an area of 180 cm2 in contact with the road.
a Calculate the pressure under each tyre (in Pa).
b State the pressure of the air inside the tyre.
c If the driver puts more air into the tyre, what will 

happen to:
i the area in contact with the ground
ii the pressure on the road?

2 The air pressure at a height of 10 km above sea level is 
2.6 × 104 Pa. Inside a passenger aircraft at this height, the 
air pressure is maintained at 80% of the pressure at sea 
level (1.0 × 105 Pa).
a What is the difference in pressure between inside and 

outside the aircraft?
b What resultant force due to the air is acting on a 

window which is 27 × 47 cm?

	■ Figure B3.8 Aircraft window

3 a Using the concept of pressure, explain how it is 
possible for the water to remain in the upside‑down 
glass shown in Figure B3.9. (Assume that the glass is 
full of water.)

b If the glass is only half full of water to begin with, 
how will the demonstration change?

	■ Figure B3.9 Water in an upside‑down glass

4 Consider the ball shown in Figure B3.7.
a If the molar mass of the air in the ball is 

approximately 29 g mol−1, what is the mass of the air in 
the ball?

b Compare the pressure of the air inside the ball to the 
pressure of the air outside the ball.

5 a Estimate the volume of the water seen in the glass in 
Figure B3.9.

b Water has a density of 1000 kg m−3. Using your 
answer to part a, estimate:
i the mass of water in the glass
ii the number of moles of water in the glass
iii the number of water molecules in the glass.
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6 The thickness of a car tyre decreased by 5.0 mm over a 
distance of 30 000 km. The circumference of the tyre was 
1.9 m and its surface area was 3000 cm2.

	■ Figure B3.10 Car tyre

a Calculate the volume of the rubber in the tyre which 
was worn away in this distance.

b Assuming the density of the rubber was 950 kg m−3, 
what mass was worn away?

c If about 90% of the mass in rubber is due to carbon 
atoms, estimate:
i the number of moles of carbon spread into the 

environment in travelling each 1000 km
ii the number of carbon atoms lost from the tyre in 

each rotation of the wheel.

7 Nitrogen is often put inside potato crisps / chips packets. 
This is to keep the crisps fresh and limit damage to 
them. Estimate the amount of nitrogen in a typical packet 
(see Figure B3.11). Assume the density of the nitrogen 
is 1.4 kg m−3.

	■ Figure B3.11 Nitrogen was used inside the 
pack to keep these crisps / chips fresh.

8 Most iron atoms contain a total of 54 protons and 
neutrons, each with a mass of 1.67 × 10−27 kg. Determine 
a value for the molar mass of iron.

	■ Investigating the physical properties of gases

SYLLABUS CONTENT

 The empirical gas laws for constant pressure, constant volume and constant temperature.

As we have already noted, given a closed container with a gas sealed inside, there are four physical 
properties of the gas which can be easily measured: pressure, volume, temperature and mass (P, V, 
T and m). The amount of gas in a mole, n, can be calculated from its mass, as explained above.

All gases exhibit the same physical properties (under most conditions), so that any gas, or mixture 
of gases, can be used in the following experiments, and the same conclusions should be reached. 
Air is the obvious and easy choice.

The following are three classic investigations of the ‘gas laws’. Each keeps the amount of gas and 
one other variable constant:
l How does the volume of a gas change with pressure (at constant temperature)?
l How does the volume of a gas change with temperature (at constant pressure)?
l How does the pressure of a gas change with temperature (at constant volume)?

We will look at each of these in more detail.

Variation of gas volume with pressure at constant temperature (Boyle’s law)

Figure B3.12 shows two sets of apparatus that could be used to investigate how changing the 
pressure on a fixed mass of gas affects its volume, at a constant temperature. However, note that 
using a force to do work and change the volume of a gas will tend to change its temperature, 
which could complicate the results. To minimize this unwanted effect, the changes should be 
made slowly.
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240 Theme B: The particulate nature of matter
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Tool 1: Experimental techniques

Recognize and address relevant safety, ethical or environmental issues in an investigation

The safety of you (and your teachers) in a science 
laboratory is an important concern. However, it is not 
a major issue if your behaviour is appropriate. Most 
schools have a list of behaviours expected of students in 
a laboratory. The few accidents which occur are usually 
because of inattention or carelessness.

Experimental situations requiring particular attention 
include the following:
l Using electrical equipment which is connected to the 

mains supply (110−230 V). Such equipment should have 
regular safety checks and never be used close to water. 
Bare wires connected to the mains should not be used for 
experimentation. The laboratory should have appropriate 
circuit breakers and an RCCB which can cut off the 
electrical supply very quickly and protect lives.

l High voltage supplies (for example, 5000 V) may be 
needed for a few teacher demonstrations, but they are 
provided with protection due to the very high internal 
resistance included deliberately in their design.

l Electrostatic high voltage generators always make 
interesting and dramatic demonstrations. They are 
very safe to use, but people with serious medical 
conditions are usually advised not to get involved.

l Hazardous chemicals are not usually used in 
physics experiments.

l Equipment made from glass always needs to be treated 
carefully to avoid breakage. Goggles should be worn.

l Containers with a gas at high or low pressure 
should have a shield around them for protection in the 
unlikely event of an explosion or implosion.

l Radioactive sources will usually be used only by a 
teacher, although some schools allow older students to 
use the sources under close supervision. They should 
be labelled and stored securely and used for as short 
a time as possible. Students should not be too close to 
the experiments and the sources should be shielded 
and never directed towards students.

l The light from a laser (or other very intense light 
source) should not be allowed to fall on anyone’s eyes.

l High temperatures are required for a few 
experiments. Appropriate care is needed, especially if 
very hot water is involved.

The gas pressure in the apparatus seen in Figure B3.12 can 
be high enough that there is small possibility that a glass 
tube could explode. It should be surrounded by a clear 
plastic protective screen.

Figure B3.13 shows graphs of typical results. The lines are called isotherms, which means that all 
points are at the same temperature.

The graph shown in Figure B3.13b represents the same data as in Figure B3.13a, but the graph 
has been re‑drawn to produce a straight line to show that the pressure and volume are inversely 
proportional to each other.

	■ Figure B3.12 
Investigating Boyle’s law

 ◆ Circuit breaker 
Electromagnetic device 
used to disconnect an 
electrical circuit in the 
event of a fault.

 ◆ Isothermal Occurring at 
constant temperature.
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B.3   Gas laws 241

For a fixed amount of gas at constant temperature: P ∝ 
I
V

This is known as Boyle’s law.

Boyle’s law can be stated as PV = constant. If the pressure and/or volume 
of a fixed amount of gas are changed from initial values of P1 and V1 
to final values of P2 and V2, then, provided that the temperature has 
not changed:

P1V1 = P2V2

a P P

V0 0
0 0

b

1
V

	■ Figure B3.13 Two graphs showing that gas 
pressure is inversely proportional to volume

 ◆ Boyle’s law Pressure 
of a fixed amount of gas 
is inversely proportional 
to volume (at constant 
temperature). 

We can explain this relationship in terms of molecular behaviour. If the volume of a container 
is reduced, the molecules (travelling with the same average speed) will collide with a given area 
of the walls more frequently. In other words, there will be more molecular collisions with each 
square centimetre every second, which will increase the gas pressure.

A sample of gas has a volume of 43 cm3 
when at normal atmospheric pressure 
(1.0 × 105 Pa).
a If the pressure on the same amount of 

gas is increased to 3.7 × 105 Pa, calculate 
its new volume.

b State the assumption you made in 
answering part a.

Answer
a P1V1 = P2V2

 (1.0 × 105 Pa) × 43 = (3.7 ×105) × V2

 V2 = 12 cm3

b The temperature of the gas did not 
change.

 WORKED EXAMPLE B3.4

Variation of gas pressure with temperature at constant volume (pressure law)

This relationship can be investigated with either of the two sets of apparatus shown in 
Figure B3.14. Measurements are usually taken for temperatures between 0 °C and 100 °C.

a

pressure
gauge

short length of 
connecting tube

thermometer

water

air under test

air

b

pressure
sensor

water

data logger

computer

temperature
sensor

	■ Figure B3.14 Two sets of apparatus that can be used to investigate the pressure law
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242 Theme B: The particulate nature of matter

Tool 1: Experimental techniques

Recognize and address relevant safety, ethical or environmental issues in 
an investigation

There are several possible hazards when using the apparatus seen in Figure B3.14. There is 
the possibility that a larger beaker of very hot water could be knocked over, so the apparatus 
should not be near the edge of the table and nobody should be sitting nearby. There needs 
to be a good seal where the bung is pushed into the flask, but gloves should be worn when 
pushing them firmly together, in case the glass breaks.

Figure B3.15 shows a graph representing typical raw data.

The results represent a linear relationship between pressure and temperature in degrees Celsius.

We can explain this relationship in terms of molecular behaviour. If the 
temperature is reduced, the molecules move more slowly, so that they will collide 
with a given area of the walls less frequently, so that the pressure is reduced.

If the straight‑line graph seen in Figure B3.15 is extrapolated to lower and lower 
temperatures and pressures, the temperature at which the pressure will be 
predicted to be zero is −273 °C. The same result is obtained with any gas. We 
can assume that this is the temperature at which (almost) all molecular motion 
has stopped, molecules are no longer colliding with the walls. −273 °C is called 
absolute zero, and it is the lower fixed point for the Kelvin temperature scale, as 
already explained in Topic B.1.

In practice, most gases will condense and then freeze at various low temperatures, 
but that does not change the concept of an absolute zero at −273 °C (0 K).

0

0

P

T/K273 373     

	■ Figure B3.16 Gas 
pressure is proportional 
to temperature in kelvin

Figure B3.16 shows the results of Figure B3.15 re‑drawn. It represents a proportional relationship 
but remember that temperature must be measured in kelvin.

For a fixed amount of gas at constant volume: P ∝ T

This is known as the pressure law.

If the pressure and/or temperature of a fixed amount of gas are changed from initial values of P1 
and T1 to final values of P2 and T2, then, provided that the volume has not changed:

P1

T1

 = 
P2

T2

0 100

1.0

0

Pr
es

su
re

 /1
05  

Pa

1.4

Temperature/°C

	■ Figure B3.15 Variation of gas 
pressure with temperature

 ◆ Pressure law For a fixed 
mass of gas with a constant 
volume, the pressure is 
proportional to the kelvin 
temperature. 
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B.3   Gas laws 243

Tool 3: Mathematics

Extrapolate and interpolate graphs

The considerable extrapolation seen in Figure B3.16 (and Figure B3.18) would not normally 
be recommended. However, in this case, we are not predicting the unknown behaviour of a 
gas all the way down to zero pressure. Rather, we are specifically asking the question: ‘if the 
gas continued to behave in this way, at what temperature would its pressure reduce to zero?’

Common 
mistake
Remember that when 
making calculations 
involving temperatures 
(rather than temperature 
changes), you should 
always use kelvin.

Some air in a sealed container was heated 
from 60 °C to 92 °C. If its final pressure 
was 1.82 × 105 Pa, determine its pressure 
at 60 °C.

Answer
P1

T1

 = 
P2

T2

P1

(273 + 60)
 = 

1.82 × 105

(273 + 92)
P1 = 1.7 × 105 Pa

 WORKED EXAMPLE B3.5

Variation of gas volume with temperature at constant pressure (Charles’ law)

The apparatus seen in Figure B3.17 can be used for this investigation. When the gas is warmed 
by thermal energy conducted from the surrounding water, it expands along the tube, keeping the 
pressure in the gas equal to the pressure outside from the air in the atmosphere.

Figure B3.18 shows the concluding graph from this investigation. It is similar to the pressure–
temperature graph.
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T/K273 373

	■ Figure B3.17 Simple apparatus for investigating Charles’ law 	■ Figure B3.18 Gas volume is proportional to absolute temperature (K)

We can explain this relationship in terms of molecular behaviour. If the temperature of a gas is 
reduced, the molecules move more slowly, so that they would collide less frequently with the same 
area. But if the volume is also reduced, the rate of collision can be kept constant.

For a fixed amount of gas at constant pressure: V ∝ T (K)

This is known as Charles’ law.

Common 
mistake
It is widely stated that 
the volume of a gas 
increases when the 
temperature rises. But 
the volume of a gas 
will only increase if we 
allow it to, as in the next 
investigation.

 ◆ Charles’ law Volume 
of a fixed amount of gas 
is proportional to absolute 
temperature (at constant 
pressure). 

369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   243369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   243 09/01/2023   22:2209/01/2023   22:22



244 Theme B: The particulate nature of matter

If the pressure and/or temperature of a fixed amount of gas are changed from initial values of V1 
and T1 to final values of V2 and T2, then, provided that the pressure has not changed:

V1

T1

 = 
V2

T2

In an experiment such as shown in Figure 
B3.17, the temperature of the gas was 
increased from 5.0 °C to 95.0 °C. If the 
initial volume was 3.1 cm3, calculate the 
final volume of the gas.

Answer
V1

T1

 = 
V2

T2

3.1
(273 + 5.0)

 = 
V2

(273 + 95)
V2 = 4.1 cm3

WORKED EXAMPLE B3.6 

9 After the pressure on a gas was increased from 1.0 × 105 Pa to 4.5 × 105 Pa its volume had 
become 280 cm3. What was its original volume, assuming that its temperature was constant?

10 The temperature of a gas was reduced from 80 °C to 20 °C, while keeping it at the same 
pressure. If the starting volume was 110 cm3, what was the final volume?

11 A fixed volume of gas at 310 K and a pressure of 1.2 × 105 Pa was heated in an oven. At what 
temperature (°C) will the pressure have risen to 1.9 × 105 Pa?

 ATL B3A: Thinking skills 

Applying key ideas and facts in 
new contexts
Using knowledge from this topic and from 
Topic A.2, explain how a hot air balloon can be 
made to rise and fall.

Hint: Consider the motion of air particles inside 
and outside the balloon, and the forces the 
particles apply to the balloon skin.

	■ Figure B3.19 Hot air balloons 
over Cappadocia, Turkey

	■ Combined gas laws

SYLLABUS CONTENT

 The ideal gas law equation can be derived from the empirical gas laws for constant pressure, constant 

volume and constant temperature as given by: 
PV
T  

= constant.

 The equation governing the behaviour of ideal gases as given by: PV = nRT.

The three separate empirical gas laws described above can be combined into one equation:

For a fixed amount of gas, PV ∝ T, or:

PV
T

 = constant or 
P1V1

T1

 = 
P2V2

T2

 ◆ Empirical Based on 
observation or experiment.

DB
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B.3   Gas laws 245

Nature of science: Observations

Empirical science and theories

By describing the gas laws as empirical, we mean that they are based only on direct observation and 
experiment, using the human senses. The gas laws, as such, are not theoretical. Based only on the 
empirical results of these experiments, we can make reasonably accurate predictions about the way gases 
will behave under most circumstances. More detailed observations result in more accurate and improved 
predictions of real gas behaviour.

Clearly, empirical research is the basis of the scientific method and most scientific and technological 
advances. Theoretical thinking is then needed to explain the experimental results. The ideal gas 
theory later in this topic is a good example of a theory used to explain experimental results and make 
predictions. Theories can only be accepted if they have been widely tested by further experimentation.

In everyday language, the word theory is often used much more loosely, as a casual explanation, or even 
a guess. However, in science, a theory describes an explanation that has been extensively tested and is 
widely accepted.

More generally, empiricism is the view that all knowledge originates from our experiences.

Gas in a container at a temperature of 289 K was heated in an oven to a temperature 
of 423 K. If the volume expanded from 0.27 m3 to 0.35 m3, and the initial pressure was 
1.1 × 105 Pa, determine the final pressure.

Answer
P1V1

T1

 = 
P2V2

T2

(1.1 × 105) × 0.27
289

 = P2 × 
0.35
423

P2 = 1.2 × 105 Pa

 WORKED EXAMPLE B3.7

So far, we have only discussed fixed amounts of gas. We need to expand the discussion to include 
any amount of gas.

Investigations can show that the pressure of a fixed volume of gas at constant temperature 
is proportional to the amount of gas. This is what we would expect from our molecular 
understanding: If we doubled the number of molecules in a fixed volume, then the frequency of 
collisions with the walls would double if they still had the same average speed.

This leads us to PV ∝ nT, or:

PV = nRT

The constant R is known as the universal (molar) gas constant. It has the value 8.31 J K−1 mol−1.

R is the macroscopic equivalent to the Boltzmann constant, k, which was introduced in the 
microscopic interpretation of temperature in Topic B.1.

This equation is being presented here as a summary of empirical results. It can be used to 
accurately predict the physical behaviour of most gases under most conditions. For example, for 
a fixed amount of gas at constant temperature, the equation predicts an inverse proportionality 
between volume and pressure.

DB

 ◆ Universal (molar) gas 
constant The constant, 
R, that appears in the 
equation of state for an 
ideal gas (pV = nRT). 
R = 8.31 J K−1 mol−1.
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246 Theme B: The particulate nature of matter

Ideal gases (see below) obey this relationship perfectly, so it is called the ideal gas law (also called 
the equation of state).

Some oxygen, O2, is contained in the 
cylinder seen in Figure B3.20. No gas 
can move past the movable piston. The 
temperature of the gas is 298 K, it has a 
volume of 27 cm3 and its pressure is equal to 
normal atmospheric pressure (1.0 × 105 Pa).
a Calculate the amount of gas in 

the cylinder.
b What was the mass of oxygen in 

the cylinder?
c The piston was suddenly pulled out 

increasing the volume to 32 cm3. The 
pressure fell to 8.2 × 104 Pa. Determine 
the new temperature of the gas.

movable pistonoxygen

	■ Figure B3.20 Cylinder with movable piston

Answer
a PV = nRT
 (1.0 ×105) × (27 × 10−6) = n × 8.31 × 298
 n = 0.0011 mol
b 0.11 × 32 = 3.5 g
c PV = nRT
 (8.2 × 104) × (32 × 10−6) = 0.0011 × 8.31 × T
 T = 287 K
 The expansion of the gas has resulted in 

a temperature fall of 11 K.

Alternatively, 
PV
T  = constant can be used to 

answer part c.

 WORKED EXAMPLE B3.8

Inquiry process: Processing data

Processing data

A student carried out an experiment similar 
to that shown in Figure B3.12 and obtained 
the following results (Table B3.2). She 
used 6.1 × 10−4 mol of gas at a temperature 
of 21 °C.

Use these results to draw a straight line 
graph. One reading was an outlier and 
should not be considered when drawing the 
line of best fit. Which one? Use the gradient 
of the graph to determine a value for the 
molar gas constant.

	■ Table B3.2

P / 105 Pa V / cm3

1.0 15.0

1.2 12.6

1.5 9.8

1.8 8.5

2.0 6.6

2.3 6.4

2.5 5.9

2.7 5.6

 ◆ Equation of state for 
an ideal gas, pV = nRT: 
Describes the macroscopic 
physical behaviour of ideal 
gases. Also called the ideal 
gas law.

 ◆ Piston A solid cylinder 
that fits tightly inside a 
hollow cylinder, trapping 
a fluid. Designed to 
move as a result of 
pressure differences.
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Pressure–volume diagrams

The state of a known amount of gas, as defined by values of its pressure, volume and 
temperature, can be identified as a point on a pressure–volume (PV) diagram.

For example, the point S in Figure B3.21 could represent one mole of a gas at a temperature of 
300 K in a container of volume 1.0 × 10−2 m3 and with a pressure of 2.5 × 105 Pa (data needed for 
later question).

 ◆ PV diagram A graphical 
way of representing 
changes to the state of a gas 
during a thermodynamic 
process.

We know that there are three interconnected variables for a fixed 
amount of gas: pressure, volume and temperature. In order to 
represent these three variables on a graph with two axes, different 
temperatures are shown by the curved isothermal lines, labelled on 
Figure B3.21 by T1 (lowest temperature) to T8 (highest temperature).

Changes in the state of the gas can be represented by paths on PV 
diagrams. For example:
l Line A represents variations in pressure and volume at 

constant temperature.
l Line B represents variations in temperature and volume at 

constant pressure.
l Line C represents variations in pressure and temperature at 

constant volume.
l Any other path through point S (to point X, for example) will 

involve changing all three variables.
0 V

P

BS

A
T8

T7

T6

T5

T4

T3

T2

T1

C

X

	■ Figure B3.21 PV diagram

12 The volume of a scuba diving tank similar to that seen in 
Figure B3.22 is 11 × 10−3 m3. The air inside is compressed 
to a pressure 210× atmospheric pressure.

	■ Figure B3.22 Scuba diving

a What is that air pressure in pascals?
b What volume of air at atmospheric pressure was 

pumped into the tank?
c The water temperature decreases with depth below 

the surface. Would you expect that to significantly 
affect the pressure in the tank?

d As she breathes out, the diver releases air bubbles into 
the water. Explain why the bubbles get bigger as they 
rise towards the surface.

13 The volume of a gas in a cylinder such as seen in Figure 
B3.20 was 38 cm3 when the temperature was 20 °C.
a The apparatus was heated. Explain why the piston 

moved to the right as thermal energy flowed into the 
gas through the cylinder.

b What was the temperature (°C) of the gas when the 
volume had increased to 50 cm3?
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248 Theme B: The particulate nature of matter

14 Helium gas is widely used to fill balloons (Figure B3.23). 
If the density of the helium in a balloon is 2.0 × 10−4 g cm3,  
estimate its:
a volume
b mass
c amount in moles
d number of atoms.

	■ Figure B3.23 Helium‑filled balloons

15 A container of gas has a volume of 120 cm3. At 
a temperature of 300 K the gas has a pressure 
of 1.5 × 106 Pa. Determine the amount of gas in 
the container.

16 How can you be sure that the isotherm T5 on Figure 
B3.21 is representing a higher temperature than T2?

17 Consider Figure B3.21. What changes must be made to a 
fixed amount of gas at point S on the diagram to move it 
to point X?

18 Represent the following changes to a fixed mass of gas 
on a PV diagram:
a a gas expanding at constant pressure, as its 

temperature increases
b a compression at constant temperature
c a gas cooled so that its volume and pressure decreased.

Modelling gas behaviour: ideal gases

SYLLABUS CONTENT

 Ideal gases are described in terms of the kinetic theory and constitute a modelled system used to 
approximate the behaviour of real gases.

 The change in momentum of particles due to collisions with a given surface gives rise to pressure in 
gases, and, from that analysis, pressure is related to the average translational speed of molecules:

 P = 
1
3 ρv

2 

LINKING QUESTION
l How do the concepts of force and momentum link mechanics and thermodynamics?

This question links with understandings in Topics A.2, A.3.

We now want to extend our microscopic kinetic theory of gases to include a mathematical 
treatment, which will predict macroscopic behaviour, including the equation PV = nRT.

First, we will provide a more detailed definition of an ideal gas. Although most gases are 
molecular, we will often use the term particles in order to be more general.

 ◆ Ideal gas Gas which 
obeys the ideal gas law 
equation perfectly. The 
microscopic particle 
model of an ideal gas 
makes several important 
assumptions about the 
particles and their motions.
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Assumptions about the particles in an ideal gas:
l The gas contains a very large number of identical particles.
l The volume of the particles is negligible compared with the total volume occupied by the gas.
l The particles are moving in random directions, with a wide variety of speeds.
l There are no forces between the particles, except when they collide. Because there are no forces, 

the particles have no (electrical) potential energy. This means that any changes of internal energy 
of an ideal gas are assumed to be only in the form of changes of random kinetic energy.

l The motion of the particles obeys Newton’s laws of motion.
l All collisions between particles are elastic. (This means that the total kinetic energy of the 

particles remains constant at the same temperature.)

Tool 3: Mathematics

Calculate mean and range

We have often referred to the average values of particle speeds but have not really explained 
what that means.

Consider a more straightforward example: the following times (s) recorded for a ball to roll 
down a particular slope: 15, 12, 11, 21, 14, 11, 14, 13.

The range of this data is from 11 s to 21 s.

The value of 21 s is anomalous and is inconsistent with the other values. It may be described 
as an outlier. It may have been a mistake and should be excluded from calculations, unless 
checked and confirmed.

An average value is any single number that has been chosen to represent a range of values. 
There are several possibilities, including the central (median) value (13), or the most 
common value (11 or 14). However, in physics, average values are usually mean values. A 
mean value is obtained by adding all the values and dividing by the number of values. In 
this example, the mean is 12.9, which may be better limited to 2 significant figures (13).

In this topic, average particle speeds cannot be determined as straightforward means. As we 
shall see, (average speed)2 is calculated from average kinetic energies.

 ◆ Average value Any 
single number used to 
represent a quantity which 
is varying. 

 ◆ Range (data) Spread 
of data from smallest to 
largest values.

 ◆ Anomalous Different 
from the pattern of other 
similar observations. 

 ◆ Outlier A value which 
is significantly different 
from the others in the same 
data set.

 ◆ Mean A certain type of 
average: the sum of all of 
the numbers divided by the 
number of values involved.

	■ Mathematical model for gas behaviour
We will start by considering just one particle in a rectangular box. See Figure B3.24. The particle 
has a mass m and is moving with a velocity v perpendicularly towards the end wall.

After the particle has an elastic collision with the wall it will return along the same path, with 
velocity −v.

Its change of velocity is: v – (–v) = 2v

average force on end wall, F = change of momentum = m × 2v = 2mv

time interval between collisions of the particle with the same wall, t = 
2x
v

average force on end wall = 
change of momentum

time between collisions
 = 

2mv

(2x
v ) = 

mv2

x
 

average pressure on end wall, P = 
average force

area
 = 

(mv2

x )
yz  

= 
mv2

xyz
 = 
mv2

V
 

where V is the total volume of the box (= xyz).

x

m
v

y

z

	■ Figure B3.24 One 
particle in a box

Top tip!
For a gas all at the 
same temperature, if 
collisions between gas 
particles resulted in a 
loss of kinetic energy, 
that would mean that the 
gas would keep getting 
colder. Collisions of gas 
particles with particles 
in the containing walls 
will result in a transfer 
of kinetic energy only 
if there is a temperature 
difference (thermal 
conduction).
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250 Theme B: The particulate nature of matter

However, of course, the container may not be rectagular, and all gases have a very large number of 
particles moving in random directions with different speeds. See Figure B3.25.
l If there are N particles in the box (all moving perpendicular to the end wall):

 average pressure on end wall becomes: 
Nmv2

V
l If the particles are moving in random directions:
 average pressure on end wall becomes:

 
(13Nmv2)

V
 because there are three perpendicular directions, so that on average 

1
3
 of the velocities are 

directed in any one of these directions.
l If the particles have different speeds:
 v2 is the average value of their speeds‑squared.
l If the container is a different shape:
 it can be shown that the shape of the container does not affect the pressure.

So, finally we have an equation which links the macroscopic properties of a gas (pressure and 
volume) to its microscopic properties (the number of particles, their mass and their speed):

Pressure of an ideal gas: P = 
1
3
Nm

v2

V

This long derivation need not be remembered, but it should be understood. It provides an all‑
important link between the theories of particle behaviour and measurements that can easily be 
made in a laboratory.

Since Nm is the total mass of the gas:
Nm
V

is the density of the gas, ρ, leading to an alternative expression:

Pressure of an ideal gas: P = 
1
3
ρv2

Tool 3: Mathematics

Check an expression using dimensional analysis of units

The units of an expression on the left‑hand side of an equation must be the same as the units 
of an expression on the right‑hand side of the equation.

This can be used to check if a suggested equation could be correct. It is a simplified version 
of what is known as dimensional analysis.

To check that there is no obvious mistake in the equation P = 
1
3ρv

2, we can see if the units on 
both sides of the equation are the same.

The units of pressure are pascals, which are the same as N m−2. We also know that newtons 
are equivalent to kg m s−2 (F = ma). So that, the units of pressure can be reduced to the 
SI base units: kg m s−2/m−2 = kg m−1 s−2.

On the right‑hand side of the equation: 
1
3 has no units, ρ has the units kg m−3 and v has the 

units m s−1. Combining these, we get: kg m−1 s−2 which is the same as on the left‑hand side of 
the equation. This check has found no obvious mistake in the equation.

 ◆ Dimensional analysis 
Method of checking if an 
equation may be correct. 
The units (dimensions) 
of all terms should be 
the same. 

	■ Figure B3.25 Gas 
molecules moving around 
at random in a container

Common 
mistake
This equation contains 
two Vs. One upper case 
(volume), and one lower 
case (velocity). It is easy 
to get them confused.

DB
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B.3   Gas laws 251

a Determine a value for the average speed of nitrogen molecules at normal air pressure 
(1.0 × 105 Pa) if a mass of 1.4 g of the gas was in a container of volume 1200 cm3.

b How many moles of nitrogen were in the container (see Table B3.1)?
c Calculate the temperature of the gas.
d Determine a value for the average molecular speed if the temperature rose to 350 K in 

the same container.

Answer

a ρ = 
1.4 × 10–3

1200 × 10–6 = 1.17 kg m–3

 P = 
1
3ρv

2

 1.0 × 105 = 
1
3 × 1.17 × v2

 v = 5.1 × 102 m s−1

 (This value is obtained from the square root of the average value of speeds2. This is not 
exactly the same as the value of the average speed.)

b 
1.4
28 = 5.6 × 102 mol 

c PV = nRT
 (1.0× 105) × (1200 × 10−6) = 0.050 × 8.31 × T
 T = 289 K

d We can use 
P1

T1
 = 

P2

T2
 to calculate the new pressure:

 
1.0 × 105

289  = 
P2

350
 P2 = 1.21 × 105 Pa

 Then, P = 
1
3ρv

2 

 1.21 × 105 = 
1
3 

× 1.17 × v2 (density is unchanged)

 v = 560 m s−1

 WORKED EXAMPLE B3.9

19 Make a list of all the basic physics principles used to 

derive the equation P = 
1
3
ρv2, as shown above.

20 What pressure would be created by 5.0 × 1023 ideal gas 
molecules, each of mass 5.3 × 10−26 kg in a volume of 
0.010 m3 if the temperature of the gas was such that the 
average speed of the molecules was 500 m s−1?

21 An ideal gas has a density of 2.4 kg m−3. If it creates a 
pressure of 1.5 × 105 Pa on its container, determine a 
value for the average speed of its molecules.

22 At room temperature the average speed of oxygen 
molecules is 500 m s−1. What pressure will these molecules 
create if the density of oxygen was the same as in air 
(1.3 kg m−3)? Assume that oxygen behaves as an ideal gas.

23 Three particles have speeds 440 m s−1, 480 m s−1 

and 520 m s−1.
a What is their average speed?
b What is the square of their average speed?
c What is the average of their speeds‑squared?
d What is the square root of the average of their 

speed squared?
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252 Theme B: The particulate nature of matter

Nature of science: Models

Randomness

A key feature of the motions of the particles in 
an ideal gas is that they are ‘random’. But what 
exactly does ‘random’ mean? The word has various 
uses throughout science and more generally, often 
with slight differences in meaning. For example, 
we might say that the result of throwing a six‑sided 
die is random because we cannot predict what will 
happen, although we probably appreciate that there 
is a one‑in‑six chance of any particular number 
ending up on top. In this case, all outcomes should 
be equally likely. Another similar example could 
be if we were asked to ‘pick a card at random’ 
from a pack of 52. 	■ Figure B3.26 Six‑sided dice

Sometimes we use the word random to suggest that something is unplanned. For example a tourist might 
walk randomly around the streets of a town.

Unpredictability is a key feature of random events and that certainly is a large part of what we mean 
when we say a gas molecule moves randomly. All possible directions of motion may be equally likely, 
but the same cannot be said for speeds. Some speeds are definitely more likely than others. For example, 
at room temperature a molecular speed of 500 m s−1 is much more likely than one of 50 m s−1. Similarly, 
when we refer to random kinetic energies of molecules, we mean that we cannot know or predict the 
energy of individual molecules, although some values are more likely than others. But there is a further 
meaning: we are suggesting that individual molecules behave independently and that their energies 
are disordered.

Perhaps surprisingly, in the kinetic theory, the random behaviour of a very large number of individual 
molecules on the microscopic scale leads to complete predictability in our everyday macroscopic 
world. Similar ideas occur in other areas of physics, notably in radioactive decay (Topic E.1), where 
the behaviour of an individual atom is unknowable, but the total activity of a radioactive source is 
predictable. Of course, insurance companies, betting companies and casinos can make good profits by 
understanding the statistics of probability, without being too concerned about individual events.

LINKING QUESTIONS
l How can gas 

particles of high 
kinetic energy 
be used to 
perform work?

l How does a 
consideration of the 
kinetic energy of 
molecules relate to 
the development of 
the gas laws?

These questions link 
to understandings in 
Topic B.4 (HL).

	■ Internal energy of an ideal gas

SYLLABUS CONTENT

 The relation between the internal energy, U, of an ideal monatomic gas and the number of molecules, 

or amount of substance as given by: U = 
3
2NkBT or U = 

3
2RnT.

 The equations governing the behaviour of ideal gases are given by: PV = NkBT and PV = nRT .

The internal energy of an ideal (monatomic) gas is the total random translational kinetic energy 
of its particles. Ideal monatomic gas particles do not have any potential energies, or vibrational or 
rotational kinetic energies.

Internal energy is given the symbol U. It can be calculated by multiplying the number of particles 
by their average random translational kinetic energy:

U = N × 
1
2
mv2

Comparing PV = nRT with PV = 
1
3
Nmv2 we see that: nRT = 

1
3
Nmv2.

 ◆ Internal energy of an 
ideal monatomic gas, U  
The sum of the random 
translational kinetic energies 
of all the molecules. 
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B.3   Gas laws 253

But 
1
3
Nmv2 can be rewritten as 

2
3
 × 

1
2
Nmv2 or 

2
3
U so: nRT = 

2
3
U.

Or:

internal energy of an ideal (monatomic) gas: U = 
3
2
nRT (using macroscopic quantities R and T.)

Most gases consist of molecules, rather than atoms. They still approximate well to the 
macroscopic behaviour of an ideal gas, but their internal energy is more complicated, because of 
the vibrational and rotational kinetic energies of their molecules.

The forces between particles in solids and liquids makes calculating their internal energies much 
more complicated.

Calculate the total internal energy of one mole of a monatomic ideal gas at 300 K.

Answer

U = 
3
2nRT = 1.5 × 1.0 × 8.31 × 300 = 3.7 × 103 J

 WORKED EXAMPLE B3.10

If we divide both sides of the highlighted equation for U by the number of particles, N, we get the 
average random translational kinetic energy of a single atom in an ideal gas, Ek (=U/N):

Ek = 
3
2
 
nRT
N

, but we know that 
n
N

 = the Avogadro constant, NA, so that: Ek = 
3
2
 
RT
NA

.

R
NA

 is the molar gas constant divided by the number of particles in a mole.

It is called the Boltzmann constant, kB (unit: J K−1), which was intoduced in Topic B.1:

kB = 
8.31

6.02 × 1023 = 1.38 × 10–23 J K–1

Boltzmann constant: kB = 
R
NA

 

This leads us to the important relationship between temperature (K) and the average random 
translational kinetic energy of particles, that we first met in Topic B.1, and which is repeated here:

Ek = 
3
2
kBT  (= 

1
2
mv2)

This equation is not restricted to the particles in ideal gases. When particles collide / interact, 
translational kinetic energy is exchanged, so that the particles in all gases in good thermal 
contact with each other will eventually all have the same average translational kinetic energy. 
In other words:

At the same temperature, all gases contain molecules with the same average random 
translational kinetic energy.

DB

DB

369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   253369917_08_IB_Physics 3rd_Edn_SEC_B_3.indd   253 09/01/2023   22:2209/01/2023   22:22



254 Theme B: The particulate nature of matter

 ATL B3B: Research skills 

Providing a reasoned argument to support conclusions

Kinetic theory and the distribution of molecular speeds

Figure B3.27 shows the range and distribution of molecular speeds in a typical gas, and how it changes 
as the temperature increases. This is known as the Maxwell−Boltzmann distribution.
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	■ Figure B3.27 Typical distributions 

of molecular speeds in a gas

Note that there are no molecules with zero speed and few with very high speeds. Molecular speeds 
and directions (that is, molecular velocities) are continually changing as the result of intermolecular 
collisions. As we have seen, higher temperature means higher kinetic energies and therefore higher 
molecular speeds. But the range of speeds also broadens and so the peak becomes lower, keeping the 
area under the graph, constant.

Figure B3.28 illustrates the ranges of molecular speeds for different gases at the same temperature. 
It shows that, as we have noted before, at the same temperature less massive molecules have higher 
speeds than more massive molecules.
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	■ Figure B3.28 Distribution of molecular speeds in different gases at the same temperature

For a given sample of a gas, the area under the curves in Figure B3.27 is the same. Explain why this 
must be true.

Understanding that kB = 
R
NA

 = 
Rn
N

, internal energy, U = 
3
2
nRT can now be expressed in terms of k 

(rather than R) if we prefer:

Internal energy of an ideal monatomic gas: U = 
3
2
NkBT (using the microscopic quantities N and kB.)

We can also re‑write the ideal gas equation (PV = nRT) in terms of k (rather than R):

PV = NkBT 

DB

DB
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B.3   Gas laws 255

a A sample of an ideal monatomic gas in a closed container at 18 °C has a total internal 
energy of 380 J. Determine how many particles (atoms) it contains.

b If the container has a volume of 435 cm3, calculate the pressure of the gas.

Answer

a U = 
3
2NkBT 

 380 = 1.5 × N × (1.38 ×10−23) × (273 + 18)
 N = 6.3 ×1022

b PV = NkBT
 P × (435 × 10−6) = (6.3 ×1022 ) × (1.38 ×10−23) × (273 + 18)
 P = 5.8 × 105 Pa

 WORKED EXAMPLE B3.11

	■ Real gases compared to ideal gases

SYLLABUS CONTENT

 Temperature, pressure and density conditions under which an ideal gas is a good approximation to a 
real gas.

An ideal gas is impossible to achieve, but we have seen that real gases obey the ideal gas equation 
(PV = nRT) under most circumstances. However, this will not be true if there are significant 
differences from the stated assumptions about the particles in an ideal gas, such as:
l At high densities and pressures the particles will be closer together than has been assumed. 

The forces between the particles may no longer be negligible.
l At low temperatures the forces between particles will have a greater effect because the 

particles are moving slower. Most real gases will also turn into liquids and solids if the 
temperature is low enough.

	■ Figure B3.29 Liquid nitrogen has a boiling point of 77 K

 ◆ Real gases Modelling of 
gas behaviour is idealized. 
Real gases do not behave 
exactly the same as the 
model of an ideal gas.
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256 Theme B: The particulate nature of matter

Most real gases behave like ideal gases unless their pressure or density is very high, or the 
temperature is very low.

24 a Calculate the average random translational kinetic 
energy of oxygen (O2) molecules at 300 K.

b Oxygen molecules each have a mass of 5.31 × 10−26 kg. 
Determine their average speed at 300 K.

c Explain why an average carbon dioxide (CO2) 
molecule travels slower than oxygen molecules (O2) at 
the same temperature.

25 a Determine how much energy is needed to raise the 
temperature of two moles of a monatomic gas from 
20 °C to 50 °C.

b Why will more energy be needed to raise two 
moles of a molecular gas through the same 
temperature rise?

26 At what temperature will 1.0 × 1023 atoms of an ideal gas 
have a total internal energy of 1000 J?

27 Some nitrogen gas was cooled from a temperature of 
300 K to 100 K.
a Estimate by what percentage its pressure was reduced.
b State two assumptions you had to make in order to 

answer part a.
c Explain why the actual final pressure was less than 

that predicted by theory.

28 What is the pressure of an ideal gas which has a 
temperature of 47 °C and contains 4.2 × 1025 particles in a 
volume of 0.037 m3?

29 a Explain why the internal energy of an ideal gas can 
be determined from: 1.5 × pressure × volume.

b Discuss why temperature does not appear in 
this equation.

c What volume (cm3) of an ideal gas has an internal 
enegy of 10 J and exerts a pressure of twice normal 
atmospheric pressure?

30 The molar heat capacity of a gas is a similar concept 
to specific heat capacity. It equals the thermal energy 
needed to raise the temperature of one mole of the gas by 
one kelvin.
a Calculate the molar heat capacity of argon. (Assume 

that the gas is kept in a constant volume.)
b Explain why the molar heat capacity of a molecular 

gas, oxygen for example, will be greater.
c Why will the molar heat capacity of argon be greater 

than your answer to part a if it is allowed to exand?

TOK

Knowledge and the knower
l How do our interactions with the material world shape 

our knowledge?

Models always have limitations

We cannot directly use our human perception to help understand 
the behaviour of molecules in a gas. We need a model to help to 
understand the situation. In this topic we have presented both a 
visual and a mathematical model of an ‘ideal’ gas. These models 
are extremely useful and accurate predictors of the behaviour of 
real gases, but they are not perfect.

Can modelling any system which is too big or too small to be seen 
ever be ‘good enough’ to count as true knowledge? Can we ever be 
sure that a model is a true representation of reality, if we can never 
observe events directly? Added to which, one purpose of a model is 
to simplify reality, to make it easier to understand.

Or will there always be some doubt? And, if the model is useful, 
does it really matter if the model is a ‘true’ representation of 

something that we cannot observe directly anyway? Can a model 
of the solar system, for example, be considered to be knowledge 
of a higher level (than the model of an ideal gas), because we can 
directly observe and record the motion of individual planets?

	■ Figure B3.30 Simple model of the Solar System
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ThermodynamicsB.4

• How can energy transfers and storage within a system be analysed?
• How can the future evolution of a system be determined?
• In what way is entropy fundamental to the evolution of the Universe?

Guiding questions

Nature of science: Global impact of science

Heat engines

The invention of devices that could continuously use the thermal 
energy transferred from a burning fuel to do useful mechanical 
work changed the world completely. No longer did people, or 
animals, have to do such hard work – they could get engines to 
do it for them, and much quicker than they could do the same 
work themselves.

The idea that burning a fuel to heat water to make steam, which 
could then be used to make something move, had been understood 
for a very long time. But, using this in a practical way was much 
more difficult, and it was not until the early eighteenth century 
that the first commercial steam engines were produced. It was 
about 100 years afterwards when George Stephenson built the 
engine ‘Locomotion’ (See Figure B4.1) for the first public steam 
railway, opened in the UK in 1825.

About 200 years later, things are very different. We live in 
a world that is dominated by heat engines (devices that get 
useful mechanical work from a flow of thermal energy). We 
are surrounded by all sorts of different engines – in cars, boats, 
trains, planes, factories and power stations producing electricity 
(see Figure B4.2).

All these engines need a 
transfer of thermal energy 
from fuels in order to 
work. The fuels are usually 
fossil fuels. It is difficult to 
overstate the importance that 
these devices have had in 
modern life, because without 
them our lives would be 
very different. Of course, 
we are now also very much 
aware of the problems associated with the use of heat engines, as 
discussed in Topic B.2: limited fossil-fuel resources, inefficient 
devices, pollution and global warming.

This topic describes the process of using thermal energy to do 
useful mechanical work in heat engines. This branch of physics 
is known as thermodynamics. Although thermodynamics 
grew out of a need to understand heat engines, it has much 
wider applications. The study of thermodynamics leads to a 
better understanding of key scientific concepts such as internal 
energy, heat, temperature, work and pressure, and how they are 
all connected to each other and to the microscopic behaviour 
of particles.

	■ Figure B4.2 Using hot gases in heat engines

	■ Figure B4.1 The ‘Locomotion’

 ◆ Heat engine Device that 
uses the flow of thermal 
energy to do useful work.

 ◆ Thermodynamics 
Branch of physics involving 
transfers of thermal energy 
to do useful work.
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258 Theme B: The particulate nature of matter

In this topic we will concentrate our attention on understanding the basic principles of the 
processes that involve the volume increase (expansion) of fixed masses of gases.

In the rest of this chapter, and throughout physics, there are many references to thermodynamic 
‘systems’ and ‘surroundings’. Before going any further, we should make sure that these simple and 
widely used terms are clearly understood.

A system is simply the thing that we are studying or talking about. In this topic it will be a gas.

In this topic we will be discussing closed systems, in which energy can be transferred into or out 
of the system as heat, or work, but no mass can be transferred in or out. Compare this to an isolated 
system: one in which neither mass nor energy can be transferred in or out. For example, when 
discussing the conservation of momentum in Topic A.2, we were referring to an isolated system.

The surroundings are everything else – the gas container and the rest of the Universe. Sometimes 
the surroundings are called the environment. If we wish to suggest that a part of the surroundings 
was deliberately designed for thermal energy to flow into it or out of it, we may use the term 
(thermal) reservoir.

A thermodynamic system can be as complex as a rocket engine, planet Earth or a human body, but 
in this topic, we will develop understanding by considering the behaviour of gases in heat engines.

Work done when a gas expands 
(or is compressed)

SYLLABUS CONTENT

 The work done by or on a closed system, as given by W = PΔV, when its boundaries are changed, can 
be described in terms of pressure and changes of volume of the system.

For simplicity, the thermodynamic system that we are considering is often shown as a gas in a 
regularly shaped cylindrical container, constrained by a gas-tight piston that can move without 
friction (Figure B4.3).

First consider the example of a gas expanding so that there is no change in pressure. (This is called 
an isobaric change, as described later.) If the gas trapped in the cylinder in Figure B4.4 is given 
thermal energy it will exert a resultant force on the piston (because the pressure in the cylinder is 
momentarily higher than the pressure from the surroundings) and the piston will move outwards 
as the gas expands, keeping the pressures equal.

gas
(pressure P)

∆s

Before

piston of area A

gas
(pressure P)

friction-free piston

After

     
	■ Figure B4.4 Gas 

expanding in a cylinder

LINKING QUESTION
l What paradigm 

shifts enabling 
changes to human 
society, such as 
harnessing the 
power of steam, 
can be attributed 
to advancements 
in physics 
understanding? 
(NOS)

 ◆ Closed system Allows 
the free flow of thermal 
energy, but not matter. 

 ◆ Reservoir (thermal) 
Part of the surroundings 
of a thermodynamic 
system that is kept at 
approximately constant 
temperature and is used 
to encourage the flow of 
thermal energy.

 ◆ Isobaric Occurring at 
constant pressure. ΔP = 0 .

gas

no gas can pass

sliding piston

	■ Figure B4.3 Gas in a cylinder with a movable 
piston
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We say that work has been done by the gas in pushing back the surrounding air (remember that we 
are assuming that there is no friction).

work done by gas = force × distance moved in direction of force, or

work done by gas = (PA)Δs (because force = pressure × area)

Because change of volume, ΔV = AΔs:

work done when a gas changes volume at constant pressure, W = PΔV

If work is done on the gas to reduce its volume, ΔV and the work done, 
W, will have negative values.

We introduced PV diagrams in Topic B.3 and they are very useful 
in representing changes in the state of a gas during thermodynamic 
processes. An example is shown in Figure B4.5, which shows the 
expansion of a gas from 0.020 m3 to 0.050 m3 at a constant pressure 
of 1.0 × 105 Pa.

The work done by the gas in expansion in this example:

W = PΔV = (1.0 × 105) × (0.050 − 0.020) = 3.0 × 103 J

Note that this calculation to determine the work done, PΔV, is numerically equal to calculating the 
area under the PV diagram. This is true for all thermodynamic processes, regardless of the shape 
of the graph, and this is one reason why PV diagrams are so widely used in thermodynamics to 
represent various processes. Figure B4.6 shows two further examples.

The work done when a gas changes pressure and/or volume can be determined from the area 
under a PV diagram.

Determine values for the work done in the two changes of state represented in Figure B4.6.

V/m3

a

0 0.017 0.038
0

2.1

3.9

P/
10

5  
Pa

V/m3

b

0 0.012 0.042
0

1.4

3.2

P/
10

5  
Pa

	■ Figure B4.6 Determining areas under pressure–volume graphs

Answer
a W = PΔV = area under graph

  = [12 × (3.9 – 2.1) × 105 × (0.038 – 0.017)] + [(0.038 – 0.017) × 2.1 × 105] = 6.3 × 103 J

 The work is done on the gas as it is compressed into a smaller volume.
b In this example, work is done by the gas as the volume increases. Because the graph is 

curved, the area underneath it must be estimated, as explained below.

 WORKED EXAMPLE B4.1

 ◆ Work done when a gas 
changes volume, W Work 
is done by a gas when it 
expands (W is positive). 
Work is done on a gas 
when it is compressed 
(W is negative). At constant 
pressure W = PΔV. If the 
pressure changes, the work 
done can be determined 
from the area under a 
PV diagram.

 ◆ State of a gas Specified 
by quoting the pressure, P, 
temperature, T, and 
volume, V, of a known 
amount, n, of gas.

DB

area = work
done by gas

gas
expanding

Volume, V/m3

1.0 × 105

0

Pr
es

su
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, P
/P

a

0.020 0.050

	■ Figure B4.5 Work done during expansion of an ideal gas
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260 Theme B: The particulate nature of matter

Tool 3: Mathematics

Interpret features of graphs: areas under the graph

The areas under curved graphs can be estimated by drawing a rectangle that is judged by 
eye to have the same area, as shown by the example in Figure B4.7.

V/m3
0 0.012 0.042

0

1.4

3.2
P/

10
5  

Pa

2.1

equal
areas

     	■ Figure B4.7 Estimating the area under a curved graph

W = area under graph ≈ (2.1 × 105) × (0.042 − 0.012) = 6.3 × 103 J

1 The volume of a gas expanded from 43 cm3 to 51 cm3 
while its pressure remained constant at 1.1 × 105 Pa.
a Calculate the work done.
b State whether work was done on the gas, or by the gas.

2 0.84 J of work was done on a gas of volume 7.6 × 10−5 m3. 

If the pressure was constant at 1.4 × 105 Pa, calculate the 
new volume.

3 Figure B4.8 shows how the volume of a gas changed 
as the pressure on it was increased. Show that the work 
done during the expansion was approximately 230 J.

V/cm3 
300 900

200

600

P/
kP

a

	■ Figure B4.8 PV graph for a gas

First law of thermodynamics

SYLLABUS CONTENT

 The first law of thermodynamics, as given by Q = ΔU + W, results from the application of 
conservation of energy to a closed system and relates the internal energy of a system to the transfer of 
energy as heat and as work.

 The change in internal energy, as given by ΔU = 
3
2NkBΔT is related to the change of its temperature.

If an amount of thermal energy, +Q, is transferred into a system, such as that seen in Figure 
B4.3, then, depending on the particular circumstances, the gas may gain internal energy, +ΔU, 
and/or the gas will expand and do work on the surroundings, +W. We can use the principle of 
conservation of energy (from Topic A.2) to describe how these quantities are connected:

Thermal energy supplied to a gas:

Q = ΔU + W 

DB
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This important equation, known as the first law of thermodynamics, covers all the possibilities 
of expanding or compressing gases, and/or supplying or removing thermal energy from a system.

Common mistake
Students often get confused over the signs used in this equation. They are restated here:
l Thermal energy transferred into the gas will be given positive values: +Q;
 thermal energy removed from the gas will be considered to be negative: −Q.
l An increase in the internal energy of a gas will be given positive values: +ΔU;
 a decrease in internal energy will be considered to be negative: −ΔU.
l Work done by the gas during expansion will be given positive values: +W;
 work done on the gas during compression will be given negative values: −W.

80 J of work was done by a gas when 120 J 
of thermal energy was transferred to it. 
Determine the change in internal energy of 
the gas.

Answer
 Q = ΔU + W
(+120) = ΔU + (+80)
 ΔU = (+40) J. The positive sign shows 
that the internal energy increased.

 WORKED EXAMPLE B4.2

150 J of work was done when a gas was 
compressed. At the same time, its internal 
energy increased by 50 J. Calculate how 
much thermal energy flowed into, or out of, 
the system during this process.

Answer
Q = ΔU + W
Q = (+50) + (−150) = (−100) J of thermal 
energy was transferred. The negative sign 
shows that the transfer was out of the gas.

 WORKED EXAMPLE B4.3

	■ Changes in internal energy of an ideal monatomic gas
We have seen in Topic B.3 that the internal energy of an ideal monatomic gas can be 
calculated from:

U = 
3
2
NkBT = 

3
2

nRT

This means that:

changes in internal energy, ΔU, of an ideal monatomic gas can be calculated from:

ΔU = 
3
2
NkBΔT = 

3
2
nRΔT

Consider the previous worked example. 
If the gas contained 3.4 × 1023 particles, 
determine the temperature rise. Assume the 
gas was an ideal monatomic gas.

Answer

ΔU = 
3
2NkBΔT

 50 = 1.5 × (3.4 × 1023) × (1.38 ×10−23) × ΔT
 ΔT = 7.1 K

 WORKED EXAMPLE B4.4

 ◆ First law of 
thermodynamics If an 
amount of thermal energy, 
+Q, is transferred into a 
system, then the system 
will gain internal energy, 
+ΔU, and/or the system 
will expand and do work 
on the surroundings, +W: 
Q = ΔU + W. 

DB

Top tip!
When applying the first 
law of thermodynamics, 
show the energies as 
shown in the above 
worked example: in 
brackets with either a 
+ or – sign.
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262 Theme B: The particulate nature of matter

4 200 J of work was done when a gas expanded at constant 
temperature. How much thermal energy was transferred?

5 70 J of work was done while a gas was compressed. At 
the same time 30 J of thermal energy was transferred out 
of the gas. Calculate the change in internal energy.

6 50 J of thermal energy was removed from a gas and its 
internal energy decreased by 10 J.
a How much work was done?
b Was the work done on the gas, or by the gas?

7 An ideal monatomic gas containing 3.4 × 1024 particles 
was heated from 297 K to 348 K.
a What was the change in internal energy of the gas?
b If, in this time, 5600 J of thermal energy was supplied 

to the gas, what was the amount of work done by, or 
on, the gas?

8 The internal energy of 3.2 moles of some helium gas, at 
an initial temperature of 302 K, rose by 540 J.
a What was the final temperature of the gas?
b If, at the same time, the gas expanded from a 

volume of 220 cm3 to 380 cm3 at constant pressure of 
2.3 × 105 Pa, how much work was done?

c How much thermal energy was transferred?

9 During an investigation of how the volume of a fixed 
mass of air changed with temperature at constant 
atmospheric pressure (1.0 × 105 Pa), the volume increased 
from 2.3 cm3 to 3.1 cm3.
a Calculate how much work was done.
b Was the work done on the gas, or by the gas?
c The expansion of the air happened when 0.150 J of 

thermal energy was transferred into the system. 
Determine the change in internal energy of the gas.

10 1.82 J of thermal energy was supplied to a gas, increasing 
its pressure steadily from 1.0 × 105 Pa to 1.2 × 105 Pa. 
During this time the volume was increased steadily from 
35 cm3 to 45 cm3.
a Represent this process on a PV diagram.
b Indicate the work done during this process on 

your drawing.

c Calculate the work done.
d Determine the change in internal energy of the gas.

11 Consider Figure B4.9. Work has been done to change the 
state of a gas from point A to point B on the PV diagram.

V/cm3

0

1.0

P/
10

5  
Pa

0 10 20

15 42

30 40 50

A

B

2.0

3.0

3.7

	■ Figure B4.9 PV graph

a Describe the process.
b Did the process obey Boyle’s law?
c What has happened to the temperature of the gas? 

Explain your answer.
d Estimate the work done during the process.
e During the process, 1.9 J of thermal energy 

flowed out of the gas. Determine the change in its 
internal energy.

12 1.74 mol of an ideal monatomic gas expanded and during 
the process its temperature changed. The container was 
well insulated and no thermal energy was able to flow 
into, or out of, the gas.
a If the internal energy of the gas decreased by 29.7 J, 

calculate the temperature change of the gas.
b Determine how much work was done by the gas 

during this expansion.

13 Explain why a gas gets hotter when it is 
compressed rapidly.
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	■ Four thermodynamic processes

SYLLABUS CONTENT

 Isovolumetric, isobaric, isothermal and adiabatic processes are obtained by keeping one variable fixed.
 Adiabatic processes in monatomic ideal gases can be modelled by the equation as given by:

 PV  
5
3 = constant 

Among all the various possible changes of state that a gas might experience, it is convenient to 
consider the first law of thermodynamics under four extremes:
l ΔU = 0 l W = 0 l Q = 0 l ΔP = 0

These are represented in Figure B4.10, in which the dotted lines are all isothermals.
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B

ΔU = 0 (isothermal process)

(The prefix iso- means equal.)

There is no change in the internal energy of the gas because its temperature is constant. Therefore,

in an isothermal change:

Q = 0 + W or Q = W

In an isothermal expansion (B → A) all the work done by the gas on the surroundings is supplied 
by thermal energy transferred into the gas. In an isothermal compression (A → B), the work done 
on the gas is all transferred away from the gas as thermal energy. For a process to approximate 
to the ideal of being isothermal, the change must be as slow as possible. Isothermal changes obey 
Boyle’s law (as described in Topic B.3): PV = constant. 

	■ Figure B4.10 Four 
thermodynamic processes

369917_09_IB_Physics 3rd_Edn_SEC_B_4.indd   263369917_09_IB_Physics 3rd_Edn_SEC_B_4.indd   263 04/01/2023   22:4504/01/2023   22:45



H
L O

N
LY

264 Theme B: The particulate nature of matter

W = 0 (isovolumetric process)

There is no work done by or on the gas because there is no change in volume. Therefore,

in an isovolumetric change:

Q = ΔU + 0 or Q = ΔU

In this straightforward process, if thermal energy is transferred into a gas, it simply gains internal 
energy and its temperature rises. If thermal energy is transferred away from a gas, its internal 
energy and temperature decrease.

Q = 0 (adiabatic process)

No thermal energy is transferred between the gas and its surroundings. Therefore

in an adiabatic change:

0 = ΔU + W

ΔU = −W for a compression and −ΔU = W for an expansion.

In an adiabatic expansion (B → A) all the work done by the gas is transferred from the internal 
energy within the gas, ΔU is negative and the temperature decreases. In an adiabatic compression 
(A → B) all the work done on the gas (−ΔW) is transferred to the internal energy of the gas, which 
gets hotter.

When gas molecules hit the inwardly moving piston during a compression, they gain kinetic 
energy and the temperature rises. When gas molecules hit the outwardly moving piston during an 
expansion, they lose kinetic energy and the temperature falls.

For a process to approximate to the ideal of being adiabatic, the change must be as rapid as 
possible in a well-insulated container.

Note that adiabatic lines on PV diagrams must be steeper than isothermal lines, because in equal 
expansions, the temperature decreases during an adiabatic change, but is constant (by definition) 
during an isothermal change. This difference can be quantified by considering PV relationships:

We know that PV = constant during an isothermal change (that is, PV 1 = constant) but,

in an adiabatic change of an ideal monatomic gas:

PV
5
3 = constant

For gases other than monatomic ideal gases, V is raised to a different power, but this is not 
included in this course.

Comparing this equation to that for an isothermal change, we see that similar changes in volume 
are associated with greater changes in pressure during adiabatic changes. This is because there are 
also accompanying temperature changes.

ΔP = 0 (isobaric process)

Any expansion or compression that occurs at constant pressure. Therefore,

in an isobaric change:

Q = ΔU + W (and W = PΔV)

Most isobaric changes occur when gases are allowed to expand or contract freely when their 
temperature changes, keeping their pressure the same as the surrounding pressure.

 ◆ Isovolumetric 
Occurring at constant 
volume. 

 ◆ Adiabatic Occurring 
without thermal energy 
being transferred into or 
out of a thermodynamic 
closed system. 

DB
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Inquiry 2: Collecting and processing data

Interpreting results

When you write an investigation report it will probably 
contain charts, diagrams or graphs, such as seen in Figure 
B4.11: a student used an isovolumetric change of a gas 
to estimate a value for absolute zero, using the apparatus 
shown in Figure B3.14, Topic B.3. 

2.0

1.5

1.0

0.5

0 50–50–100–150–200–250–300 100

Pr
es

su
re

/1
05  

Pa

Temperature/°C

	■ Figure B4.11 Results of an isovolumetric experiment.

Graphical representations summarize the data collected 
and enable the reader to gain a quick impression of the 
results of the investigation. Your investigation report 
should summarize what you have learned from any such 
representations.

This may involve any, or all, of:
l considering the quantity and spread of measurements 

taken
l discussing the quality and reliability of graphs
l identifying any relationship that can be identified 

between the two variables
l describing and explaining any pattern or trend shown 

by a graph (if no precise relationship is apparent)
l quoting values for intercepts and explaining 

their significance
l calculating gradients and explaining their significance
l calculating areas under graphs and explaining 

their significance
l identifying and explaining any maxima or minima 

(and other turning points).

Anomalous readings (outliers) should not usually be 
rejected without being checked. The most common 
reason for an outlier is a simple error in measurement, or 
recording, which will be evident if it is repeated.

It is unusual that an anomalous reading is confirmed 
as being correct. But, if it is, you should take further 
measurements at slightly different values to try to 
determine the extent of the anomaly.

Ideally, the pattern of the data should be processed quickly 
at the time of the experiment, often by drawing a rough 
graph. This prevents the situation whereby you only notice 
an anomalous reading when processing the data later, 
when checking the measurement again is not possible. See 
Figure B4.12 which shows the results of a Boyle’s law 
experiment (Topic B.3).

If not checked, you should include any outliers in your report 
(and note them as outliers). You need to use your judgement 
as to whether the outlier should affect your conclusions.

Analyse the graphs shown in the last two figures and discuss 
the quality of the experimentation that they represent.
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	■ Figure B4.12 An anomalous reading (uncertainty bars not shown)
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A gas of volume 0.080 m3 and pressure 1.4 × 105 Pa 
expands to a volume of 0.11 m3 at constant pressure when 
7.4 × 103 J of thermal energy are supplied.
a Name the thermodynamic process.
b Calculate the work done by the gas.
c Determine the change in the internal energy of 

the gas.

Answer
a An isobaric process.
b W = PΔV = (1.4 × 105) × (0.11 − 0.080) = +4.2 × 103 J
c Q = ΔU + W
 (+7.4 × 103) = ΔU + (+4.2 × 103)
 ΔU = +3.2 × 103 J (The internal energy of the 

gas increases.)

 WORKED EXAMPLE B4.5

The volume of an ideal monatomic gas is reduced in an 
adiabatic compression by a factor of 8.0. Determine the 
factor by which the pressure in the gas changes.

Answer
PV

5
3 = constant

P1V1

5
3 = P2V2

5
3 

P2

P1

 = (V1

V2
)5

3
 = 8

5
3 

log (P1

P2
) = 

5
3 × log 8 = 1.505

P1

P2

 = 32

The pressure has increased by a factor of 32.
If this had been an isothermal change the pressure would 
have increased by the same factor (8.0) as the volume has 
decreased. In this example the pressure has increased by 
a bigger factor because the temperature increased in an 
adiabatic compression.

 WORKED EXAMPLE B4.6

14 Figure B4.13 represents four successive changes to the 
state of a gas of constant mass.

V0
0

P
B C

D

A

	■ Figure B4.13 Four successive changes to the state of a gas

a Name the processes shown by:
i BC ii DA.

b If CD is an adiabatic process, compare the 
temperatures at points C and D.

c If AB is an isothermal process, compare the 
temperatures at points A and B.

15 Copy and complete Table B4.1 by putting 0, +, –, or ± in 
each box

	■ Table B4.1

Q ΔU W ΔP ΔV ΔT

isothermal expansion       

compression       

adiabatic expansion       

compression       

isobaric expansion       

compression       

isovolumetric pressure increase       

pressure decrease       

16 An ideal monatomic gas expands adiabatically from a 
volume of 3.13 × 10−3 m3 to 3.97 × 10−3 m3.
a If the original pressure was 2.60 × 105 Pa, determine 

the final pressure.
b If the final temperature of the gas was 398 K, what 

was the starting temperature?
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Thermodynamic cycles and PV diagrams

SYLLABUS CONTENT

 Cyclic gas processes are used to run heat engines.
 A heat engine can respond to different cycles and is characterized by its efficiency:

 η = 
useful work
input energy

 The Carnot cycle sets a limit for the efficiency of a heat engine at the temperatures of its heat 

reservoirs: ηcarnot = 1 – 
Tc

Th
.

An expanding gas (sometimes called a working substance) can do useful work – for example, 
by making a piston move along a cylinder. However, a gas in a container cannot expand for 
ever, so any practical device transferring thermal energy to mechanical work must move in 
thermodynamic cycles, involving repeated expansions followed by compressions, followed 
by expansions and so on. In this section we will discuss some of the physics principles that are 
fundamental to cyclical processes. It is important to realize that we are not describing details of 
the actual mechanical processes in any particular type of engine.

The essential process in a heat engine is the transfer of thermal energy to produce expansion 
and do useful mechanical work.

This is represented by path AB in Figure B4.14a. The shaded area under the graph represents the 
work done by the gas during the expansion.
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	■ Figure B4.14 Work done in a thermodynamic cycle

In a cyclical process, the gas has to be compressed and returned to its original state. 
Assume, for the sake of simplicity, that this is represented by the path shown in 
Figure B4.14b. The area under this graph represents the work done on the 
compressed gas. The difference in areas, shown in Figure B4.14c, is the net useful 
work done by the gas during one cycle. Of course, if we imagined the impossible 
situation that, when the gas was compressed, it returned along exactly the same path 
that it followed during expansion, there would be no net useful work done and no 
energy wasted.

Figure B4.15 shows a simplified example of an complete cycle. Of course, there 
are a large number of cycles that could be drawn on a PV diagram and, if they are 
to be considered as the basis of a useful engine, then it is important that they have 
high efficiencies.

 ◆ Working substance The 
substance (usually a gas) 
used in thermodynamic 
processes to do useful work.

 ◆ Cycle (thermodynamic) 
A series of thermodynamic 
processes that return a 
system to its original state 
(for example, the Carnot 
cycle). Usually, the process 
repeats continuously.
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	■ Figure B4.15 An idealized complete cycle
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	■ Efficiency of heat engines
We have discussed efficiency in Topic A.3, and in the context of this topic it can be restated as:

efficiency of a heat engine, η = 
useful work
input energy

 

Calculating the area under a PV diagram is a useful way of determining the efficiency of a 
thermodynamic cycle.

Determine the efficiency of the simple cycle shown in Figure B4.14 if the area shown in 
B4.14a was 130 J and the area in B4.14b was 89 J.

Answer

η = 
useful work done

energy input  = 
(130 – 89)

130  = 0.32 (32%)

 WORKED EXAMPLE B4.7

Figure B4.15 shows one simplified cycle, ABCA, of a gas in a particular heat engine, 
during which time 1.3 × 105 J of thermal energy flowed into the gas.
a Calculate the work done during the process AB.
b Name the processes AB and BC.
c Estimate the net useful work done by the gas during the cycle.
d What is the approximate efficiency of the engine?

Answer
a W = PΔV = area under AB = (0.50 × 105) × (1.0 − 0.20) = 4.0 × 104 J (done on the gas)
b AB occurs at constant pressure: isobaric compression. BC occurs at constant volume: 

isovolumetric temperature increase.
c Net work done by gas = area enclosed in cycle = (1.0 − 0.20) × (1.3 − 0.5) × 105 

(estimated from a rectangle having about the same area, as judged by eye)
 W = 6.4 × 104 J

d efficiency = 
useful work output
total energy input  = 

6.4 × 104

1.3 × 105  0.50 (50%)

 WORKED EXAMPLE B4.8

The purpose of a heat engine is to do useful work: to transfer thermal energy into mechanical 
energy (motion). We know that the opposite process, of converting mechanical energy into 
thermal energy, occurs around us all the time. For example, rubbing our hands together. Such 
processes are often 100% ‘efficient’, and the inevitable dissipation of useful energy in this way is 
very familiar in the study of dynamics (Topic A.3).

The laws of thermodynamics show us that, in a cyclical process, it is not possible to convert 
thermal energy into work with 100% efficiency. As will see, in practice, 50% is a good output! 
This is known as the Kelvin form of the second law of thermodynamics (see later).

Heat engines need a flow of thermal energy, which we know always spontaneously flows from a 
hotter region to a colder region. Some of that energy, but never all of it, is transferred to do useful 
work. Figure B4.16 represents this in schematic form.

DB
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A temperature difference, (Th − Tc), is needed between hot and cold reservoirs, so that there is a 
resulting flow of thermal energy, which operates the engine. Thermal energy Qh flows out of the 
hot reservoir and Qc flows into the cold reservoir. The difference in thermal energy is transferred 
to doing useful mechanical work, W.

efficiency of a heat engine:

η = 
W
Qh

or:

η = 
(Qh – Qc)

Qh

 = 1 – 
Qc

Qh

Carnot cycle

The thermodynamic cycle that produces the maximum theoretical efficiency is called the 
Carnot cycle.

The Carnot cycle is an idealized and reversible four-stage process, as shown in Figure B4.17: an 
isothermal expansion (AB) is followed by an adiabatic expansion (BC); the gas then returns to its 
original state by isothermal (CD) and adiabatic compressions (DA). Thermal energy is transferred 
during the two isothermal stages. By definition, thermal energy is not transferred during the 
adiabatic changes.

efficiency of a heat engine using the Carnot cycle:

ηCarnot = 1 – 
Tc

Th

An explanation of the origin of this equation is provided in the entropy sub-section.

It is important to realize that this equation represents the most efficient cycle allowed by the laws 
of physics. This is very different from, for example, processes in which efficiency is limited by 
energy dissipation due to friction (which also occurs in heat engines).

The Carnot cycle may also be represented on temperature–pressure and temperature–volume 
graphs (such as shown in Figure B4.18).
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	■ Figure B4.17 Carnot cycle
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	■ Figure B4.18 Carnot cycle on a volume–
temperature graph

heat
engine
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cold (Tc)
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W

	■ Figure B4.16 Energy flow 
in a heat engine

 ◆ Carnot cycle The most 
efficient thermodynamic 
cycle. An isothermal 
expansion followed by 
an adiabatic expansion; 
the gas then returns 
to its original state by 
isothermal and adiabatic 
compressions. 
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Determine the theoretical thermodynamic efficiencies of Carnot cycles operating between 
temperatures of:
a 100 °C and 20 °C
b 500 °C and 100 °C
c 150 °C and −150 °C.

Answer

a ηcarnot = 1 – 
Tc

Th
 = 1 – (293

373) = 0.21 (21%)

b ηcarnot = 1 – 
Tc

Th
 = 1 – (373

773) = 0.52 (52%)

c ηcarnot = 1 – 
Tc

Th
 = 1 – (123

423) = 0.71 (71%)

 WORKED EXAMPLE B4.9

These calculations show us that the efficiency of a Carnot cycle (and others) is limited by the 
maximum and minimum temperatures that are possible. Extremely high temperatures are 
technologically difficult to sustain. More importantly, we live in a world which has an average 
temperature of 288 K.

A waterfall analogy may be helpful. See Figure B4.19. A waterwheel placed in falling water can 
convert the lost gravitational potential energy into useful kinetic energy of the wheel, but, if for 
some reason the wheel is placed at a height of h/2, a maximum of only 50% of the available energy 
will be transferred.

h

Qh

600 K

300 K

Qc

W

h
 2

	■ Figure B4.19 Waterfall analogy. Both processes have a maximum efficiency of 50%

If in a Carnot cycle the thermal energy could be transferred between 600 K and 0 K, then the 
theoretical efficiency would be 100%. But this is not possible, and if we are constrained to an 
outlet temperature of about 300K, then the maximum possible efficiency is only 50%.
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17 a With an outlet temperature of 350 K, calculate the 
inlet temperature needed to achieve a maximum 
theoretical efficiency of 45% with a Carnot cycle.

b In practice, why will a higher temperature be needed?

18 Suggest reasons why electrical power stations need 
cooling towers, such as those seen in Figure B4.20.

     

	■ Figure B4.20 
Cooling towers 
in Poland

19 Sketch a temperature–pressure diagram for the 
Carnot cycle.

20 Determine the thermodynamic efficiency of a Carnot 
cycle in which thermal energy is flowing out of the 
hot reservoir at a rate of 1.26 ×105 W and into the cold 
reservoir at a rate of 0.79 ×105 W.

21 Estimate the efficiency of the process shown in 
Figure B4.16.

22 Figure B4.21 shows the four-stage cycle of a heat engine.
a Which stage is the compression of the gas?
b The temperature at A is 320 K. Calculate the amount 

of gas in moles.

c Calculate the temperature at point B.
d Estimate the area ABCD. What does it represent?

Volume/10–4 m3

0 1 2 3 4 5 6 7
0

1.0 A

B

C

D
2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Pr
es

su
re

/1
06  P

a

5.2 × 106

1.2 × 106

2.7 × 10–4

2.6 × 106

5.8 × 10–4

8.0 × 106

	■ Figure B4.21 The four-stage cycle of a heat engine

23 Using graph paper, make a sketch of the following four 
consecutive processes in a heat engine. Start your graph 
at a volume of 20 cm3 and a pressure of 6.0 × 106 Pa.
a an isobaric expansion increasing the volume by a 

factor of five
b an adiabatic expansion doubling the volume to a 

pressure of 1.5 × 106 Pa
c an isovolumetric reduction in pressure to 0.5 × 106 Pa
d an adiabatic return to its original state.
e Mark on your graph where work is done on the gas.
f Estimate the net work done by the gas during 

the cycle.

	■ Heat pumps

A heat pump works like a heat engine in reverse, using a work input to enable the transfer of 
thermal energy from colder to hotter.

Refrigerators and air-conditioners are heat pumps (see Figure B4.22).

 ◆ Heat pump Device 
which transfers thermal 
energy from a colder place 
by doing work. 

hot (Th)

cold (Tc)

Qh

Qc

W

	■ Figure B4.22 Energy 
transfers in a heat pump
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 ATL B4A: Research skills, thinking skills 

Applying key ideas and facts in new contexts

Using heat pumps for heating homes

The purpose of refrigerators is to transfer thermal energy from a colder place, inside a refrigerator, to 
a warmer place (the kitchen). Heat pumps using the same principle can also be used to transfer thermal 
energy from a colder exterior environment (air or ground) and use it to help to keep the interior of 
a house warm in winter, although their efficiency may be disappointing in very cold weather, when 
additional alternative heating may be needed.

Heat pumps use the fact that an evaporating liquid (the ‘refrigerant’) removes thermal energy (latent 
heat) from itself and then its surroundings. The thermal energy is released when the gas later is 
compressed and condenses back to its liquid state. Most heat pumps can be ‘reversed’ to use as 
air-conditioners in hot weather. Electrical energy is needed to operate the compressor, as shown in 
Figure B4.23.

gas

liquid

Refrigerant in outdoor coil
absorbs thermal energy

from air

refrigerant releases
thermal energy to air
and returns to a liquid
state

compressor increases
temperature and pressure

of refrigerant

	■ Figure B4.23 Extracting thermal energy from a colder environment

We have seen that the internal energy, U, in any substance is proportional to its temperature, (K). It 
may be surprising to realize that air (for example) at 0 °C has 92% of the internal energy that the same 
air has at 25 °C.

	■ Figure B4.24 Heat pump outside a home

Why might people choose to install a heat pump to heat their homes, instead of a more conventional 
fossil-fuel or electric heating system? What could their impact on climate change be?

Using your own research, determine some of the advantages and disadvantages of heat pumps.
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	■ Reversible and irreversible changes

SYLLABUS CONTENT

 Processes in real isolated systems are almost always irreversible and consequently the entropy of a 
real isolated system always increases.

The required flow of some thermal energy into a cold reservoir in a heat engine is an example of 
an irreversible process, which means that the system and its surroundings cannot be returned 
exactly to their original states.

If the original state of a system and its surroundings can be restored exactly, the process is 
described as reversible.

In practice, all macroscopic processes can be considered to be irreversible. 

Consider watching a swinging pendulum. At first it may seem that the motions keep reversing 
perfectly. However, if we keep watching, we will notice that the amplitudes decrease, because 
energy is dissipated out of the system into the surroundings. A video of a pendulum swinging 
shown in reverse could never be mistaken for the normal behaviour of a pendulum. In fact, almost 
all events shown in reverse will be obviously just that. Figure B4.25 shows another simple example.

impossible?

a b

	■ Figure B4.25 Bouncing ball

The passage of time seems to be linked to the irreversibility of processes.

So, then we must ask: what is the scientific principle that makes processes irreversible? Why can 
there be a net energy flow out of a bouncing ball into the ground, but not out of the ground into 
the ball? The first law of thermodynamics (conservation of energy) does not help us to answer 
this question.

A bouncing ball (Figure B4.25) has internal energy: its particles have individual random potential 
and kinetic energies. But, in addition, all the particles each have the same velocity as the ball as 
a whole. We need to distinguish between the ordered energy of the particles moving in the ball 
as a whole, and the random disordered energies of the same particles. As the ball bounces, more 
and more ordered energy is transferred to disordered energy. Finally, all the kinetic energies are 
disordered. The process is irreversible.

Without outside interference, in any process, ordered energy of particles will be irreversibly 
transferred to disordered energy.

 ◆ Irreversible process 
A process which cannot 
be reversed, and in which 
entropy (see below) 
always increases. All real 
macroscopic processes are 
irreversible.

 ◆ Reversible process 
A process that can be 
reversed so that the system 
and all of its surroundings 
return to their original 
states and there is no 
change in entropy. An 
impossibility in the 
macroscopic world.

 ◆ Order and disorder 
(particle) The way 
in which particles are 
arranged, or energy 
is distributed, can be 
described in terms of the 
extent of patterns and 
similarities.
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To explain this, we need to consider statistics. Consider an everyday, non-physics example: 
20 candy bars are to be distributed among 10 children. The fairest and most ordered way of doing 
this is to give two bars to each child. However, if the distribution is not controlled, but is entirely 
random, it is extremely unlikely that an even distribution will occur. It is much more likely that, 
for example, some children will get four and some children will get none. A full statistical analysis 
can make a reasonably accurate prediction of the overall distribution but cannot predict the 
number of candy bars given to any particular child.

Continuing the analogy, consider what would happen if we started with an ordered situation in 
which 10 children each had two candy bars, and then arranged a random re-distribution. The 
result will be a change to the same overall distribution as described in the previous paragraph.

However, if the distribution was already disordered, further random changes would not affect the 
overall distribution.

Returning to particle motions, the molecules of a gas move in completely random and 
uncontrollable ways. What happens to them is simply the most likely outcome. It is theoretically 
possible for all the randomly moving molecules in a room to go out of an open window at the same 
time. The only reason that this does not happen is simply that it is statistically extremely unlikely.

Consider Figure B4.26, which shows three distributions of the same number of gas molecules in 
a container. The dotted line represents an imaginary line dividing the container into two equal 
halves. We can be (almost) sure that A occurred before B, and that B occurred before C. (Probably 
the gas was released at first into the right-hand side of the container.)

Because it is so unlikely for molecules moving randomly, we simply cannot believe that C 
occurred before B and A. (In a similar way, we would not believe that if 100 coins were tossed, 
they could all land ‘heads’ up.) Figure B4.26 only shows about 100 molecules drawn to represent 
a gas. In even a very small sample of a real gas there will be as many as 1019 molecules, turning 
a highly probable behaviour into a certainty. The simplest way we have of explaining this is 
that, in the process of going from A to B to C (moving forward in time), the system becomes 
more disordered.

Similarly, the fact that energy is exchanged randomly between molecules leads to the conclusion 
that molecular energies will become more and more disordered and spread out as time goes on. 
Thermal energy will inevitably spread from places where molecules have higher average kinetic 
energy (hotter) to places with lower average molecular kinetic energies (colder). This is simply 
random molecular behaviour producing more disorder.

We can be certain that every isolated system of particles cannot spontaneously become more 
ordered as time progresses. Put simply, this is because everything is made up of particles, and 
individual atoms and molecules are uncontrollable. Everything that happens occurs because of the 
random behaviour of individual particles. Of course, we may wish to control and order molecules, 
for example by turning water into ice, but this would not be an isolated system – to impose more 
order on the water molecules we must remove thermal energy and this will result in even higher 
molecular disorder in the surroundings.

Two everyday examples may help our understanding: why is it much more likely that a pack of 
playing cards will be disordered rather than in any particular arrangement? Why is a desk, or 
a room, much more likely to be untidy rather than tidy? Because, left to the normal course of 
events, things get disorganized. To produce order from disorder requires intervention and may be 
difficult, or even impossible. There are a countless number of ways to disorganize a system, but 
only a relatively few ways to organize it.

A

B

C

	■ Figure B4.26 Gas 
molecules spreading out in 
a container
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	■ Entropy

SYLLABUS CONTENT

 Entropy, S, is a thermodynamic quantity that relates to the degree of disorder of the particles in 
a system.

The disorder of a system of particles can be calculated. It is known as the entropy of the system.

The concept of entropy, S, numerically expresses the degree of disorder in a system.

Molecular disorder and the concept of entropy are profound and very important ideas. They are 
relevant everywhere – to every process in every system, to everything that happens anywhere and 
at any time in the Universe. The principle that molecular disorder is always increasing is neatly 
summarized by the second law of thermodynamics.

	■ Second law of thermodynamics

SYLLABUS CONTENT

 The second law of thermodynamics refers to the change in entropy of an isolated system and sets 
constraints on possible physical processes and on the overall evolution of the system.

 The entropy of a non-isolated system can decrease locally, but this is compensated by an equal or 
greater increase of the entropy of the surroundings. 

The second law of thermodynamics states that in every process, the total entropy of any 
isolated system, or the Universe as a whole, always increases.

This is sometimes expressed by the statement ‘entropy can 
never decrease’. But it should be stressed that it is certainly 
possible to reduce the ‘local’ entropy of part of a system, 
but in the process another part of the system will gain even 
more entropy. For example, the growth of a plant, animal 
or human being reduces the entropy of the molecules that 
come to be inside the growing body, but there will be an even 
greater increase in the entropy of all the other molecules 
in the surroundings that were involved in the chemical 
and biological processes. Water freezing or the action of 
a refrigerator, such as seen in Figure B4.27, provide other 
examples. The internal energy of the contents is reduced 
as thermal energy is transferred away at the back of the 
refrigerator. The entropy of the contents is reduced because 
they are colder, but the entropy of the kitchen is increased by 
a greater amount because it is hotter.

The statistical analysis of the behaviour of enormous numbers of uncontrollable particles leads to 
the inescapable conclusion that differences in the macroscopic properties of any system, such as 
energy, temperature and pressure, must even out over time. This is represented quantitatively by 
a continuously increasing entropy. This suggests that, eventually, all energy will be spread out, 
all differences in temperature will be eliminated and entropy will reach a final steady, maximum 
value. This is often described as the ‘heat death’ of the Universe.

 ◆ Entropy, S A measure 
of the disorder of a 
thermodynamic system 
of particles. 

 ◆ Second law of 
thermodynamics The 
overall entropy of the 
universe is always 
increasing. This implies 
that energy cannot 
spontaneously transfer 
from a place at low 
temperature to a place 
at high temperature. Or, 
in the Kelvin version: 
when extracting energy 
from a heat reservoir, it is 
impossible to convert it all 
into work.

	■ Figure B4.27 A refrigerator transfers thermal energy from the food and 
reduces entropy, but where does the energy go?
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Disorder and entropy in macroscopic systems

A few examples:
l Gas in a large volume is more disordered / has greater entropy than the same gas at the same 

temperature in a smaller volume.
l Gas at a higher temperature is more disordered / has greater entropy than the same gas in the 

same volume at a lower temperature.
l A liquid is more disordered / has greater entropy than a solid of the same material at the 

same temperature.

Alternative ways of expressing the second law
Consider any two objects at different temperatures placed in thermal contact in an isolated system 
with no external influences, as shown in Figure B4.28.

Thermal energy can flow from A to B and from B to A, but the net flow of energy 
is from A to B because the increase in entropy of B will be greater than the decrease 
in entropy of A (for the same energy transfer). Therefore, the net flow of thermal 
energy will always be from hotter to colder. This is as we have explained previously in 
Topic B.1, when discussing particle collisions.. It is an alternative version of the second 
law of thermodynamics, first expressed by the German physicist Rudolf Clausius:

Thermal energy cannot spontaneously transfer from a region of lower temperature to a region 
of higher temperature.

But we can use heat engines to transfer thermal energy from colder to hotter by doing external 
work (heat pumps – see earlier). Thermal energy always flows spontaneously from hotter to 
colder. Insulation can be used to reduce the rate of energy transfer but can never stop it completely. 
A third version (the Kelvin form) of the second law of thermodynamics is expressed in terms of a 
thermodynamic cycle as:

When extracting energy from a heat reservoir, it is impossible to convert it all into work.

Representing entropy mathematically

SYLLABUS CONTENT

 Entropy can be determined in terms of macroscopic quantities such as thermal energy and 

temperature, as given by: ΔS = 
ΔQ
ΔT; and also in terms of the properties of individual particles of the 

system as given by: S = kB ln Ω, where kB is the Boltzmann constant and Ω is the number of possible 
microstates of the system.

To express the entropy of a system of particles numerically, we need to count the number of ways 
that the system can be arranged. This is sometimes described as its multiplicity. The ‘state’ of the 
system can be defined by any property or properties which allows it to be distinguished from other 
states, for example particle positions or distribution of energies.

First, we will consider an everyday, non-physics example: throwing two six-sided dice and adding 
the numbers shown to obtain a total. Figure B4.29 shows all the possible combinations. How do 
we explain that a total of seven is the most likely?

LINKING QUESTION
l Why is there an 

upper limit on the 
efficiency of any 
energy source 
or engine?

This question links 
to understandings in 
Topic A.3.

flow of thermal energy

higher
temperature

lower
temperature

A B

	■ Figure B4.28 Exchanges of energy
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2 3 4 5 6 7 8 9 10 11 12

	■ Figure B4.29 Combinations of two dice

There are 36 possible combinations, with totals ranging from 2 to 12. A total of 2 can only be 
obtained in one way: 1 + 1 = 2. Similarly, a total of 12 can only be obtained in one way: 6 + 6 = 12. 
However, a total of 7 can be obtained in six ways: 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2 and 6 + 1.

Put simply: a total of 7 is most likely because it can be produced in the greatest numbers of ways.

Now consider a very simple system of three freely moving gas particles (A, B and C). We will 
describe the state of the system in terms of the locations of the particles: to the left, or to the right, 
of an imaginary line dividing their container in half. We can identify 8 (23) possible arrangements, 
as shown in Figure B4.30. These arrangements may be called microstates.

All these eight microstates are equally likely if the particles are moving randomly. However, either 
of the two ‘ordered’ microstates, shown in the top line, is less likely than any one of the other six 
‘disordered’ microstates. A system which is ordered will inevitably become disordered.

In order to establish the principle, this example has used a 
small number of particles (3) for simplicity. If larger numbers 
are used, it becomes clear that returning to an original, ordered 
arrangement is effectively impossible. Extending the example 
seen in Figure B4.30: if there were 10 particles, the number of 
possible disordered microsites would be greater than 1000 (210). 
And remember that even small gaseous systems will contain 1019 
or more particles. (So, the probability of all of the particles being 
in the left-hand side of a small container is one in two to the power 
of 10 to the power of 19.).

The greater the number of possible microstates of a system, the 
greater its disorder and the greater its entropy.

The symbol Ω is used to represent the number of possible 
microstates of a system (its multiplicity). Clearly, Ω will be a large 
number. ln Ω is more manageable.

Entropy of a system of microscopic particles:

S = kB ln Ω (SI Unit: J K−1)

 ◆ Microstates The 
numerous possible 
combinations of 
microscopic properties of a 
thermodynamic system. 

A
B
C

A
B
C

A
B
C

B
A
C

C
A
B

B
C

A
A
C

B
A
B

C

	■ Figure B4.30 Distributions of three particles

DB
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Nature of science: Science as a shared endeavour

Expressing laws as formulas

The considerable importance of the second law of 
thermodynamics is undoubted and a broad understanding of 
the associated concept of entropy is becoming more widespread 
among the general public. However, entropy is a difficult concept 
to understand well and, similar to many scientific principles, its 
true meaning requires the precision of mathematics. Entropy can 
be determined from the equation S = kB ln Ω, but there is no easy 
application of this equation to everyday life.

The equation was devised by the Austrian physicist Ludwig 
Boltzmann, who considered the equation to be so important 
that it was famously carved on his memorial in Vienna. See 
Figure B4.31. (W was used instead of Ω.) 	■ Figure B4.31 Ludwig Boltzmann

What is the entropy of a system which has 1 × 1022 microstates?

Answer
S = kB ln (1 × 1022) = (1.38 × 10−23) × 50.7 = 7.0 × 10−22 J K−1

 WORKED EXAMPLE B4.10

Worked example B4.10 is shown simply to illustrate the principle. In practice, such calculations 
are often unrealistic. Fortunately, changes of entropy, ΔS, in macroscopic situations are much 
easier to calculate. If thermal energy ΔQ is supplied to a system at a constant temperature of T:

change of entropy (using macroscopic quantities): ΔS = 
ΔQ 
T  

Unit: J K−1

Calculate a value for the entropy change when 5000 J of thermal energy flows out of a hot 
cup of coffee at 70 °C into the surrounding room at 25 °C. Assume that the temperatures of 
the coffee and the room are unchanged. (In practice the coffee will cool by about 5 °C.)

Answer
The entropy of the coffee has decreased by:

ΔS = 
ΔQ
T  = 

–5000
(273 + 70) = 14.6 J K–1 

The entropy of the room has increased by:

ΔS = 
ΔQ
T  = 

+5000
(273 + 25) = 16.8 J K–1 

Overall change of entropy in the coffee / room system = 16.8 −14.6 = +2.2 J K−1

The fact that the entropy has increased is related to the fact that the thermal energy flowed 
from a higher temperature to a lower temperature. If the coffee and the room were at the 
same temperature, there would be no flow of thermal energy and no change of entropy. If 
we imagined the impossible situation in which thermal energy could flow spontaneously 
out of the cooler room into the hotter coffee, then entropy of the system would decrease – 
which never happens.

 WORKED EXAMPLE B4.11

DB

 ◆ Entropy change When 
an amount of thermal 
energy, ΔQ, is added 
to, or removed from, a 
system at temperature T, 
the change in entropy, ΔS, 
can be calculated from the 

equation ΔS = 
ΔQ
T

. 
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Entropy in the Carnot cycle

The theoretical Carnot cycle is a reversible process, so that there is no overall change of entropy at 
the end of each cycle. Consider Figure B4.32 and compare it to Figure B4.17.

During the isothermal expansion, AB, thermal energy 
is supplied, the temperature remains constant but the 
entropy rises as the volume increases:

ΔS = 
ΔQh

Th

 

During the adiabatic expansion, BC, the pressure 
and temperature decrease, but the entropy remains 
the same.

During the isothermal compression, CD, thermal 
energy is removed, the temperature remains constant 
but the entropy falls as the volume decreases:

ΔS = 
ΔQc

Tc
(= 

ΔQh

Th
) 

During the adiabatic compression, DA, the pressure and temperature increase, but the entropy 
remains the same.

Since:
ΔQc

Tc  
= 

ΔQh

Th

we can now explain the origin of the equation for the efficiency of a Carnot cycle:

η = 1 – 
ΔQc

Qh

But:
Qc

Qh

 = 
Tc

Th

So that:

ηcarnot = 1 – 
TC

Th

(As highlighted previously.)

24 By discussing what happens to the molecules of the gas, 
explain the entropy change when a balloon bursts.

25 Coffee, sugar and milk are put in hot water to make 
a drink. Why it is difficult to reverse the process?

26 Imagine a large container of water, separated into two 
halves by a removable barrier. Half of the water is at 
90 °C and the other half is at 20 °C.
a Explain why, in theory, some of the energy in the 

water is available to do useful work.
b If the barrier is removed and water from the two 

halves mixes, what will be the final temperature? 
Assume that no thermal energy is transferred to 
the surroundings.

c Why can the particles in the system be described as 
more disordered after the mixing?

d What has happened to:
i the total energy of the system
ii the total entropy of the system?

e Explain why it is now impossible for the system to do 
any useful work.

27 Consider Figure B4.30.
a How many microstates were there if there were four 

particles instead of three?
b If the particles were moving randomly, what was the 

probability that all four were in the right-hand half of 
the container?

	■ Figure B4.32 Temperature–entropy diagram 
for the Carnot cycle

S

Th

T

Tc

SA SB

Qh

Qc

D C

A B

 ATL B4B :  
 Thinking skills 

Applying key 
ideas and facts in 
new contexts
The true nature of 
time has always 
preoccupied scientists. 
We have seen that the 
entropy of any system 
increases with time, 
and increasing entropy 
is sometimes described 
as representing the 
‘arrow of time’. Is it 
possible that time is 
only that: an indication 
of increasing entropy? 
Does the second law 
of thermodynamics 
imply that time travel is 
just for science fiction 
stories, and can never 
be possible in reality?

LINKING QUESTION
l What are the 

consequences of 
the second law of 
thermodynamics 
to the Universe as 
a whole?
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28 Use the equation S = kB ln Ω and Figure B4.30 to 
determine a value for the change in entropy of a system 
of three particles when the volume in which they can 
move is doubled.

29 Calculate the entropy of a system which has 
1030 microstates.

30 Calculate the total entropy change when 900 J of thermal 
energy is transferred from a hot reservoir at a constant 
550 K to a cold reservoir at a constant 275 K.

31 a 3.34 × 104 J are needed to melt some ice at 0 °C. 
Determine the total change in entropy when the ice 
melts from thermal energy transferred from the air at 
a temperature of 25 °C.

b What assumptions did you make?

32 Figure B4.33 represents a Carnot cycle.
a How much thermal energy is transferred between 

states P and Q?
b How much thermal energy is transferred between 

R and S?
c How much useful work is done in each cycle?
d Use your answers for a, b and c to determine the 

efficiency of the process.

e Confirm that the same answer can be calculated from 
the temperatures involved.

f What physical quantity can be calculated from the 
area enclosed by the cycle?

S/J K–1 

T/
K

5.0

300

600

10.0

S R

P Q

     
	■ Figure B4.33 

A Carnot cycle

33 There are four laws of thermodynamics, but only the 
first and second are included in this course. They can be 
summarized in the following humorous form:
l Zeroth: You must play the game.
l First: You can’t win.
l Second: You can’t break even.
l Third: You can’t quit the game.

 What are these comments on the first and second laws 
suggesting about energy?

Nature of science: Theories

Three versions of the same very important law

The second law of thermodynamics is considered by many physicists to be one of the most important 
principles in the whole of science. The following quote from Sir Arthur Stanley Eddington (The Nature 
of the Physical World, 1927) may help to convey the importance of this law:

‘The law that entropy always increases holds, I think, the supreme position among the laws of nature. 
If someone points out to you that your pet theory of the Universe is in disagreement with Maxwell’s 
equations – then so much the worse for Maxwell’s equations. If it is found to be contradicted by 
observation – well, these experimentalists do bungle things sometimes. But if your theory is found to 
be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to 
collapse in deepest humiliation.’

The second law of thermodynamics can be expressed in different ways depending on the context, and 
the three versions presented above are slightly different perspectives on the consequences of molecular 
disorder. Therefore, it is not surprising that, it in the nineteenth century when it was first formulated, the 
law was the subject of much attention and discussion between prominent scientists in different countries.
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B.5   Current and circuits 281

Current and circuitsB.5

• How do charged particles flow through materials?
• How are electrical properties of materials quantified?
• What are the consequences of resistance in conductors?

Guiding questions

Electric charge
Electric charge is a fundamental property of some subatomic particles, responsible for the forces 
between them. (Details in Topic D.2.)

Because there are two kinds of force (attractive and repulsive) as seen in Figure B5.1, we need two 
kinds of charge to explain the different forces. We call these two kinds of charge, positive charge 
and negative charge. The description of charges as ‘positive’ or ‘negative’ has no particular 
significance, other than to suggest that they are two different types of the same thing. Positive and 
negative charges are often described as opposite charges.

Charges of opposite sign attract each other. Charges of same sign repel each other.

Charge is measured in coulombs, C. One coulomb is a relatively large amount of charge and we 
often use microcoulombs (1 μC = 10−6 C) and nanocoulombs (1 nC = 10−9 C).

–
F

+
F

F

F

+
F

–

–

+

–

+
F

F

F

	■ Figure B5.1 Electric forces between similar 
and opposite charges

electron

neutron
proton

nucleus

−

−

−

+
+

+

	■ Figure B5.2 Simple model of an atom

Figure B5.2 shows a simple visualization of an atom, with three types of subatomic particle. The 
structure of atoms will be discussed in more detail in Topic E.1.

Protons and neutrons are to be found in the small central nucleus of the atom. Electrons are 
located in the space around the nucleus.

All protons have a positive charge of +1.60 × 10−19 C and all electrons have a negative charge of 
−1.60 × 10−19 C.

A charge of magnitude 1.60 × 10−19 C is called the elementary charge. It is given the symbol e.

Since 2019, the elementary charge has been defined to be exactly −1.602 176 634 × 10−19 C.

 ◆ Electric charge 
Fundamental property 
of some subatomic 
particles that makes them 
experience electric forces 
when they interact with 
other charges. Charges can 
be positive or negative 
(SI unit: coulomb, C).

 ◆ Opposite charge 
Positive and negative 
charges are described as 
opposite charges.

 ◆ Coulomb, C The derived 
SI unit of measurement of 
electric charge. 

 ◆ Proton Subatomic 
particle with a positive 
charge (+1.6 × 10−19 C).

 ◆ Neutron Neutral 
subatomic particle.

 ◆ Nucleus The central 
part of an atom containing 
protons and neutrons.

 ◆ Electron Elementary 
subatomic particle 
with a negative charge 
(−1.6 × 10−19 C) present in all 
atoms and located outside 
the nucleus.

 ◆ Elementary charge, e, 
1.6 × 10–19 C

DB
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282 Theme B: The particulate nature of matter

There are electric forces between the electrons and the protons in the nucleus. Neutrons do not 
have any charge; they are neutral.

Tool 3: Mathematics

Distinguish between continuous and discrete variables

A continuous variable can have, in theory, 
any value (within the available limits), but 
a discrete variable can only have certain 
values. An everyday example might be 
buying eggs: you can buy 1, 2, 6, 10 and 
so on, but not 1.5 or 3.7 eggs. Values of 
bank notes are another example. A physical 
quantity which can only have discrete values 
is described as being quantized. 	■ Figure B5.3 a discrete number of eggs

Any quantity of charge consists of a whole number of charged particles, each ±1.60 × 10−19 C. 
Intermediate values are not possible (with the exception of the sub-nuclear particles quarks, but 
they are not included in this course). For example, it is not possible to have charge with a value of 
4.00 × 10−19 C. We describe this by saying that charge is quantized.

Charge is generally given the symbol q. (Q is also sometimes used, but the same symbol is used 
for thermal energy.)

One coulomb of negative charge is the total charge of 6.24 × 1018 electrons: 
1

1.602 × 10–19

	■ Law of conservation of charge
This is one of the few conservation rules in physics (rules which are always true):

The total charge in an isolated system remains constant.

For example, if one or more negatively charged electrons are removed from a neutral atom, this 
law shows us that the remaining atom must have an equal positive charge. The charged atom is 
then called an ion and the process is called ionization.

TOK

The natural sciences
l Should scientific research be subject to ethical constraints or is the pursuit of all 

scientific knowledge intrinsically worthwhile?

Increasing knowledge could be life-threatening.

Benjamin Franklin (b 1706) was a famous and influential personality in the USA 
in the eighteenth century. His experiments with static electricity (see Figure B5.4) 
certainly endangered lives, but his experiments expanded our scientific knowledge. 
Travelling into orbit, or to the Moon, are among scientific investigations which 
could be described similarly.

It can be argued that, if individuals are fully informed and prepared to risk their lives 
for scientific advancement, then that is entirely their own personal choice. Experiments 
with animals is another matter, and there is a wide range of well-considered opinions 
on this matter. Opinions may vary with the type of animal involved and the possible 
benefits to human society. One notorious demonstration of the effects of poisoning and 
electricity involved a ‘rogue’ elephant named Topsy in 1903.

	■ Figure B5.4 Benjamin Franklin famously flew a 
kite in a lightning storm as part of his investigations 
into electricity
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 ◆ Ionization The process 
by which an atom or 
molecule becomes an ion. 
The required energy is 
called the ionization energy.

 ◆ Neutral Uncharged, or 
zero net charge. 

 ◆ Variable Quantity that 
can change during the 
course of an investigation. 
Variables can be 
continuous or discrete. A 
variable can be measurable 
(quantitative) or just 
observable (qualitative). A 
quantity being deliberately 
changed is called the 
independent variable and 
the measured, or observed, 
result of those changes 
occurs in a dependent 
variable. Usually, all 
other variables will be 
kept constant (as far as 
possible); they are called 
the controlled variables.

 ◆ Quantized Can only 
exist in certain definite 
(discrete) numerical values. 
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	■ Electric currents

SYLLABUS CONTENT

 Direct current (dc), I, as a flow of charged carriers given by: I = 
Δq
Δt .

Whenever charges flow from place to place we describe it as an electric current. We have identified 
electrons, protons and ions as charged particles, but in an electric current the term charge carrier 
is often used to describe any moving charge. In order for a charged particle to flow as part of an 
electric current it has to be relatively ‘free’ to move. We often refer to mobile charge carriers.

Some of the electrons in the atoms of metals have enough energy that they are no longer attracted 
to a particular metal ion. We say that they are delocalized electrons, or free electrons. This 
means that electric currents, carried by free electrons, can flow through metals better than 
through most other materials.

In this topic we will only be considering currents in which the charge carriers are electrons. 
Figure B5.5 represents the electric current of a flow of free electrons through a metal wire. The 
negatively charged electrons are attracted to the positive terminal of a battery.

positive metal ions
vibrating in fixed positions

negative free electrons
in an electric current

connected to
positive terminal

of battery

P

connected to
negative terminal

of battery

When there is no electric current, free electrons normally move around randomly in metals at 
high speeds, somewhat like molecules in a gas. But, when they form an electric current, a much 
slower ‘drift’ speed in the direct of the current is added to the electrons’ random movements. This 
movement cannot be represented in a single diagram such as Figure B5.5.

We define the magnitude of an electric current (given the symbol I ) as the amount of charge that 
passes a point (such as P in Figure B5.5) in unit time:

electric current, I = 
Δq 
Δt

The SI unit for electric current is the ampere (amp), A. Milliamps (mA) and microamps (μA) are 
also in common use.

When a current only flows in one direction it is called a direct current (dc). Alternating 
currents (ac) continuously change direction. They are discussed in Topic D.4.

The ampere (amp) is one of the seven base units of the SI system. It is defined to be the current 
in which 1 C of charge (6.24 × 1018 electrons) passes a point in one second. (Before 2019 the amp 
was defined differently and more obscurely: as the current in two straight parallel wires of infinite 
length exactly one metre apart in a vacuum, which results in a magnetic force between them of 
exactly 2 × 10-7 N m−1. This is explained in Topic D.3 and need not be understood here.)

 ◆ Current (electric), I 
A flow of electric charge. 
Equal to the amount of 
charge passing a point in 

unit time: I = 
Δq
Δt

. 

 ◆ Charge carrier A 
charged particle which is 
free to move (mobile). 

 ◆ Delocalized electrons 
Electrons which are not 
bound to any particular 
atom or molecule. 
Sometimes called ‘free’ 
electrons. 

	■ Figure B5.5 Electric current 
flowing through a metal

DB

 ◆ Ampere, A SI 
(fundamental) unit 
of electric current. 
1 A = 1 C s−1.

 ◆ Direct current (dc) 
A flow of electric charge 
that is always in the same 
direction.

 ◆ Alternating current 
(ac) A flow of electric 
charge that changes 
direction periodically.

 ◆ SI system of units 
International system 
of standard units of 
measurement (from 
the French ‘Système 
International’) which is 
widely used around the 
world. It is based on seven 
fundamental units and the 
decimal system.
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284 Theme B: The particulate nature of matter

The current through an LED desk lamp 
is 50 mA.
a Calculate the amount of charge which 

flows through the lamp in 1.0 minute.
b How many electrons flow through the 

lamp every minute?

Answer

a I = 
Δq
Δt  

= 50 × 10–3 = 
Δq
60 

 Δq = 3.0 C

b 
3.0

1.60 × 10–19 = 1.9 × 1019

 WORKED EXAMPLE B5.1

	■ Electrical circuits

Circuit diagrams represent the arrangement of components in a circuit.

In order for there to be a continuous flow of current, electrical components and wires need to 
form a complete (closed) loop, called an electrical circuit. However, a current cannot flow unless 
there is a battery (or other electrical power source) included in the circuit, as shown in Figure B5.6, 
which is drawn in the conventional style.

A single battery is better described as an electric cell. When more than one cell is used, the 
combination is called a battery, although in everyday language, one cell is commonly called a battery.

The two terminals of any battery are labelled 
positive and negative, and it may be considered that 
the positive terminal attracts free electrons from 
the circuit, and the negative terminal repels free 
electrons. In this way electrons will move around 
the circuit shown in Figure B5.6 in an anticlockwise 
direction. However, for historical reasons:

Electric current is always shown flowing from 
positive to negative around any circuit.

This is shown by the arrows in Figure B5.6. This is known as the direction of conventional 
current flow. It was chosen a long time before electrons had been discovered.

Tool 2: Technology

Applying technology to collect data

The magnitudes of electric currents are determined by instruments called ammeters, which 
are connected so that all of the current to be measured flows through them, as shown in 
Figure B5.6. (This is called being connected in series.) Connecting an ammeter in a circuit 
should not reduce the magnitude of the current it is measuring. Therefore, an ideal ammeter 
will have zero resistance to the flow of a current through it. An electronic current sensor 
responds to the magnetic fields which exist around all currents.

When measuring dc, the current must flow through the ammeter in the correct direction. 
This is shown by marking the two terminals as positive and negative. Moving through the 
circuit from the positive terminal on the ammeter, you should arrive at the positive terminal 
of the battery (or other voltage supply).

 ◆ Circuit (electrical) A 
complete conducting path 
that enables an electric 
current to continuously 
transfer energy from a 
voltage source to various 
electrical components.

 ◆ Cell (electric) Device 
that transfers chemical 
energy to the energy carried 
by an electric current.  

 ◆ Battery One or more 
electric cells. 

 ◆ Terminals (electrical) 
Points at which connecting 
wires are joined to 
electrical components.

 ◆ Conventional current 
The direction of flow of 
a direct current is always 
shown from the positive 
terminal of the power 
source, around the circuit, 
to the negative terminal. 
Conventional current is 
opposite in direction from 
electron flow.

 ◆ Ammeter Instrument 
that measures electric 
current. 

 ◆ Ideal meters Meters 
with no effect on the 
electrical circuits in 
which they are used. 
An ideal ammeter has 
zero resistance, and an 
ideal voltmeter has 
infinite resistance.

+−

A

wire

cell

component switch ammeter

conventional
current

wire

	■ Figure B5.6 Simple electric circuit

Top tip!
Direct currents are 
generally more useful 
than alternating currents, 
but ac is used for 
transmitting electrical 
energy around the world 
as it is more easily 
transformed to the high 
voltages needed to 
reduce energy dissipation 
in the wires (discussed 
briefly in Topic D.3).
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B.5   Current and circuits 285

Top tip!
In order to understand electrical circuits, it is usually better to consider that the current does not begin or 
end anywhere in particular (at the battery, for example). It is better to consider that the current flows at 
the same time throughout the circuit, which should be considered as a whole.

(In reality, an electric field moves around the circuit [setting electrons into motion] at a speed close to the 
speed of light.)

Cell Battery Switch Voltmeter

V

Ammeter

A

Resistor Variable resistor Light-dependent resistor
(LDR)

Thermistor Potentiometer

Motor

M

Heating elementLamp Light emitting diode
(LED)

Earth (ground)

	■ Figure B5.7 Complete list of circuit symbols shown in the IB Physics Data Booklet

Nature of science: Science as a shared endeavour

The use of common symbols and units

The communication of scientific information and ideas between different countries and cultures 
can be affected by language problems, but this is greatly helped by the use of standard symbols for 
physical quantities (and units) and for electrical components. Increasingly, English is being used as the 
international language of science but, naturally, there are many individuals, organizations and countries 
who prefer to use their own language. Imagine the confusion and risks that could be caused by countries 
using totally different symbols and languages to represent the circuitry on, for example, a modern 
international aircraft.

A famous incident occurred in a commercial aircraft flight over Canada in 1983, when the aircraft ran 
out of fuel because of confusion over the units of volume used for the fuel measurements. Fortunately, 
there were no serious injuries.

1 A carbon atom (carbon-12) contains six protons, six 
neutrons and six electrons.
a Sketch this atom in a diagram similar to that seen in 

Figure B5.2.
b Calculate the total positive charge in the atom.
c What is the total negative charge in the atom?
d We can describe the atom as neutral. Explain what 

this means.

e If the atom is ionized by the removal of one electron, 
what is the charge on the ion?

2 2.5 × 1020 electrons flow through a television in 
one minute.
a Calculate the total charge which flows in that time.
b Determine the electric current.

DB

LINKING QUESTION
l In what ways can 

an electrical circuit 
be described as 
a system like the 
Earth’s atmosphere 
or a heat engine?

This question links 
to understandings in 
Topics B.2 and B.4.
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286 Theme B: The particulate nature of matter

3 Most people find the shape of electricity pylons (that 
transmit electricity around countries) ugly and would 
say they spoil the natural beauty of the landscape, for 
example Figure E5.8.

	■ Figure B5.8 Electricity power lines cross some of the most remote 
countryside in the world

a If the charge flowing through a point on an overhead 
power line every hour is three million coulombs, 
what is the current?

b Some architects have suggested that pylons could be 
designed with interesting and attractive structures 
that are more sympathetic to the environment, but 
such pylon designs are more expensive than the 
usual designs and many people will not be happy to 
pay more for their electricity. Sketch a pylon design 
for your country that is attractive, practicable and 
probably not too expensive.

4 Explain what is meant 
by a free or delocalized 
electron.

5 Determine the current at 
point P in Figure B5.9. 
State its direction.

3 A

1 A

P

2 A
6 A

5 A

	■ Figure B5.9

	■ Potential difference / voltage

SYLLABUS CONTENT

 The electric potential difference, V, is the work done per unit charge on moving a positive charge 

between two points along the path of the current: V = 
W
q .

The term voltage is familiar to everyone. Electricity is usually provided to our homes at 110 V or 
230 V, and batteries of various lower voltages are used to provide energy to electronic devices.

The voltage of a battery, or other source of electrical energy, is a measure of how much energy it 
can supply to the charge carriers flowing through it. One volt means that one joule of energy is 
transferred by each coulomb of charge moving between two specified points.

1 V = 1 joule/coulomb (J C−1)

Voltage has become the widely used term for the physical quantity that is measured by volts. 
However, the correct term is potential difference, commonly shortened to p.d. The symbol V is 
used for potential difference, the same letter as used for its unit, V.

The electric potential difference, V, is the work done per unit charge on moving a positive 

charge between two points along the path of the current: V = 
W 
q

.

In this topic we are only concerned with free electrons moving in electric circuits, but in 
Topic D.2, for HL students, we will discuss the movements of both positive and negative charges 
more generally. When we consider potential differences then, we will need to consider the nature 
of the charge and the direction of movement more carefully.

We may refer to the potential difference across a battery (or other electrical energy source) that is 
supplying energy to a circuit, or to the potential difference across any component(s) that is using 
energy in the circuit.

 ◆ Voltage See potential 
difference. 

 ◆ Volt Derived unit of 
measurement of potential 
difference. 1 V = 1 J C−1.

 ◆ Potential difference, V 
The energy transfered 
by unit positive charge 
(1 C) moving between 
two points. Commonly 
referred to as voltage.

DB
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Tool 2: Technology

Applying technology to collect data

Potential differences are measured using voltage sensors 
(various designs) or voltmeters, which are connected 
as shown by the many voltmeters in Figure B5.10. A 
voltmeter is always connected across (in parallel with) 
the component(s) it is checking. An ideal voltmeter has 
infinite resistance, so that no current flows through it and it 
does not affect the p.d. it is measuring. As with ammeters, 
voltmeters must be connected correctly when using dc 
circuits: moving through the circuit from the positive 
terminal on the voltmeter, you should arrive at the positive 
terminal of the battery (or other voltage supply).

Considering Figure B5.10, if the p.d. supplied to the 
circuit, Vs is 12 joules to every coulomb (12 V), then 
when the switch is closed, V1+V2 +V3 must also equal 12 V 
(J/C), because the energy transferred into the circuit must 
be equal to the energy ‘used’ by the components in the 

circuit. It is assumed that no energy is transferred in the 
connecting wires or battery.

Suppose V1 = 3 V and V2 = 4 V, then V3 must equal 12 − 3 − 
4 = 5 V. V12 is measuring the same as V1 + V2, so it should 
read 7 V.

+ –

1 2 3

V1 V2 V3

V12

Vs

   
	■ Figure B5.10 Connecting 

voltmeters

 ◆ Voltmeter An 
instrument used to measure 
potential difference 
(voltage). 

 ◆ Observer effect When 
the act of observation, 
or measurement, 
changes the phenomenon 
being observed.

6 Outline what would happen in the circuit shown in Figure B5.6 if the ammeter was replaced 
by a voltmeter.

7 Explain why replacing the voltmeter, Vs (Figure B5.10) with an ammeter would be a bad idea.

8 Consider the circuit shown in Figure B5.10. If the battery supplied 12 V, the reading on V1 
was 2 V and V12 showed a voltage of 5 V, state the readings on the other three voltmeters.

9 400 C of electric charge flow through a lamp in one hour in a country where the electricity 
mains are supplied at 230 V.
a Calculate the current in the lamp.
b How much energy is supplied from the mains to the lamp in this time?

Nature of science: Measurements

The observer effect

We have discussed the use of ammeters and voltmeters to make electrical measurements 
and referred to the use of ‘ideal’ meters which will not affect the values of the currents and 
voltages that they are measuring. However, when taking any scientific measurement, we 
need to consider the possibility that the act of taking the measurement will change what is 
being measured.

When measuring the pressure in a car tyre, as in Figure B5.11, some of the air in the tyre 
must flow into the pressure gauge. This will result in a reduction of pressure in the tyre, 
although it will probably be a very small change.

Many types of thermometer need to absorb or emit thermal energy until they reach thermal 
equilibrium with their surroundings. This may affect the temperature of the locations that 
they are measuring. (An infrared thermometer does not have this problem.)

As a non-physics example, doctors are well aware that a patient’s blood pressure may well 
rise when it is being measured because of psychological effects.

	■ Figure B5.11 Measuring the air pressure in 
a car tyre
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288 Theme B: The particulate nature of matter

Using a gravitational analogy may help to explain potential difference

If you are taking the Standard Level examination, you do not need to worry about the deeper 
meaning of the term potential difference; just think of it as voltage, and you do not need to 
remember the following explanation.

A mass will fall towards Earth if it is free to do so. We have explained this by stating that there is 
a gravitational force acting downwards on it. It then moves from a position of higher gravitational 
potential energy to a position of lower gravitational potential energy. Alternatively, we can say that 
any mass may move because of a difference in gravitational potential (energy).

(The concept of potential, defined as potential energy/mass, is introduced for HL students in 
Topics D.1 and D.2.)

The analogy between gravitational fields and electric fields (introduced in 
Topics D.1 and D.2) is useful. We will use it now:

A charge will move because of a difference in electrical potential (energy) 
– potential difference, shortened to p.d. – if it is free to do so. It will move 
from higher electrical potential energy to lower electrical potential energy. A 
battery provides this p.d. In a similar way, a pump can raise water to a greater 
height, increasing its gravitational potential energy, but if the water is free to 
move, it will then fall back down.

Consider the circuit shown in Figure B5.12. We can label the negative side of 
the battery with a voltage (potential) of 0 V. Since there is a p.d. of 12 V across 
the battery, the voltage at point A is 12 V. As we move around the circuit, the 
voltage decreases. For example, it could be 9 V at B and 4 V at C.

A voltmeter connected across P will record a p.d. of (12 – 9) = 3 V.

A voltmeter connected across Q will record a p.d. of (9 – 4) = 5 V.

A voltmeter connected across R will record a p.d. of (4 – 0) = 4 V. 

3 + 5 + 4 = 12 V.

Tool 1: Experimental techniques

Recognize and address relevant safety, ethical and environmental issues

Using electrical circuits is an important part of any physics course. For obvious safety 
reasons, you should work with low voltages. This is done with batteries providing, typically, 
9 V or less, but most commonly 1.5 V. However, there is an environmental impact here, as 
the large number of batteries eventually need to be disposed of. Low voltage (LT) adjustable 
supplies typically provide 12–15 V. They are connected to the mains supply and need to be 
checked regularly, including ‘earthing’, for safety.
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	■ Electrical resistance

SYLLABUS CONTENT

 Electric resistance and its origin.
 Electrical resistance given by: R = 

V
I  

.
 Ohm’s law.
 Ohmic and non-ohmic behaviour of electrical conductors, including the heating effect of resistors.
 Properties of electrical conductors and insulators in terms of mobility of charge carriers.

A(12V)

B(9V)C(4V)

0V

− +

R

12V battery

Q

P

	■ Figure B5.12 Potentials at points around a 
series circuit

369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   288369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   288 04/01/2023   21:1304/01/2023   21:13



B.5   Current and circuits 289

When the same potential difference (voltage) is connected across different electrical components, 
the currents produced will vary. In general, if the currents are relatively large, the components are 
described as good electrical conductors with low electrical resistance. If the currents are small, or 
negligible, the material is described as a good electrical insulator, with a high electrical resistance.

A few substances, most notably silicon and germanium, are described as semiconductors because 
their ability to conduct electricity falls between the obvious conductors and insulators. The 
electrical behaviour of these materials provides the basis of the electronics industry.

Good electrical conductors, metals, are usually also good thermal conductors. This is because free 
electrons are important in both processes.

To discuss the origin of electrical resistance we can refer back to Figure B5.5. The greater the 
number of mobile change carriers (free electrons) in a given volume of the material, the lower 
we would expect the resistance to be. When the free electrons move through the conductor they 
will collide / interact with the vibrating metal ions and this is the cause of electrical resistance. 
We know that particle vibrations in a solid decrease at lower temperatures, so resistance can be 
reduced by cooling a metal. Conversely, the resistance of a metal will increase if it gets hotter.

Metals are good conductors because they have a large number of mobile charge carriers (free 
electrons) in unit volume. The vibration of metal ions creates resistance to the flow of electrons.

Electrical resistance, R, is defined quantitatively as follows:

electrical resistance = 
p.d.

current 
R = 

V 
I

SI unit: ohm, Ω (1 Ω = 1 V A−1) 

Tool 3: Mathematics

Apply and use SI units

There are seven fundamental (basic) units in the SI system: kilogram, metre, second, 
ampere, mole, kelvin (and candela, which is not part of this course). The quantities, names 
and symbols for these fundamental SI units are given in Table B5.1.

They are called ‘fundamental’ because their definitions are not combinations of other units 
(unlike metres per second, or Newtons, for example). You are not expected to learn the 
definitions of these units.
	■ Table B5.1 Fundamental SI units used in this course

Quantity Name Symbol

length metre m

mass kilogram kg

time second s

electric current ampere A

temperature kelvin K

amount of substance mole mol

Derived units of measurement

All other units in science are combinations of the fundamental units. For example, the unit 
for volume is m3 and the unit for speed is m s−1. Combinations of fundamental units are 
known as derived units.

DB

 ◆ Conductor (electrical) 
A material through which 
an electric current can 
flow because it contains 
significant numbers of 
mobile charges (usually 
free electrons).

 ◆ Resistance (electrical) 
Ratio of potential 
difference across a 
conductor to the current 

flowing through it. R = 
V
I
 

(SI unit: ohm, Ω).
 ◆ Insulator (electrical) 

A non-conductor. A 
material through which 
a (significant) electric 
current cannot flow, 
because it does not contain 
many charge carriers. 

 ◆ Semiconductor Material 
(such as silicon) with a 
resistivity (explained later 
in this section) between 
that of conductors and 
insulators. Such materials 
are essential to modern 
electronics. 

 ◆ Ohm, Ω The derived 
SI unit of electric 
resistance. 1 Ω = 1 V/1 A.

 ◆ Fundamental units 
Units of measurement 
that are not defined 
as combinations of 
other units.

 ◆ Derived units Units 
of measurement that 
are defined in terms of 
other units. 
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290 Theme B: The particulate nature of matter

Sometimes derived units are also given their own name (Table B5.2). For example, the 
unit of force is kg m s−2, but it is usually called the newton, N. All derived units will be 
introduced and defined when they are needed during the course.
	■ Table B5.2 Some named derived units

Derived unit Quantity Combined fundamental units

newton (N) force kg m s−2

pascal (Pa) pressure kg m−1 s−2

hertz (Hz) frequency s−1

joule (J) energy kg m2 s−2

watt (W) power kg m2 s−3

coulomb (C) charge A s

volt (V) potential difference kg m2 s−3 A−1

ohm (Ω) resistance kg m2 s−3 A−2

Note that you are expected to write and recognize units using superscript format, such as m s−1 
rather than m/s. The unit for acceleration, for example, should be written m s−2, not m/s2.

Express a derived unit in terms of fundamental units

The ohm is a derived unit, but all derived units can be reduced to their fundamental components:

V = J C–1 = Nm × C–1 = kg m s–2 × m × A–1 × s–1 = kg m2 s–3A–1

Ω = 
V
A = 

kg m 2 s–3 A–1

A  = kg m2 s–3A–2

LINKING QUESTIONS
l How does a particle 

model allow 
electrical resistance 
to be explained? 
(NOS)

l What are the 
parallels in the 
models for thermal 
and electrical 
conductivity? (NOS)

These questions link 
to understandings in 
Topic B.1.

Determining resistance values experimentally

The resistance of a component can be determined as shown in Figure B5.13, 
recording a pair of values for p.d., V, and current, I.

The current through an electrical component was 0.78 A when a p.d. of 
4.4 V was applied across it. Calculate its resistance.

Answer

R = 
V
I  = 

4.4
0.78 = 5.6 Ω 

The value of the resistance obtained should not be assumed to be constant. 
It may be, but resistances can also change depending on other factors, as 
discussed later.

 WORKED EXAMPLE B5.2

I-V characteristics

The resistive properties of a component can be fully investigated by measuring the 
values of range of different currents produced by varying the p.d. across it. This can 
be done by using the circuit shown in Figure B5.13 but replacing the battery with a 
source of variable voltage. Alternatively, if only a fixed voltage supply is available, 
the circuit used in Figure B5.14 can be used. See the worked example later in this 
topic – in the Using variable resistors section (which also explains how using a 
variable resistor as potentiometer is the best method).

component
being

investigated

A

V

	■ Figure B5.13 Determining the resistance of a 
component

A

V

component
being

investigated

variable
resistor

	■ Figure B5.14 Varying current and potential 
difference using a variable resistor
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B.5   Current and circuits 291

The results of these experiments can be shown on current–p.d. graphs. They are called 
I–V characteristics.

I–V characteristics are the best way to represent the electrical behaviour of components.

The simplest possible relationship is that the current and p.d. are proportional to each other, as 
shown in Figure B5.15. This relationship shows that the resistance (R = V/I) is constant. The 
relationship is called Ohm’s law, and any component that behaves like this is described as being 
ohmic. Metal wires at constant temperatures are ohmic.

Ohm’s law: at constant temperature, the current through a metallic conductor is proportional to 
the p.d. across it: I ∝ V

Figure B5.15 should be compared to Figure B5.16 which shows the I–V characteristic of a metal 
wire that gets hot. The most common example of this type of non-ohmic behaviour is shown 
by a filament lamp. If we took pairs of values for V / I from Figure B5.16, it would show that 
the resistance (R = V / I) increases when the current is greater. This is because, when the current 
is greater, there are more collisions / interactions between the free electrons and the vibrating 
metal ions. So that more energy is transferred to the ions, their vibrations increase and the 
temperature rises.

0

C
ur

re
nt

p.d.

	■ Figure B5.15 Ohm’s law for an ohmic resistor 	■ Figure B5.16 A current–p.d. graph for metal wire that 
gets hot, such as a filament lamp

C
ur

re
nt

p.d.0

 ATL B5A: Research skills, thinking skills 

Use search engines and libraries 
effectively; provide a reasoned 
argument to support a conclusion

Types of lighting

	■ Figure B5.17 Incandescent filament lamp

Incandescent electrical lamps like that shown 
in Figure B5.17 were the most popular means 
of lighting throughout the world for more than 
one hundred years. Because they need to get 
very hot to emit light, incandescent lamps 
are very inefficient. They have been replaced 
by more efficient fluorescent lighting and, 
especially, LED lighting. LED stands for light 
emitting diode.

A diode is an electrical component that allows 
an electric current to pass through it in only 
one direction. Modern diodes are made from 
semiconductors, and some of these have the very 
useful property of emitting light when a current 
is passing through them. Figure B5.18 shows the 
I–V characteristic of a typical diode.

 ◆ Incandescent Emitting 
light when very hot. 

 ◆ Fluorescent lamp 
Lamp that produces light 
by passing electricity 
through mercury vapour at 
low pressure.

 ◆ Light-emitting 
diodes (LEDs) Small 
semiconducting diodes 
that emit light of various 
colours at low voltage 
and power.

 ◆ Diode An electrical 
component that only 
allows current to flow in 
one direction. 

 ◆ I–V characteristic: 
Graph of current–p.d., 
representing the basic 
behaviour of an electrical 
component. 

 ◆ Ohm’s law The 
current in a conductor 
is proportional to the 
potential difference 
across it, provided that the 
temperature is constant.

 ◆ Ohmic (and non-
ohmic) behaviour The 
electrical behaviour of 
an ohmic component is 
described by Ohm’s law. A 
non-ohmic device does not 
follow Ohm’s law.

 ◆ Filament lamp Lamp 
that emits light from a very 
hot metal wire. Also called 
an incandescent lamp.

Common 
mistake
Resistance cannot be 
determined from the 
gradient of a p.d.–
current graph, unless the 
component is ohmic.
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292 Theme B: The particulate nature of matter

When connected in one way, a ‘forward’ current is produced, and the diode has very little resistance, 
as long as the p.d. is greater than a certain minimum value. When connected the other way around, 
the diode has a large resistance, although a small ‘leakage’ current is possible. The arrowhead on the 
circuit symbol shows the ‘forward’ direction for the current (Figure B5.19).

Individual LEDS are low voltage components and a number of them must be connected in series to 
produce lighting bright enough for a whole room. See Figure B5.20.

	■ Figure B5.18 I–V characteristic for 
a diode

	■ Figure B5.19 
The circuit 
symbols for a 
diode and a LED

	■ Figure B5.20 Rings of small LEDs in a 
ceiling light

p.d

forward
current

leakage current

Current

Search online to find the relative efficiencies of incandescent, fluorescent and LED lighting. What 
kinds of lighting do you use at home? 

Nature of science: Science as a shared endeavour

Peer review or competition between scientists?

Georg Ohm’s famous law was published in Germany in 1827 in the form that the current in a 
wire, I, is proportional to (A/L)V where A is the cross-sectional area of a uniform metal wire 
of length L. Two years earlier, in England, Peter Barlow had incorrectly proposed ‘Barlow’s 
law’ in the form I was proportional to    (A/L), but with no reference to the key concept of 
voltage, V. It is not unusual for two or more different scientists, or groups of scientists, to be 
investigating similar areas of science at the same time, often in different countries.

In the worldwide, modern scientific community, with its quick and easy mass 
communication, new experimental results and theories are quickly subjected to close scrutiny. 
New ideas are reviewed carefully by other scientists and experts working in the same field, in 
a process called peer review. But 200 years ago, when Ohm was carrying out his research, 
things were very different. At that time, social factors and the reputation, power and influence 
of the scientist were sometimes as important in judging new ideas as the value of the work 
itself. The story of Barlow and Ohm is particularly interesting because in the early stages, the 
incorrect theory proposed by Barlow was more widely believed. 	■ Figure B5.21 Georg Ohm

 ◆ Peer review Evaluation 
of scientific results and 
reports by other scientists 
with expertise in the same 
field of study.

Top tip!
Negative values 
of current and p.d. 
represent values in 
the reverse directions, 
obtained by turning 
the battery (or other 
energy source) the other 
way around. Simple 
resistors will behave the 
same way for currents 
in either direction, but 
many other components, 
diodes for example, 
need to be connected the 
‘right’ way around.
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B.5   Current and circuits 293

Resistors

All electrical components have resistance, although the resistance of some things, for example 
connecting wires and ammeters, usually have negligible resistance. A component manufactured 
for its specific resistive properties is called a resistor. Resistors are important components in all 
electrical circuits. Figure B5.22 shows the appearance of a few typical fixed resistors.

     
	■ Figure B5.22 Fixed value 

resistors

Apart from resistors of fixed value, later in this topic we will discuss the use of variable resistors, 
potentiometers, light-dependent resistors (LDRs) and thermistors. Their circuit symbols are 
shown in Figure B5.23.

10 What voltage is needed to make a current of 56 mA pass through a 675 Ω ohmic resistor?

11 a Calculate the operating resistance of a 230 V domestic water heater if the current through 
it is 8.4 A.

b Explain why you would expect that the resistance would be less when it is first turned on.

12 What current flows through a 3.7 kΩ resistor when there is a p.d. of 4.5 V across it?

13 Calculate the p.d. across a 68.0 Ω resistor if 120 C of charge flows through it in 60 s.

14 Explain what it means if a component is described as non-ohmic.

15 State one reason why the resistance of a component may
a increase as it gets hotter
b decrease as it gets hotter.

16 Sketch an I–V characteristic for a component that has a resistance which decreases as the 
current through it gets larger.

Electrical resistivity

SYLLABUS CONTENT

 resistivity as given by ρ = 
RA
L  

Investigations into how the resistances of metal wires depends on their dimensions can be 
undertaken using a circuit similar to that shown in Figure B5.13 or Figure B5.14. The currents 
should be kept low (or turned on for only short times) to avoid any significant temperature changes 
in the wires. Three important conclusions can be reached:

Fixed resistor

Variable resistor

LDR

Thermistor

Potentiometer

	■ Figure B5.23 Circuit 
symbols for resistors: fixed, 
variable, potentiometer, LDR, 
thermistor

 ◆ Negligible Too small to 
be significant. 

 ◆ Resistor A resistance 
made to have a specific 
value or range of values. 

 ◆ Variable resistor A 
resistor (usually with three 
terminals) that can be used 
to control currents and/
or potential differences in 
a circuit.

 ◆ Potentiometer 
Variable resistor (with 
three terminals) used as a 
potential divider. (see later)

 ◆ Light-dependent 
resistor (LDR) A resistor, 
the resistance of which 
depends on the light 
intensity incident upon it. 

 ◆ Thermistor (negative 
temperature coefficient) 
A resistor that has less 
resistance when its 
temperature increases. 
Also called a temperature-
dependent resistor
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294 Theme B: The particulate nature of matter

1 The resistance of a uniform wire is proportional to its length, l

(Assuming the wire has constant thickness and does not change temperature.) As shown by the 
example in Figure B5.24.

Re
si

st
an

ce
/Ω

Length/cm

706050403020100
0

2

4

6

8

10

cross-sectional
area constant

	■ Figure B5.24 Variation of resistance with length of a metal wire

2 The resistance of a uniform wire is inversely proportional to its cross-sectional area, A

(Assuming the wire has constant length and does not change temperature.) As shown by the 
example in Figure B5.25. If the same data is used to plot a resistance–1/area graph, it will produce 
a straight line through the origin.

Re
si

st
an

ce
/Ω

Cross-sectional area/mm2
2.82.42.01.61.20.80.40

0

0.2

0.4

0.6

0.8

1.0
length constant

	■ Figure B5.25 Variation of resistance with cross-sectional area of a metal wire

3 The resistance of a uniform wire depends on the metal from which it is made

Combining the last two results, we get:

R ∝ 
l
A

or:

R = constant × 
l
A

where the value of the constant depends on the resistive properties of the particular metal.

The constant is called the resistivity of the metal, and it is given the symbol ρ.

resistivity, ρ = 
RA
L  

SI unit: Ω m

 ◆ Resistivity, ρ Resistance 
of a specimen of a material 
that has a length of 1 m 
and cross-sectional area 
of 1 m2. 

DB
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Clearly, the resistance of a material, like a wire, depends on its shape. For this reason, we cannot 
refer to the resistance of, for example, aluminium, because we have not specified its shape. 
The resistivity of a material can be considered as the resistance of a length of one meter, with a 
cross-sectional area of 1 m2. In other words, the resistance of a cube of the material with sides of 
1 m. This is a very large piece of a material, so it is not surprising that the resistivities of good 
conductors have very low values in SI units. See Table B5.3, which also includes the very high 
resistivities of some good insulators.
	■ Table B5.3 Resistivities of various substances at 20 °C

Material Resistivity/Ω m

silver 1.6 × 10−8

copper 1.7 × 10−8

aluminium 2.8 × 10−8

iron 1.0 × 10−7

nichrome (used for electric heaters) 1.1 × 10−6

carbon (graphite) 3.5 × 10−5

germanium 4.6 × 10−1

sea water ≈ 2 × 10−1

silicon 6.4 × 102

glass ≈ 1012

quartz ≈ 1017

Teflon (PTFE) ≈ 1023

Variation of resistivity with temperature
As already explained, the resistivity of metals will increase with temperature because of the 
increased vibrations of the metal ions. The number of free electrons (charge carriers) in metals 
will not increase significantly unless temperatures are extreme. However, it can be very different 
with semiconductors and insulators.

The number of charge carriers (per cubic metre) in non-metals can increase significantly with 
rising temperatures, so that their resistance can decrease considerably as they get hotter. For 
example, glass is usually described as an insulator, but at 500 °C many types of glass can become 
good conductors.

a Determine the resistance of a nichrome wire at 20 °C, if it has a length of 1.96 m and a 
radius of 0.21 mm.

b Explain why the answer would be different at 100 °C.

Answer

a ρ = 
RA
L  

 Using data from Table B5.3:

 1.1 × 10–6 = 
R × (π × (0.21 × 10–3)2)

1.96
 R = 16 Ω
b Increased vibrations of metal ions would cause an increase in resistance of the wire.

 WORKED EXAMPLE B5.3

Common 
mistake
Note that the SI unit for 
resistivity is Ω m. Many 
students think (wrongly) 
that the unit is ohms per 
metre, Ω m−1.
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296 Theme B: The particulate nature of matter

17 If the wire used to produce the results shown in Figure 
B5.24 had a resistivity of 4.9 × 10−7 Ωm, calculate the 
cross-sectional area of the wire.

18 a Use values taken from the graph in Figure B5.25 to 
show that the resistance was inversely proportional to 
the area.

b If the wire had a length of 0.56 m, determine 
its resistivity.

19 Calculate the  length of aluminium wire which will have 
the same resistance as a 1.0 m length of copper wire of 
the same thickness.

20 The central cable of a high voltage power cable, as seen 
in Figure B5.26, is made from aluminium and has an 
effective cross-sectional area of 3.4 cm2.
a Predict what length of this cable will have a 

resistance of 1.0 Ω.
b Suggest a reason why the cable is made of thinner 

strands of aluminium, rather than a single, thicker wire.

	■ Figure B5.26 Power cable

21 A glass rod of length 10 cm and diameter 0.50 cm was 
heated until its resistance became 10 Ω. Estimate the 
resistivity of the glass at this high temperature.

22 a Calculate  the ratio of highest / lowest resistivity as 
seen in Table B5.3.

b Explain the difference.

Connecting two or more 
components in the same circuit

SYLLABUS CONTENT

 Combinations of resistors in series and parallel circuits:
 Series circuits
 I = I1 = I2 =…
 V = V1 + V2 +…
 Rs = R1 + R2 +…
 Parallel circuits
 I = I1 + I2 +…
 V = V1 = V2 =…

 
1
Rp

 = 
1
R1

 + 
1
R2

 +…

Components can be connected in series, in parallel, or as a combination of the two. We will use 
resistors to illustrate the possibilities.

Figure B5.27 shows three different resistors in a series connection. All the current follows the 
same path. Because of the law of conservation of charge, the charge per second (current) flowing 
into each resistor must be the same as the current flowing out of it and into the next resistor.

V1 V2

I I1 I2 I3 I

V3

R1 R2 R3

V

     
	■ Figure B5.27 Three 

resistors in series

 ◆ Series connection 
Two or more electrical 
components connected 
such that there is only 
one path for the electrical 
current, which is the 
same through all the 
components. 
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Currents in series: I = I1 = I2 = …

The sum of the separate potential differences must equal the potential difference across them all, 
V, so that:

Potential differences in series: V = V1 + V2 + …

Using V = IR for the individual resistors, we get IRs = IR1 + IR2 + IR3, so that we can derive an 
equation for the single resistor, Rs, which has the same resistance as the combination.

Total resistance of resistors in series: Rs = R1 + R2 + …

Figure B5.28 shows three resistors connected in a parallel connection. The current splits into three 
and they follow different paths between the same two points. Because the resistors are all connected 
between the same two points, they must all have the same potential difference, V, across them.

Itotal

I1
R1

R2

R3

I2

I3

Itotal

     	■ Figure B5.28 Three resistors in parallel

Potential differences in parallel: V = V1 = V2…

The law of conservation of charge means that:

Currents in parallel: I = I1 + I2 + …

Applying I = 
V
R

 throughout gives:

V
Rp

 = 
V
R1

 + 
V
R2

 + 
V
R3

Cancelling the V gives us an equation for the single resistor, Rp, which has the same resistance as 
the combination:

Total resistance of resistors in parallel can be determined from: 
1
Rp

 = 
1
R1

 + 
1
R2

 + …

All the electrical equipment in our homes is wired in parallel because, in that way, each device is 
connected to the full supply voltage and can be controlled with a separate switch.

Tool 3: Mathematics

Understand the significance of uncertainties in raw and processed data

How many significant figures are there in 5000 and 8000 
(as discussed in Worked example B5.4)?

This example highlights a common problem. Without 
knowing the context in which this data is presented, we 
cannot be sure how many significant figures they have. If 
these are mathematical quantities, then their value is 
precisely defined and all figures are significant. Equally, 

if these are measurements of some kind, we would need to 
know the uncertainty in the measurement to know which 
were the significant figures. It would be better if the 
question presented the data in scientific notation!

For numerical data provided in this book, as a rule and 
for simplicity, we will generally assume that all digits 
are significant.

DB

DB

DB
 ◆ Resistors in series 

Resistors connected 
one after another so 
that the same current 
passes through them all. 
Rs = R1 + R2 + …

 ◆ Parallel connection 
Two or more electrical 
components connected 
between the same two 
points, so that they have the 
same potential difference 
across them. 

DB

DB

 ◆ Resistors in parallel 
Resistors connected 
between the same two 
points so that they all 
have the same potential 
difference across them. 
1
Rp

 = 
1
R1

 + 
1
R2

 + …
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298 Theme B: The particulate nature of matter

A 5000 Ω resistor and 8000 Ω resistor are connected in series.
a Calculate their combined resistance.
b What is the current through each of them if they are connected to a 4.5 V battery?
c What is the potential difference across the 5000 Ω resistor?
d Repeat these three calculations for the same resistors in parallel with each other.

Answer
a 5000 + 8000 = 13 000 Ω

b I = 
V
R = 

4.5
13 000 = 3.5 × 10–4 A through both resistors (seen on calculator as 3.46... × 10–4)

c V = IR = (3.46 × 10−4) × 5000 = 1.7 V

d 
1
R = 

1
5000 + 

1
8000 = 

13
40 000 

 R = 
40 000

13  = 3100 Ω

 Both resistors have a p.d. of 4.5 V across them.
 Current through 5000 Ω:

 I = 
V
R = 

4.5
5000 = 9.0 × 10–4 A

 Current through 8000 Ω:

 I = 
V
R = 

4.5
8000 = 5.6 × 10–4 A

 WORKED EXAMPLE B5.4

The lamps shown in Figure B5.29 are all 
the same.

A B

C D

E

	■ Figure B5.29 Five lamps in circuit

a Compare the brightness of all the lamps 
(assuming that they are all alight).

b If all the lamps have the same constant 
resistance of 2.0 Ω, what is the total 
resistance of the circuit?

Answer
a Lamps A and B will have the same 

brightness because the same current 
flows through them both. That same 
current will be split between lamp E and 
lamps C and D, so that these three must 
all be dimmer than lamps A and B.

 Lamps C and D will have the same 
brightness because they are in series 
with each other.

 Lamp E will be brighter than lamps C 
or D because a higher current will flow 
through it. 

b C and D together will have a resistance 
of 2.0 + 2.0 = 4.0 Ω.

 E in parallel with C / D will have a 
combined resistance of 1.3 Ω  
(1/R = 1/2 + 1/4).

 Total resistance = 2.0 + 2.0 + 1.3 = 5.3 Ω

 WORKED EXAMPLE B5.5
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23 Draw a circuit diagram to represent the following 
arrangement: two lamps, A and B, are connected to a 
12 V battery with a switch such that it can control lamp A 
only (lamp B is always on). An ammeter is connected so 
that it can measure the total current in both lamps and a 
voltmeter measures the p.d. across the battery.

24 Calculate the four possible total resistances that can be 
made by combining three 10 Ω resistors. 

25 Figure B5.30 shows a simple circuit in which the 
ammeter and voltmeter have been connected in the 
wrong positions.
a Predict the readings that you would expect to see on 

the meters. Explain your answer.
b When the positions of the meters were swapped to 

their correct positions, what readings would you 
expect to see on the meters?

12 V

10 Ω

20 Ω

V

A

	■ Figure B5.30 Simple circuit with ammeter and voltmeter in 
wrong positions

26 a Calculate the current that flows through a 12.0 Ω 
resistor connected to a p.d. of 9.10 V.

b An ideal ammeter would display this current 
accurately, but what value will an ammeter of 
resistance 0.31 Ω record?

c Determine the percentage error when using the 
ammeter in this way.

27 a Determine the currents I1, I2 and I3 in Figure B5.31.

3.0 A

12 V

0.5 A

1.0 A

6.0 A
F

E

D

C

A

B

I1

I2

I3

	■ Figure B5.31 Circuit diagram

b If resistor C has a value of 5.0 Ω and resistor E 
has a value of 2.0 Ω, determine values for the four 
unknown resistances.

28 Consider the circuit shown in Figure B5.32.

V

1000 Ω

1.5 V

2000 Ω

	■ Figure B5.32

a Calculate the current in the circuit before the 
voltmeter is connected.

b What is the voltage across the 2000 Ω resistor (before 
the voltmeter is connected)?

c Determine the voltages that will be measured 
if voltmeters with the following resistances are 
connected in turn across the 2000 Ω resistor:
i 5000 Ω ii 50 000 Ω.

	■ Emf and internal resistance

SYLLABUS CONTENT

 Cells provide a source of emf.
 Chemical cells and solar cells as the energy sources in circuits.
 Electric cells are characterized by their emf, ε, and internal resistance, r, as given by: ε = I(R + r).
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300 Theme B: The particulate nature of matter

Sources of electrical energy

As individuals, if we wish to use electrical and electronic devices, we need to transfer energy to 
them using electrical currents. There are several possibilities, including:
l Most homes (but not all) are provided with a p.d. from the ‘mains electricity’ generated at 

electric power stations by various means (most commonly from fossil fuels).
l A home-based electrical generator can be used to generate a p.d. from burning a fuel.
l Batteries (also called chemical cells or electric cells) use chemical reactions to provide a p.d. 

They can be single-use or rechargeable.
l Solar cells (also called photovoltaic cells) use radiant energy from the Sun to produce a p.d. 

(see Figure B5.33).
l Wind generators use the kinetic energy of moving air to produce a p.d.
l A dynamo on a bicycle (for example) can transfer kinetic energy to electrical energy for 

the lamp.

All of these energy sources have their advantages and disadvantages. These may be assessed 
by considering:
l convenience of use
l power available
l potential difference available
l whether they contribute to pollution and/or global warming
l whether the energy source is renewable
l whether the power supply is continuous
l whether they supply ac or dc (and the implications of that)
l whether the source is mobile, or fixed to a particular location
l internal resistance of supply (see below)
l cost.

 ATL B5B: Thinking skills 

Asking questions based upon sensible scientific rationale
Imagine that your family have bought a remote house in the countryside for a holiday home, but it has 
no mains electricity supply. The electricity company can provide a new cable to the house, but the cost 
would be high. What information would you need to consider in order to decide how to provide energy 
to the home? You may prefer a renewable energy source, but are they always the best choice?

Emf

The electromotive force (emf) of a battery, or any other source of electrical energy, is defined 
as the total energy transferred in the source per unit charge passing through it.

Electromotive force is given the symbol ε and its unit is the volt, V (J C−1). The name electromotive 
force can cause confusion because it is not a force. For this reason, it is commonly just called ‘emf’.

For example, a battery with an emf of 12 V can transfer a total of 12 J to every coulomb of charge 
that flows through it. However, some of that energy will be transferred within the source itself, as 
explained in the next section.

 ◆ Mains electricity 
Electrical energy supplied 
to homes and businesses by 
cables from power stations. 
Also called utility power. 

 ◆ Generator (electrical) 
Device that converts 
kinetic energy into 
electrical energy. 

 ◆ Solar cell Device 
which converts light and 
infrared directly into 
electrical energy. Also 
called photovoltaic cell. 
A collection of solar 
cells connected together 
electrically is commonly 
called a solar panel. 

 ◆ Wind generator: 
Device that transfers the 
kinetic energy of wind into 
electrical energy.

 ◆ Dynamo: A type of 
electricity generator that 
produces direct current. 

LINKING QUESTION
l What are the 

advantages of 
cells as a source of 
electrical energy?

This question links 
to understandings in 
Topic A.3.

	■ Figure B5.33 Solar cells 
collecting energy in the day to 
power lamps at night
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Internal resistance

Cells, batteries and other sources of electrical energy are not perfect conductors of electricity. 
The materials from which they are made all have resistance, called the internal resistance of the 
source, and given the symbol r.

Batteries have resistance, called internal resistance, typically less than 1 Ω.

If the internal resistance of a battery is much less than the resistance of the rest of the circuit, its 
effect can usually be ignored and, as a result, many examination questions refer to batteries or 
cells of ‘negligible internal resistance’. But in other examples, in circuits with high currents and/or 
low resistance, the internal resistance of an energy source can have a significant effect on the 
circuit. Internal resistances can vary with temperature and the age of the battery, but in this 
course, we will assume that they are constant.

Figure B5.34 shows a battery connected to an external resistance, R. In this example, the circuit 
symbols for the battery and the internal resistance are shown separately to aid understanding, 
but in practice they are combined and there is no accessible point between them. The voltmeter 

is assumed to be ‘ideal’. To analyse the circuit, we will need to add the internal and external 
resistances together.

When the switch is open and there is no current flowing in the circuit (I = 0), there will be no 
voltage across the internal resistance (since Vr = Ir) and an ideal voltmeter will display the true 
value of the emf, ε, of the battery.

When the switch is closed and a current, I, flows, there will be a p.d. of Vr = Ir across the 
internal resistance, so that the reading on the voltmeter will fall.

Consider a numerical example of Figure B5.34: The battery has an emf of 9.0 V and an internal 
resistance 0.4 Ω. When the switch is open, the voltmeter will read 9.0 V, but if a current of 2.5 A 
flows, Vr = 2.5 × 0.4 = 1.0 V. This is commonly called ‘lost volts’. The voltmeter reading will fall 
from 9.0 V to (9.0 – 1.0) = 8.0 V.

It should be clear that an ideal voltmeter connected across a battery will only show the emf of the 
battery if there is no current flowing. At all other times the p.d. will be less, by an amount which 
depends on the magnitude of the current at that moment.

The p.d. across the terminals of a battery is equal to the p.d. applied to the circuit and is known as 
the terminal p.d., Vt.

 total energy transferred by the cell  = energy transferred to the circuit (per coulomb)  
 (per coulomb)  + energy transferred inside the cell (per coulomb)

emf of cell = terminal p.d. across circuit + ‘lost volts’ due to internal resistance of battery

ε = Vt + Vr

The same current flows through both resistances, so that using V = IR gives:

ε = IR + Ir

or:

ε = I(R + r)

 ◆ Electromotive force 
(emf), ε The total energy 
transferred in a source of 
electrical energy per unit 
charge passing through it.

 ◆ Internal resistance, r 
Sources of electrical energy, 
for example batteries, are 
not perfect conductors. The 
materials inside them have 
resistance in themselves, 
which we call internal 
resistance. 

R

r
+ ε −

V

	■ Figure B5.34 A cell in a 
simple circuit

 ◆ Lost volts Term 
sometimes used to describe 
the voltage drop (becoming 
less than the emf) that 
occurs when a source of 
electrical energy delivers 
a current to a circuit. Lost 
volts (Ir) increase with 
larger currents. 

 ◆ Terminal potential 
difference The potential 
difference across the 
terminals of a battery (or 
other voltage supply) when 
it is supplying a current to a 
circuit (less than the emf).

DB
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302 Theme B: The particulate nature of matter

A battery with an emf of 1.5 V and internal resistance 0.82 Ω is connected in a circuit with 
a 5.6 Ω fixed resistor.
a Calculate the current in the circuit.
b If a (ideal) voltmeter is connected across the terminals of the battery when the current 

is flowing, what reading will it show?

Answer

a  I = 
ε

R + r  = 
1.5

(5.6 + 0.80) = 0.23 A

b V = IR = 0.23 × 5.6 = 1.3 V

 WORKED EXAMPLE B5.6

Choosing batteries
The emf and the internal resistance of any source of electrical energy are its defining features, 
although physical size and mass are also important, especially since they will affect the amount 
of energy that can be stored. 1.5 V is the most common emf produced by an electric cell. They 
are often connected in series to make a battery which has a greater overall emf, but this will also 
increase the overall internal resistance. 1.5 V cells connected in parallel will still produce an 
overall emf of 1.5 V, but the total internal resistance will be reduced. Table B5.4 shows the most 
common types of batteries. The use of mAh to represent energy storage is explained towards the 
end of this topic.
	■ Table B5.4 Typical properties of some common batteries

Type of battery emf / V Internal resistance/Ω

Energy capacity

mAh kJ (approx.)

mobile phone 3.7 0.1 1400 20

AA or AAA 1.5 0.2 1000 5

button / coin 
battery

3.0 10 100 1

car battery 12 0.01 50 000 2000
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Tool 3: Mathematics

Use of units whenever appropriate

The energy stored in a battery of known voltage is usually given in terms of the current it 
could supply for one hour at that voltage. Table B5.4 includes the example of a mobile phone 
battery, quoted at 1400 mAh. With a voltage of 3.7 V, it can supply a current of 1400 mA 
(1.4 A) for one hour.

Energy = VIt (as explained below in electrical power section) = 3.7 × 1.4 × 3600 =  
1.9 × 104 J ( ≈ 20 kJ)

E-bikes have become very popular. A typical battery might 
have a mass of about 3 kg and supplies 50 Ah (9 MJ) with an 
emf of 50 V and internal resistance of 0.1 Ω. This should be 
enough to travel approximately 30 km on mostly level ground.

Inquiry 2: Collecting and processing data

Designing

A student set up the following circuit to investigate the 
emf and internal resistance of an AA battery.

A

r

V

AA battery

R

	■ Figure B5.36 Investigating internal resistance

The following results (Table B5.5) were obtained when the 
value of the variable resistance was changed:

	■ Table B5.5 Current and voltage measurements

I/A V/V

1.0 1.0

0.6 1.2

0.4 1.3

0.2 1.4

The student concluded, by making calculations from 
these results, that the battery had an emf of 1.5 V and an 
internal resistance of 0.5 Ω. (Explain how she came to 
these conclusions.)

The student’s teacher said that the conclusions were 
acceptable, but the experiment was not accurate enough. 
She suggested that there were ways in which the 
investigation could be improved, including the drawing of 
an appropriate graph.

Design an improved investigation using the same 
arrangement and explain how the data obtained can 
be used to accurately determine the emf and internal 
resistance of the battery.

	■ Figure B5.35 E-bike for hire
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304 Theme B: The particulate nature of matter

29 Three cells, each of emf 1.5 V and internal resistance 
0.20 Ω were connected together. Determine their 
combined emf and internal resistance if they 
were connected:
a in series b in parallel

30 A very high-resistance voltmeter shows a voltage of 
12.5 V when it is connected across the terminals of a 
battery that is not supplying a current to a circuit. When 
the battery is connected to a lamp, a current of 2.5 A 
flows and the reading on the voltmeter falls to 11.8 V.
a State the emf of the battery.
b Calculate the internal resistance of the battery.
c What is the resistance of the lamp?

31 When a battery of emf 4.5 V and internal resistance 1.1 Ω 
was connected to a resistor, the current was 0.68 A.
a What was the value of the resistor?

b If the resistor was replaced with another of twice the 
value, predict the new current.

c State an assumption that you made when answering 
part b.

32 If a connecting wire is connected by mistake across 
a battery or power supply, it is an example of a 
short circuit.
a Calculate the current that flows through a battery 

of emf 12.0 V and internal resistance 0.25 Ω if it is 
accidentally ‘shorted’.

b Suggest what will happen to the battery.

33 A 1.50 V cell with an internal resistance of 0.100 Ω is 
connected to a resistance of 500 Ω. Outline why it would 
be reasonable to assume that the cell has ‘negligible 
internal resistance’. Include a calculation.

 ATL B5C: Research skills 

Use search engines and libraries effectively
Use the internet to research into the latest developments into the design of batteries for electric 
vehicles, including their weight, charging possibilities and the range of the cars on a fully charged 
battery. Consider how you will verify the reliability of your sources.

 ◆ Short circuit An 
unwanted (usually) electrical 
connection that provides a 
low resistance path for an 
electric current. It can result 
in damage to the circuit, 
unless the circuit is protected 
by a fuse or circuit breaker.

Nature of science: Global impact of science

Scientific responsibility

Battery storage is seen as useful to society despite the well-known 
environmental issues surrounding their manufacture and disposal. 
Should scientists be held morally responsible for the long-term 
consequences of their inventions and discoveries?

Most, if not all, scientific and technological developments have 
some unwanted, and/or unexpected, side-effects. Most commonly 
these may involve pollution, the threat of the misuse of new 
technologies and the implications for an overcrowded world. 
Or maybe a new technology will result in dramatic changes to 
how societies function; changes that will have both benefits and 
disadvantages, many of which will be a matter of opinion.

Should more effort be made to anticipate the possible negative 
aspects of scientific research and development? Perhaps that is 
unrealistic, because predicting the future of anything, especially 
the consequences of as-yet unfinished research, is rarely 

successful. Of course, there are some extreme areas of research 
that most people would agree should never be allowed; nuclear 
or biological weapons, for example. It is important to appreciate 
that a key feature of much scientific research is that it involves the 
investigation of the unknown.

If ‘society’ decides that it wishes to control some area of scientific 
and technological research because the possible negative 
consequences are considered to be greater than the possible 
benefits, who makes those decisions and who monitors and controls 
the research (especially in this modern international world)? Is 
it reasonable to expect scientists to be responsible for their own 
discoveries and inventions? Or will human imagination, the 
motivation to explore the unknown and the desire (of some people) 
for fame, power or wealth, inevitably result in every possible new 
scientific and technological discovery being developed?

TH
E IB LEARNER PRO

FILE
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B.5   Current and circuits 305

	■ Using variable resistors

SYLLABUS CONTENT

 Resistors can have variable resistance.

Variable resistors come in a wide variety of shapes and sizes. Two examples can be seen in Figure 
B5.37. a is small in size but has a high resistance. Part b is larger in size because it is designed to 
carry much bigger currents, although it has a lower resistance. It is often called a rheostat.

      

	■ Figure B5.37 Two different variable resistors

Many variable resistances have three terminals, one at each end of the resistance and a third 
movable / sliding contact between them. One possible use has already been seen in Figure B5.14. 
Only two of the three terminals are being used in that experiment. If the magnitude of the variable 
resistance is increased, the overall resistance of the circuit increases and the current decreases. At the 
same time, the p.d. across the variable resistance rises, while the p.d. across the component decreases.

Consider Figure B5.14. Suppose that the battery supplies a constant 12 V (and has 
negligible internal resistance), the component has a fixed resistance of 24 Ω and the 
variable resistor can vary from 0 to 48 Ω.
a Calculate the current in the circuit when the variable resistance is set to:

i 0 ii 24 Ω iii 48 Ω.
b Determine the p.d. across both components with the same three settings.

Answer

a i I = 
V
R = 

12
(24 + 0) = 0.50 A 

ii 
12

(24 + 24) = 0.25 A

ii 
12

(24 + 48) = 0.17 A

b p.d. across variable resistor = IR = 0.50 × 0 = 0 V. p.d. across component = 12 V
 p.d. across variable resistor = IR = 0.25 × 24 = 6.0 V. p.d. across component = 6.0 V
 p.d. across variable resistor = IR = 0.167 × 48 = 8.0 V. p.d. across component = 4.0 V
Note that it is not possible to reduce the p.d. across the component any lower than 4.0 V in 
this arrangement. However, using the same apparatus connected in a different way, it is 
possible to vary the p.d. across the component from 0 to 12 V. See next section.

 WORKED EXAMPLE B5.7

 ◆ Rheostat Variable 
resistance used to control 
current.
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306 Theme B: The particulate nature of matter

Potentiometers

A potentiometer is the name we give to a three terminal variable resistor when its sliding 
contact is being used to produce a varying p.d.

Used as shown in Figure B5.38, the variable resistor (potentiometer) can provide a p.d., Vout, to 
another part of the circuit, which varies continuously from zero to the full p.d. of the battery, Vin. 
The maximum voltage will be obtained with the sliding contact at the top of the variable resistor 
(as shown) and the voltage will be zero with the contact at the bottom (when both connections to 
the other circuit come from the same point).

A potentiometer provides the best way of varying the p.d. across a component in order to 
investigate its I–V characteristics (see Figure B5.39).

Vout

Vin

R1

sliding
contact

R2

	■ Figure B5.38 A variable resistor used as a 
potentiometer

A

component
being investigated

V

	■ Figure B5.39 A circuit for investigating I–V 
characteristics of electrical components

When a potentiometer is connected as the input into a circuit, the value of Vout cannot be 
confirmed without considering the effect of the resistance of the rest of that circuit. Generally, the 
resistance of the circuit should be much higher than the resistance of the potentiometer, unlike in 
Worked example B5.8.

Consider Figure B5.39, using components of the same value as in the last worked example: 
supply voltage is a constant 12 V, the component being investigated has a resistance of 
24 Ω and the variable resistor (potentiometer) can vary from 0 to 48 Ω.
Determine the p.d. across the component when the sliding contact on the potentiometer is:
a at the top
b at the bottom
c at the mid-point.

Answer
a Connected across the full supply p.d.: 12 V
b Not connected across the supply p.d.: 0 V
c Half of the potentiometer (24 Ω) is in parallel with the 24 Ω component, so together 

they have a resistance of 12 Ω. This means that the other half of the potentiometer 
(24 Ω) is in series with 12 Ω.

 There will be (24/36) × 12 = 8 V across the top half of the potentiometer and only 4 V 
across the bottom half, and the component.

 WORKED EXAMPLE B5.8

369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   306369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   306 04/01/2023   21:1304/01/2023   21:13



B.5   Current and circuits 307

	■ Potential-dividing circuits
Figure B5.40 shows an LDR and a thermistor, which are both semi-conducting components. These 
variable resistors are used as electrical sensors in circuits which control lighting and heating.

      

	■ Figure B5.40 LDR (left) and thermistor (right) for sensing changes in light intensity and temperature

Figure B5.41 shows how the resistance of an LDR changes with light intensity. (Note that the 
resistance scale is not linear, it is logarithmic.) In bright sunlight the LDR has a resistance of 
about 102 Ω, but in the dark its resistance rises to about 106 Ω (10 000 × greater). More light energy 
releases more charge carriers in the LDR.

Sensors are connected in potential-dividing circuits as shown (using an LDR) in Figure B5.42.

102

103

104

105

106

dark daylight sunlight

Re
si

st
an

ce
/Ω

Light intensity

	■ Figure B5.41 Variation of resistance of an LDR with 
light intensity

0→50 kΩ

Vout (input
to a light

control circuit)

6 V

LDR

	■ Figure B5.42 An LDR in a potential-dividing circuit

A potential-dividing circuit produces an output voltage which is a fraction of the supply 
voltage, dependent on the ratio of the values of the resistors it contains.

In this circuit, the p.d. of the supply, Vs, (6.0 V) is always shared / divided between the variable 
resistance and the LDR in a ratio depending on their resistances, as shown in the following worked 
example. The p.d. across one of the resistors (in this example, the LDR) is used as the input to 
another circuit.

 ◆ Potential-dividing 
circuit Two resistors used 
in series with a constant 
potential difference 
across them. When one 
resistance is changed, the 
potential difference across 
each resistor will change, 
and this can be used for 
controlling another part of 
the circuit. 
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Tool 2: Technology

Use sensors

An LDR in a potential-dividing circuit can produce outputs that can be used 
to roughly compare light intensities at different times or locations. However, if 
more accuracy is required, the output would need to be calibrated to measure the 
intensity of the light falling on it. This would require comparison with another, 
reliable light meter, such as shown in Figure B5.43, which usually displays light 
intensity in the SI unit lux (not needed in this course).

    
	■ Figure B5.43 

Light meter

Consider the circuit shown in Figure B5.42. The light comes on if Vout is greater than 5.0 V
If the variable resistance, Rv, is set to 50 kΩ, calculate a value for Vout, – which can be the 
input to the light control circuit – when the room is
a in bright sunlight
b in a dark room. Take values from Figure B5.41.

Answer
a Assuming that the current in both resistors is the same:

 I = 
Vs

Rtotal
 = 

VLDR

RLDR
 (= 

Vv

Rv
) 

 So that:

 VLDR = Vs × (RLDR

Rtotal
) = 6.0 × 

100
100 + (50 × 103) = 0.12 V

 This p.d. will not be enough to turn the lighting on, as required in a bright 
environment.

b VLDR = Vs × (RLDR

Rtotal
) = 6.0 × 

1.0 × 106

(1.0 × 106) + (50 × 103) = 5.7 V

 This p.d. will turn the lighting on automatically, as required in a dark environment.
The light intensity at which the lighting is turned on, or off, can be adjusted by the choice 
of value for the variable resistor. In practice the input resistance of the lighting circuit will 
also have to be considered.

 WORKED EXAMPLE B5.9

Figure B5.44 shows how the resistance of a semi-conducting thermistor 
changes with temperature. Thermal energy releases more charge carriers 
in the thermistor, so that its resistance decreases as it gets hotter. This 
can be used as a sensor (called a thermostat) to control temperature. 
(There is another kind of thermistor which has greater resistance if its 
temperature rises.)

 ◆ Thermostat Component 
that is used with a heater 
or cooler to maintain a 
constant temperature. 

Temperature / ° C

Re
si

st
an

ce
/Ω

20

10 000

0

0

20 000

30 000

40 000

40 60

	■ Figure B5.44 Variation of resistance with temperature 
for a thermistor
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34 a Calculate the potential difference between points A 
and B in Figure B5.45.

A B

12.0 V

X Y
100 Ω 100 Ω

	■ Figure B5.45

b A student wants to connect a lamp which is rated 
at 2.5 A, 6.0 V. Calculate the working resistance of 
the lamp.

c The student thinks that the lamp will work normally 
if he connects it between A and B, in parallel with X. 
Discuss if the lamp will work as he hopes.

d Another student thinks that the lamp will work 
if resistor X is removed (while the lamp is still 
connected between A and B). Calculate the new 
voltage across the lamp. Will the lamp work normally 
now?

e Suggest how the lamp could work normally using a 
12 V battery.

35 The value of the variable resistor in Figure B5.46 can be 
changed continuously from 1 kΩ to 10 kΩ.

1→10 kΩ

Vout

6.0 V

5 kΩ R

	■ Figure B5.46

a Calculate the maximum and minimum potential 
differences, Vout, that can be obtained across R.

b State (without calculations) how your answer will 
change if Vout is connected across another 5 kΩ.

c Estimate the percentage change in the resistance of 
the thermistor represented in Figure B5.44, as the 
temperature changes from 0 °C to 60 °C.

36 a Draw a potential-dividing circuit that could be 
used to control the temperature of, for example, a 
refrigerator.

b Make a list of household electrical devices that have 
thermostats inside them.

37 Describe a laboratory experiment that could be used 
to obtain results similar to those seen in Figure B5.44. 
Include a fully annotated diagram.

Electrical power

SYLLABUS CONTENT

 Electrical power, P, dissipated by a resistor given by:  P = IV  I2R = 
V 2

R .

If the current through a resistor is, for example, 3 A, then 3 C of charge is passing through it every 
second. If there is a potential difference across the resistor of 6 V, then 6 J of energy is being 
transferred by every coulomb of charge (to internal energy). The rate of transfer of energy is 
3 × 6 = 18 joules every second (watts).

More generally, we can derive an expression for the electrical power dissipated to internal energy 
in a resistor by considering the definitions of p.d. and current, as follows:

energy transferred
time

 = 
charge flowing through resistor

time
 × 

energy transferred in resistor
charge flowing through resistor

W
Δt

 = 
Δq
Δt

 × 
W
Δq

or:

power = current × potential difference P = IV 

 ◆ Power (electrical) 
The rate of dissipation of 
energy in a resistance. 
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310 Theme B: The particulate nature of matter

Because V = IR, this can be rewritten in two other useful ways:

P = I 2R = 
V 2 
R

To calculate the total energy transferred in a given time, we know that energy = power × time, 
so that:

electrical energy = VIt

	■ The heating effect of a current passing through a resistor

Whenever any current passes through any resistance, energy will be transferred to internal 
energy and then transferred as thermal energy.

This has always been one of the most widespread applications of electricity, including heating 
water and heating air.

An electric iron is labelled as 230 V, 1100 W.
a Explain exactly what the label means.
b Calculate the resistance of the heating coil of the iron.
c Explain with a calculation what would happen if the iron was used in a country where 

the mains voltage was 110 V.

Answer
a The label means that the iron is designed to be used with 230 V and, when correctly 

connected, it will transfer energy at a rate of 1100 joules every second.

b P = 
V2

R  

 1100 = 
2302

R
 R = 48.1 Ω

c P = 
V2

R  = 
1102

48.1 = 251 W

 The iron would transfer energy at 0.25 times the intended rate and would not get hot 
enough to work properly. If an iron designed to work with 110 V was connected to 
230 V it would begin to transfer energy at about four times the rate it was designed for; 
it would overheat and be permanently damaged.

 WORKED EXAMPLE B5.10

Recall from Topic A.3 that efficiency, η, in terms of energy transfer or power is given by:

η = 
useful work
input energy

 

So:

η = 
Eoutput

Einput  
= 

Poutput

Pinput
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B.5   Current and circuits 311

Tool 3: Mathematics

Use of units whenever appropriate

When we buy a battery or pay for the mains electricity connected to our homes, we are 
really buying the energy that is transferred by the electric current. In most countries mains 
electrical energy is sold by the kilowatt hour:

1 kWh is the amount of energy transferred by a 1 kW device in one hour, which is the 
equivalent of 1000 J per second for 3600 s, or 3.6 × 106 J (3.6 MJ).

 ◆ Kilowatt hour, kWh 
The amount of electrical 
energy transferred by a 
1 kW device in 1 hour.

DB

LINKING QUESTION
l How can the heating 

of an electrical 
resistor be explained 
using other areas 
of physics?

This question links 
to understandings in 
Topic B.1.

In a city where the cost of electrical energy 
is $ 0.14 for each kWh, predict how much it 
will cost to operate an air conditioner with 
an average power of 1500 W for four hours 
a day for a week.

Answer
Total cost = energy supplied in kWh × 0.14
= 1.5 × 4 × 7 × 0.14 = $ 5.90

 WORKED EXAMPLE B5.11

38 A 12 V potential difference is applied across a 
240 Ω resistor.
a Calculate:

i the current
ii the power
iii the total energy transferred in 2 minutes.

b What value resistor would have twice the power with 
the same voltage?

c What p.d. will double the power with the 
original resistor?

39 A 2.00 kW household water heater has a resistance 
of 24.3 Ω.
a Calculate the current that flows through it.
b What is the mains voltage?
c Show that the overall efficiency of the heater is 

approximately 85% if 1.0 × 105 J are transferred to the 
water every minute.

40 a Determine the rate of production of thermal energy 
if a current of 100 A flowed through an overhead 
cable of length 20 km and resistance of 0.001 ohm 
per metre.

b Comment on your answer.

41 a Calculate the power of a heater that will raise the 
temperature of a metal block of mass 2.3 kg from 
23 °C to 47 °C in 4 minutes (specific heat capacity = 
670 J kg−1 °C−1).

b Draw a circuit diagram to show how the heater should 
be connected to a 12 V supply and suitable electrical 
meters so that the power can be checked.

42 a An electric motor is used to raise a 50 kg mass to a 
height of 2.5 m in 24 s. The voltage supplied to the 
motor was 230 V but it was only 8.0% efficient.

 Determine the current in the motor.
b State two reasons why this process has a low efficiency.

43 a Calculate the value of resistance that would be needed 
to make a 1.25 kW water heater in a country where 
the mains voltage is 110 V.

b What current flows through the heater during 
normal use?

44 If a kWh of electrical energy costs 6.2 rupees, predict 
how long a 150 W television can be on for a total cost of 
100 rupees?

45 In 2022, the best mobile phone batteries were rated at 
3.7 V, 5000 mAh.
a Calculate how much energy (J) they store.
b If such a battery is used with an average current of 

100 mA, predict how many hours before the battery 
would be completely discharged.

c Estimate how long completely recharging the battery 
will take at an average rate of 5 W.

d Suggest why phone manufacturers do not install 
batteries which store more energy.
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312 Theme B: The particulate nature of matter

 ATL B5D: Thinking skills 

Applying key ideas and facts in new contexts
Solar panels connected to an outdoor night light are widely available for sale on the internet. Some 
advertisements make claims which are vague or unrealistic, or only apply to ideal conditions. Suppose 
you wanted to buy a solar panel with a 25 W LED spotlight which was on for 12 hours every night. 
Research and compare the products available. Which would you choose, and why?

 ATL B5E: Self-management skills 

Setting learning goals and adjusting them in response to experience
Reaching the end of Theme B means that you will soon be halfway through the content of the 
IB Physics syllabus (if you followed the order of this book). Ask yourself some questions and give 
honest replies.
l Are you doing as well as you hoped at the beginning of the course?
l Could you realistically be doing much better?
l Do you spend enough time studying physics to achieve your goals?
l Are your study methods effective, or are you too easily distracted?
l Are you finding the material interesting? If not, why not?
l Is any of the course content difficult to understand? If so, why?
l Are you using the school’s resources effectively?
l Do you use the help of your fellow students and teachers?
l Do you care enough about your physics grade to want to work harder?

Honest answers to these, or similar questions, should lead to setting achievable goals for the rest of 
the course.

369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   312369917_10_IB_Physics 3rd_Edn_SEC_B_5.indd   312 04/01/2023   21:1304/01/2023   21:13



C.1   Simple harmonic motion (SHM) 313

C.1 Simple harmonic motion (SHM)

• What makes the harmonic oscillator model applicable to a wide range of physical phenomena?
• Why must the defining equation of simple harmonic motion take the form it does?
• How can the energy and motion of an oscillation be analysed both graphically and algebraically?

Guiding questions

Oscillations

An oscillation is a regularly repeated backwards-and-forwards movement about the same 
central point, and along the same path.

 ◆ Oscillation Repetitive 
motion about a fixed point. 

The importance of the study of oscillations should be apparent 
from the very wide range of examples, both in physics and more 
generally. A few scientific examples:
l oscillations of the planets around the sun
l oscillations of the human heart
l oscillations of clocks (mechanical and electronic)
l oscillations of engines and motors
l oscillations of atoms within molecules
l oscillations within musical instruments
l oscillations producing human speech and within the eardrum
l oscillations of waves on water
l oscillations of light and other electromagnetic waves
l oscillations of tides on the ocean
l oscillations of electric currents.	■ Figure C1.1 Oscillations of a humming bird’s wings

Simple harmonic motion (SHM) is a simplified theoretical model representing oscillations. It is 
the starting point for the study of all oscillations.

In perfect SHM the oscillations always take the same time and there are no resistive forces, so 
that they continue oscillating indefinitely with no loss of energy and constant amplitude.

This time-keeping property is described as being isochronous.

Nature of science: Models
A ‘model’ in science means a simplified representation of a more complex situation. A model may take 
many forms, for example: a description in words, a drawing, a theory, an equation, a 3-D construction, a 
computer program or simulation, and so on.

SHM is a simple model (of oscillations) in a complex world. As the list above suggests, we are 
surrounded by oscillations, but few, if any, are perfect simple harmonic oscillators. Real oscillators are 
complex and various. To understand them, we need to first make sure we understand simplified versions.

Such simplifying models are found throughout physics and they are powerful and very useful. They 
should not be dismissed because of their basic assumptions.

 ◆ Simple harmonic 
motion (SHM) An 
idealized oscillation that 
maintains a constant 
amplitude and frequency.

 ◆ Isochronous Describing 
events that take equal times. 
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Theme C: Wave behaviour314

	■ Terms used to describe oscillations and SHM

SYLLABUS CONTENT

 A particle undergoing simple harmonic motion can be described using time period, T, frequency, f, 
angular frequency, ω, amplitude, equilibrium position, and displacement.

 The time period in terms of frequency of oscillation and angular frequency as given by:

 T = 
1
f  = 

2π
ω

Although we commonly talk about oscillating masses or oscillating objects, a discussion of perfect 
SHM often refers to a point mass, or a ‘particle’.

Until a mass is displaced by a resultant force, it will remain in its equilibrium position, where the 
resultant force is zero.

If a mass is then displaced, oscillations may occur if there is always a resultant restoring force 
pulling, and/or pushing, it back towards its equilibrium position. The mass will gain kinetic 
energy as it moves back where it came from. It will then pass through the equilibrium position 

(because of its inertia), so that the displacement is then in the 
opposite direction. Kinetic energy is transferred to some form of 
potential energy in the system, and when the kinetic energy has 
reduced to zero, the mass will stop and then reverse its motion. And 
so on. The motion of a mass between two identical springs on a 
friction-free surface is a good visualization of this. See Figure C1.2.

At all times the springs are stretched, but in part a of the diagram, 
the forces from the springs on the mass are equal and opposite. 
In part b, there is a resultant force to the right on the mass from 
the springs. When released, the mass will accelerate, reach its 
greatest speed in the centre, and then decelerate until it stops at B. 
And so on.

Tool 2: Technology

Carry out image analysis and video analysis of motion

Making observations and measurements on fast-moving 
objects provides many technical difficulties. In the 1870s 
and 1880s, Eadweard Muybridge was the first to try to 
analyse motion (most notably of horses) by using quickly 
taken photographs. See Figure C1.3.

The times between each photograph were known and the 
position of the horse could be judged from the lines in the 
background. From this information, the average speed of 
the horse between each picture could be calculated (and, 
if relevant, the horse’s acceleration). The pictures also 
revealed previously unconfirmed information about how a 
horse’s legs moved. 	■ Figure C1.3 Famous photographs of a horse 

in motion (Eadweard Muybridge)

 ◆ Equilibrium position 
Position in which there is 
no resultant force acting on 
an object. 

b

A

equilibrium
position

B

F’

F F

F’

a

	■ Figure C1.2 Oscillations of a mass between two springs

b

A

equilibrium
position

B

F’

F F

F’

a
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C.1   Simple harmonic motion (SHM) 315

The same principles apply to video analysis using a 
modern video camera, or smart phone app. The motion 
to be analysed should be just in front of a suitable 
measurement grid. The video can be replayed in slow 
motion, or frame-by-frame.

Alternatively, a software program can be used which 
enables the position of a videoed object to be tracked 
and measured.

Oscillations similar to that seen in Figure C1.2 can be 
analysed using a suitable video camera or smart phone. 
A scale calibrated in millimetres can be placed behind 
the oscillating mass and a few seconds of action recorded 
while the mass is oscillating. Replaying the motion in 
slow motion, or frame-by-frame, can provide information 
on times and displacements.

The displacement, x, of an oscillator is its distance from the equilibrium position in a specified 
direction. Displacement is a vector quantity. (This term should be familiar from Topic A.1.) The 
displacement varies continuously, both in size and direction, during an oscillation.

The amplitude, x0, of an oscillation is its maximum displacement while oscillating.

In the idealized example (SHM), where there is no energy dissipation, the amplitude will remain 
constant. More realistically, each oscillation will have an amplitude which is less than the one 
before (assuming there is no driving force).

One oscillation is completed every time that an oscillating mass returns to a certain position, 
moving in the same direction.

A compete oscillation is sometimes called a cycle. An object which oscillates is called 
an oscillator.

The time period, T, of an oscillation is the time taken for one complete oscillation. Unit: s.

The frequency, f, of the motion is the number of oscillations in unit time (per second). Unit: hertz, 
Hz. A frequency of 1 Hz means that there is one oscillation per second.

frequency, T = 
1
f

The time period and frequency of an oscillation provide exactly the same information. Typically, 
we prefer to use the one which is greater than one.

The time period and frequency of most practical oscillations remain constant (they are 
isochronous), even when the amplitude reduces because of energy dissipation.

In physics we often deal with high frequencies, so the following units are in common use: kHz 
(103 Hz), MHz (106 Hz), GHz (109 Hz).

	■ Connection between SHM and circular motion
Sometimes we may describe circular motion as an oscillation, and the last two terms described 
above (frequency and time period) should already be familiar because they were introduced in the 
circular motion sub-topic in A.2.

There is a close connection between oscillations and circular motion. Indeed, viewed from the 
side, motion in a circle has exactly the same pattern of movement as a simple oscillation.

Figure C1.4 shows a particle moving in a circle at constant speed. Point P is the projection of the 
particle’s position onto the diameter of the circle.

Common 
mistake
The amplitude of an 
oscillation is not the 
distance between its 
extreme positions 
(which equals twice the 
amplitude). A single 
movement between 
the extremes is not a 
complete oscillation (it 
is half an oscillation).

 ◆ Amplitude Maximum 
displacement of an 
oscillation (or wave).

 ◆ Cycle (oscillation) One 
complete oscillation.

 ◆ Oscillator Something 
which oscillates. 

 ◆ Time period, T Time 
taken for one complete 
oscillation.

 ◆ Frequency, f The 
number of oscillations 
per unit time, (usually per 

second). f = 
1
T

 (SI unit: 
hertz, Hz).
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As the particle moves in a circle, point P oscillates backwards and 
forwards along the diameter with the same frequency as the 
particle’s circular motion, and with an amplitude equal to the 
radius, r, of the circle.

One complete oscillation of point P can be considered as 
equivalent to the particle moving through an angle of 2π radians.

The concept of angular velocity, ω, was introduced in Topic A.2 
as a key quantity to describe the physical reality of motion in a 
circle. Because of the close analogy between circular motion and 
SHM (described above), ω is also important in the mathematical 
description of SHM. However, in the study of SHM, ω is known as 
angular frequency. Unit: rad s−1

angular frequency, ω = 
2π
T

 = 2πf

Remember that, although the terms period, frequency and angular frequency are all used to 
describe oscillations, they are just different ways of representing exactly the same information.

TOK

Knowledge and the knower
l How do we acquire knowledge?
l How do our expectations and assumptions 

have an impact on how we perceive things?

Analogies, correlations and causal 
relationships

An analogy is made when we compare an 
understanding, process or phenomenon in one 
area of knowledge to another seemingly unrelated 
area, and we see similarities. This might enable 
us to understand some deeper, underlying process 

that causes both the phenomena – or maybe an 
analogy just makes it easier to understand what is 
going on.

If an analogy proves to be useful, but has little, 
or no other validity, does that justify its use, and 
does it increase our knowledge of the system to 
which it applied? What is the difference between 
a correlation, a causal link and an analogy?

Consider, for example, applying the mathematics 
of oscillations to variations in animal populations, 
or to economic cycles.

TH
E IB LEARNER PRO

FILE

Consider the oscillator shown in Figure C1.2. The 
oscillating mass has a length of 12 cm and the distance 
between A and B is 18 cm. 
a Calculate the amplitude of the oscillation. 
b Determine the displacement of the oscillator when its 

end is in position B. 
c State when the mass has its greatest kinetic energy. 
d If the period of the oscillator was 1.5 s, calculate its 

i frequency
ii angular frequency.

Answer

a 
(18 – 12)

2  = 3 cm

b 3 cm to the right
c When it passes through its equilibrium position.

d i f = 
1
T = 

1.0 
1.5  = 0.67 Hz

ii ω = 2πf = 2 × π × 0.67 = 4.2 rad s−1

WORKED EXAMPLE C1.1

particle moving in a
circle at constant speed

P oscillates along
the diameter

r x

P

	■ Figure C1.4 Comparing SHM to motion in a circle

 ◆ Analogy Applying 
knowledge of one subject 
to another because of 
some similarities. 

 ◆ Angular frequency, ω 
Similar to angular velocity, 
but used to represent the 
frequency of an oscillation 
in rad s−1 (because of the 
mathematical similarities 
between uniform circular 
motion and simple 
harmonic oscillations.) 
ω = 2πf.
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C.1   Simple harmonic motion (SHM) 317

1 The central processing unit of a lap-top computer 
operates at 3.2 × 109 cycles per second. 
a Express this frequency in 

i megahertz ii gigahertz. 
b Calculate the time period of each cycle.

2 When a guitar string was plucked (once) it oscillated with 
a frequency of 196 Hz. 
a Determine the angular frequency of this oscillation. 
b Suggest how you would expect the frequency and 

amplitude to change in the next few seconds. Explain 
your answer

3 a Show that the angular frequency of the Earth 
spinning on its axis is approximately 7 × 10–5 rad s–1. 

b Determine the total angle (rad) through which it will 
rotate in 100 hours.

4 A car engine was measured to have 3755 rpm (revolutions 
per minute). Calculate its angular frequency.

5 Using slow-motion video replay, the angular frequency of 
the oscillations of a humming bird’s wings was found to 
be 272 rad s−1.

 Determine how many times it beat its wings in one 
minute.

Two commonly investigated oscillators

SYLLABUS CONTENT

 The time period of a mass–spring system as given by:

 T = 2π   
m
k

 The time period of a simple pendulum as given by:

 T = 2π   
l
g

A mass–spring system and a simple pendulum are important for a number of good reasons. 
These include:
l The proportional relationships between force and displacement are easily understood.
l Their periods of oscillation have a convenient time for measurement in a school laboratory.
l They are good approximations to simple harmonic motion.
l Energy is dissipated slowly, so that the oscillations continue for a long enough time that allows 

for accurate measurements to be completed.
l They act as starting points for understanding many similar, but more complex, oscillators.

	■ Mass-spring system
We have already briefly discussed a mass oscillating horizontally between two springs 
(Figure C1.2). A more common arrangement is shown in Figure C1.5. Of course, in this 
arrangement, the force of gravity (the weight of the mass) also acts vertically, but it does not affect 
the results because it is constant. The system would have the same time period if it was moved to a 
location where the gravitational field strength was different.
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amplitude

amplitude

Equilibrium position

Rigid
support

no load

m

m

m

a b c d

	■ Figure C1.5 Different positions of a mass, m, oscillating on a spring

Tool 2: Technology

Use sensors

Position sensors are useful in many aspects of the study 
of motion, including mechanical oscillations. Figure C1.6 
shows how digital data can be collected, which will be 
processed later by the computer.

spring

mass

motion
sensor

to interface
and computer

	■ Figure C1.6 Using a sensor to investigate 
oscillations of a mass on a spring.

We will assume that the spring is never overstretched  
and that it obeys Hooke’s law (see Topic A.2):

FH = −kx

Or, in words: the size of the restoring force acting on 
the mass = spring constant × displacement from its 
equilibrium position. The spring constant is a measure of 
the spring’s stiffness (= force / deformation).

Laboratory investigations of the time periods of a 
mass on a spring are straightforward, especially those 
involving using different masses on the same spring. 
For typical results see Figure C1.6. Different springs, or 
combinations of springs, used with the same mass, can be 
used to investigate the effect of the spring constant, k, on 
the period.

1000 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4T/
s

mass/g

	■ Figure C1.7 Variation of time period, T, with mass, m, on a spring
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Tool 3: Mathematics

Linearize graphs

You may have learnt how to linearize graphs in Topic B.1. The graph seen in Figure C1.6 
appears that it might represent the relationship T 2 ∝ m. Check this by using information from 
the graph to draw a T 2–m graph (uncertainties in T are ± 0.05s). It should produce a straight 
line through the origin. Use the graph and the relationship shown below to determine a value 
for the spring constant, k.

The exact relationship for the SHM of a mass on a spring is as follows:

Time period of a mass-spring system:

T = 2π  
m
k

 

Since ω = 
2π 
T 

, this equation can also be written as: ω2 = 
k 
m

.

This equation applies perfectly only to a point mass acted upon by a separate simple spring system 
that has a well-defined stiffness (k) and no (significant) mass. There is an extremely large number 
of other oscillating mechanical systems that have similarities to this simple model but are much 
more complex. For example, oscillations in buildings and bridges. Figure C1.8 shows a simpler 
example, in which the mass is spread uniformly along the oscillating system, a ruler.

	■ Figure C1.8 Oscillating ruler

Inquiry 3: Concluding and evaluating

Concluding

A student wants to investigate an oscillating ruler, similar 
to that seen in Figure C1.8, but she varied the mass of 
the ruler by taping various masses near to its free end. 
She predicted that the time period of the oscillator could 
be determined from the same equation as for a mass 
oscillating vertically on the end of a spring. Table C1.1 
summarizes her raw data. Assume that the uncertainties 
are low.

	■ Table C1.1 Results of vibrating ruler experiment

Mass on end of blade / g Time period / s

0 too quick to measure

40 0.55

80 0.76

120 0.91

160 1.04

200 1.15

Process the results and reach a conclusion. State whether 
the student predicted correctly. If not, suggest a 
possible reason.
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A 200 g mass was placed on the end of a long spring and increased its length by 5.4 cm. 
a Determine the spring constant, k, of the spring. 
b If the mass is displaced a small distance from its equilibrium position and undergoes 

SHM, calculate the frequency of oscillations. 
c Suggest a possible reason why oscillations with greater amplitude may not be 

simple harmonic.

Answer
a FH = −kx
 0.200 × 9.8 = −k × (5.4 ×10−2)
 k = −36 N m−1 (the negative sign shows that force and displacement are in opposite 

directions)

b T = 2π  
m 
k   = 2 × π ×  

0.200 
36  = 0.47 s

 f = 
1 
T  = 

1 
0.47  = 2.1 Hz

c The spring may become overstretched, so that Hooke’s law is no longer applicable.

WORKED EXAMPLE C1.2

	■ Simple pendulum
There are many different designs of pendulum, all of which involve a mass swinging from side 
to side under the effects of gravity. We use the term ‘simple pendulum’ to describe the simplest 
possible model of a pendulum: a spherical mass swinging on a rod, or string (both of which have 
negligible mass), from a rigid, frictionless support. See Figure C1.9. The mass is often called a 
pendulum ‘bob’.

Because the mass is spherical and the rod / string has negligible mass, all of the mass of 
the pendulum can be assumed to be acting as a point mass at the centre of the sphere. The 
displacement of the motion can be considered to be the angle between the rod / string and the 
vertical. The restoring force is provided by gravity: consider Figure C1.10.

The weight, mg, of the pendulum is conveniently resolved into two perpendicular 
components: a force mg sin θ provides the restoring force bringing the pendulum 
back towards its equilibrium position; a force mg cos θ keeps the rod / string 
in tension.

An alternative way of looking at this situation: the pendulum has only two forces 
acting on it: tension in the rod / string and weight, mg. The resultant of these is the 
restoring force, mg sin θ. Practical laboratory investigations of a simple pendulum 
will confirm that, for small amplitudes, the time period, T, depends only its length, 
l (measured from its point of support to its centre of mass). See Figure C1.11. 
Period is not affected by its mass. This is because doubling the mass, for example, 
will also result in doubling the restoring force.

rigid, frictionless
support

rod or string
with negligible mass

mass, m

equilibrium
position

path of
oscillation

amplitude

	■ Figure C1.9 Simple pendulum

 ◆ Pendulum A weight, 
which is suspended below 
a pivot, which is able to 
swing from side to side. 
The weight is sometimes 
called the pendulum 
bob. The concept of a 
simple pendulum is a 
point mass on the end of an 
inextensible string.
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	■ Figure C1.11 Results of simple pendulum investigation

The exact relationship for the SHM of a simple pendulum (for small amplitudes) is as follows.

Time period of a simple pendulum:

T = 2π  
l
g

Tool 3: Mathematics

Use approximation and estimation

For the motion of a simple pendulum to be a good example of SHM, we 
require that the restoring force (mg sin θ) is proportional to the displacement 
(θ). For very small angles, values of sin θ, tan θ and θ (in rad) are almost 
identical, so that this condition is satisfied. But, as the angle increases, the 
difference gets greater. Determine the minimum angle for which there is at 
least a 1% difference between sin θ, tan θ and θ (in rad).

Top tip!
The data of Figure C1.11 can be 
linearized. A graph of T 2−l should be a 
straight line through the origin. A simple 
pendulum experiment can be used to 
determine a value for the gravitational 
field strength, g. The graph of T 2−l will 
have a gradient of: 4π2/g

 ATL C1A: Research skills, thinking skills 

Use search engines effectively; 
providing a reasoned argument to 
support conclusions
The equation highlighted above shows that the period 
of a simple pendulum would also change if its value 
was checked in a location where the gravitational 
field strength had a different value. Using your own 
research, investigate the variations of the strength of 
the gravitational field around the Earth. Then state and 
explain whether experiments in school laboratories 
would be able to measure those differences.

	■ Figure C1.12 Mount Nevado Huascarán in Peru is reported to have 
the lowest gravitational field strength on Earth; its summit (6768 m) is one 
of the farthest points on the surface of the Earth from Earth's centre

tension

mg sin θ

mg cos θ

mg

θ

θ

l

	■ Figure C1.10 Components 
of the weight of the pendulum

DB
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Determine a value for the time period of 
a simple pendulum of length 85.6 cm at 
a location where the gravitational field 
strength is 
a 9.81 N kg−1

b 1.63 N kg−1 (on the Moon’s surface). 
c This equation predicts that the ratio 

of the time periods at two different 
locations is:

   
g1 
g2 

.

 Do your answers to a and b confirm that?

Answer

a T = 2π  
l 
g   = 2 × π ×  

0.856 
9.81  = 1.86 s 

b 2 × π ×  
0.856 
1.63  = 4.55 s

c 
TM

TE  = 
4.55 
1.86  = 2.45

   
gE

gM  =   
9.81 
1.63 = 2.45

 Yes, the same ratio is confirmed.

WORKED EXAMPLE C1.3

Nature of science: Measurements 

Technological developments in the 
measurement of time

Famously, Galileo was the first to discover the constant time 
periods of pendulums, but it was not until about sixty years 
later, in 1656, that the first pendulum clock was invented by the 
young Dutch scientist and inventor, Christiaan Huygens. Huygens 
is widely considered to be one of the greatest scientists and 
astronomers of all time. By the end of the eighteenth century, the 
best pendulum clocks could be made with an inaccuracy of less 
than one second a day. They were used throughout the world as 
the most accurate timekeepers for more than 250 years.

Accurate timekeepers were also essential for navigation 
on long journeys by ship. East–west distances (longitude) 
could be determined from observation of the stars or planets, 
combined with knowledge of the exact time of observation. 

However, pendulum clocks were not designed to cope with the 
motions of ships on the ocean! The British government offered a 
valuable reward to anyone who could design a clock that would 
remain accurate at sea, and hence ‘solve the problem of longitude’. 
It was won by a clockmaker named James Harrison. His design 
included oscillating spheres on springs, rather than a pendulum.

Today we expect to know the exact time, at any time and place 
that we want, and we consider such precision to be normal, 
unworthy of comment. But, before pendulum clocks, most people 
were unaware of the time to the nearest hour, never mind the 
nearest minute, or second. (And they probably would not have 
understood any need for such accuracy!)

It is impossible to over-estimate the importance of the accurate 
measurement of time in modern life. The physics principle 
behind the pendulum clock is easily understood, but it took great 
technological skill (for that era) to manufacture the accurate 
clocks which had such considerable benefits on everyday life.

	■ Figure C1.13 
Christiaan Huygens

	■ Figure C1.14 Clocks like 
this were found in many homes

	■ Figure C1.15 James Harrison’s first marine timekeeper (1735)
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6 Determine what mass will have a period of exactly one 
second when oscillating on the end of a spring which has 
a spring constant of 84 N m−1.

7 Calculate the angular frequency of a mass–spring system 
which involves a mass of 1000 g and a spring with 
k = 100 N m−1.

8 A student investigated the effect of using springs of 
different stiffness (k) on the periods of oscillations, T, of 
the same mass.

 Sketch the T−k graph that should be obtained.

9 Perhaps the world’s most famous pendulum was made by 
Léon Foucault in Paris in 1851. The bob had a mass of 
28 kg and its length was 67 m. 
a Calculate the period of this pendulum (the 

gravitational field strength in Paris is 9.81 N kg−1). 
b Suggest reasons why it could continue to swing for a 

long time without any continuous energy input. 
c Use the internet to find out why this pendulum was 

so important.

10 Figure C1.11 shows the results of an investigation into a 
simple pendulum. 
a Calculate the angular frequency which describes 

oscillations of a pendulum of length 0.50 m. 
b Determine a value for the strength of the gravitational 

field from these results.

11 Figure C1.16 shows a girl starting to bounce on a 
trampoline. To begin with, her feet remain in contact 
with the rubber sheet and her movement can be 
considered to be SHM. The girl has a mass of 38 kg and 
the sheet stretched down by 33 cm when she was standing 
still in the middle.
a Calculate a value for the spring constant of 

the trampoline. 

b Determine the time period of her bounces while she 
remains in contact with the trampoline’s surface.

 	■ Figure C1.16 Girl on trampoline

12 Figure C1.17 shows a spring which is part of a car’s 
suspension system.

	■ Figure C1.17 The suspension system of a car

a Estimate its spring constant by considering how much 
the wing of a car will depress if you push down hard 
on it (or sit on it). 

b By considering that the wheel effectively oscillates on 
the spring, estimate 
i its time period of oscillation
ii how far a car travelling at 12 m s−1 moves during 

one oscillation. 
c The suspension also incorporates a shock absorber 

(damper). Discuss why this is necessary.

LINKING QUESTIONS
l How can greenhouse gases be modelled as simple harmonic oscillators?
l What physical explanation leads to the enhanced greenhouse effect? (NOS)

These questions link to understandings in Topic B.2.

	■ Conditions that produce SHM

SYLLABUS CONTENT

 Conditions that lead to simple harmonic motion.
 The defining equation of simple harmonic motion as given by: a = −ω2x.
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SHM will occur if the restoring force, F, is proportional to the displacement, x, but the force 
always acts back towards the equilibrium position:

F ∝ −x

The negative sign is important here. It shows us that the force acts in the opposite direction to the 
displacement: an increasing force opposes increasing displacement.

For an oscillating mass on a spring which obeys Hooke’s law (FH = −kx) this condition is obviously 
satisfied. For a simple pendulum, the restoring force, mg sin θ, is (almost) proportional to the 
displacement angle, θ, if the angle is small.

To define SHM we need to refer to the motion, rather than the force. Since F = ma, for a constant 
mass, we can write a ∝ −x.

Simple harmonic motion is defined as an oscillation in which the acceleration is proportional 
to the displacement, but in the opposite direction (always directed back towards the 
equilibrium position): 

a ∝ −x

This is represented by the graph shown in Figure C1.18. A graph of the restoring force against 
displacement would look similar.

If, for example, the maximum displacement (amplitude) of an SHM is 
doubled, the restoring force and acceleration will also double. This will 
result in the mass taking the same time for each oscillation, because it 
is moving twice the distance at twice the average speed. This explains a 
defining feature of SHM: amplitude does not affect time period.

We can rewrite the equation above as: a = −constant × x.

The constant must involve frequency because the magnitude of the 
acceleration is greater if the frequency is higher. The constant can be shown 
to be equal to ω2. So that the defining equation of SHM can be written as:

a = −ω2x

A mass oscillates horizontally between two springs with a frequency of 1.4 Hz. 
a Calculate its angular frequency. 
b Determine its acceleration when 

i its displacement is 1.0 cm to the right
ii its displacement is 4.0 cm to the left
iii it passes through its equilibrium position.

Answer
a ω = 2πf = 2π × 1.4 = 8.8 rad s−1

b i a = −ω2x = −(8.8)2 × (+0.010) = −0.77 m s−2 (to the left)
ii a = −ω2x = −(8.8)2 × (−0.040) = +3.1 m s−2 (to the right)
iii a = −ω2x = −(8.8)2 × 0.0 = 0.0 m s−2

WORKED EXAMPLE C1.4

 ◆ Simple harmonic 
motion (SHM) Oscillations 
in which the acceleration, 
a, is proportional to the 
displacement, x, and in the 
opposite direction, directed 
back to the equilibrium 
position. a ∝ −x. 

Displacement, x

Acceleration, a

–x0

–amax

amax

x0

	■ Figure C1.18 Acceleration–displacement  
graph for SHM

DB
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C.1   Simple harmonic motion (SHM) 325

Graphs of SHM

A mass oscillating on a spring could be used with a marker pen to produce a record 
of the oscillation, as shown in Figure C1.19. If the card moves at a constant speed, 
the record (trace) produced is effectively a graph of displacement against time. 
Data logging with an appropriate sensor will improve this experiment.

The waveform seen in Figure C1.19 is commonly described as being sinusoidal 
in shape.

The graph in Figure C1.20 shows the variation in displacement, x, with time, t, for 
the idealized model of a mass moving with perfect SHM. Here we have chosen 
that the particle has zero displacement at the start of the timing. The motion has 
an amplitude of x0. Alternatively, we might have chosen the graph to start with the 
particle at maximum displacement (or any other displacement).

D
is

pl
ac

em
en

t,
 x

Time, t

period, T

x0

-x0

0

	■ Figure C1.20 Displacement–time graph for simple harmonic motion.  
Timing was started when the particle had zero displacement

Using knowledge from Topic A.2, we can use this graph to 
calculate the velocity of the oscillating mass at any particular 
moment by determining the gradient of the displacement–
time graph at that moment:

velocity, v = 
change in displacement

change in time 
 = 

Δx
Δt

 

Similarly, the acceleration at any given time can be found 
from the gradient of the velocity–time graph:

acceleration, a = 
change in velocity

change in time 
 = 

Δv
Δt

 

Using this information, three separate but interconnected 
graphs of motion can be drawn and compared, as shown in 
Figure C1.21.

The velocity graph has its maximum value, v0, when the 
displacement, x, is zero, and the velocity is zero when the 
displacement is at its maximum, ±x0.

The acceleration has its maximum value when the velocity is 
zero and the displacement is greatest. This is to be expected, 
because when the displacement is greatest, the restoring 
force, acting in the opposite direction, is greatest.

SHM graphs of displacement, velocity and acceleration are 
all sinusoidal in shape, but their maximum values occur at 
different times.

marker pen

movement of card

card

trace

	■ Figure C1.19 Recording the 
motion of an oscillation

 ◆ Data logging 
Connecting sensors to a 
computer with suitable 
software to enable physical 
quantities to be measured 
and processed digitally. 

 ◆ Sinusoidal In the 
shape of a sine wave 
(usually equivalent to a 
cosine wave). 
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	■ Figure C1.21 Graphs for simple harmonic motion  
starting at displacement x = 0: a displacement–time  
b velocity–time c acceleration–time
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Figure C1.22 shows all three SHM graphs drawn on the same axes, so that they can be more easily 
compared. Note that the amplitudes of the three graphs are arbitrary; they are not interconnected 
and should not be compared.
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	■ Figure C1.22 Comparing displacement, velocity and acceleration for SHM, with timing starting at displacement x = 0

	■ Phase difference
This is a convenient point to introduce the important concept 
of phase difference. Figure C1.23 shows an everyday 
example. The motions of the four children all have the same 
frequency because all the swings are the same length, but 
they are each at different points in their oscillations: we say 
that they are out of phase with each other.

A phase difference occurs between two similar oscillations 
if they have the same frequency, but their maximum values 
do not occur at the same time.

The three graphs shown in Figure C1.21 all have the same frequency and sinusoidal shape, but 
their peaks occur at different times: there is a phase difference between the waves. This could be 
quantified by referring to the fraction of a time period, T, that occurs between their peaks. The 
first peak of the displacement graph occurs T/4 after the first peak of the velocity graph. The first 
peak of the acceleration graph occurs 3T/4 after the first peak of the velocity graph.

But, remembering that one complete oscillation can be considered as equivalent to moving 
through an angle of 2π radians, phase differences are more usually quoted in terms of π.

Examples of phase differences

l One quarter of an oscillation, 
T 
4 

 = 
2π 
4 

 = 
π 
2 
 radians (90°)

l One half of an oscillation,  
T 
2 

 = 
2π 
2 

 = π radians (180°)

l Three quarters of an oscillation, 
3T 
4 

 = 2π × 
3 
4 
 = 

3π 
2 

 radians (270°)

(A phase difference of 
3π 
2 

 radians is equal in magnitude to a phase difference of 
π 
2 
 radians, but in 

some circumstances, we might be concerned about which peak came ‘first’.)

Referring back to Figure C1.21, can see that there is a phase difference of 
π 
2 
 between displacement 

and velocity, and a phase difference of π between displacement and acceleration.

LINKING QUESTION
l How can the 

understanding of 
simple harmonic 
motion apply to the 
wave model? (NOS)

This question links 
to understandings in 
Topic C.2.

	■ Figure C1.23 Four oscillations out of phase

 ◆ Phase difference When 
oscillators that have the 
same frequency are out 
of phase with each other, 
the difference between 
them is defined by the 
angle (usually in terms 
of π radians) between 
the oscillations. Phase 
differences can be between 
0 and 2π radians. 
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C.1   Simple harmonic motion (SHM) 327

13 An oscillator moves with SHM and has a time period 
of 2.34 s.

 How far must it be displaced from its equilibrium 
position in order that its acceleration is 1.00 m s−2?

14 During SHM a mass moves with an acceleration of 
3.4 m s−2 when its displacement is 4.0 cm. Calculate its:
a angular frequency b time period.

15 A mass oscillating on a spring performs exactly 20 
oscillations in 15.8 s. 
a Determine its acceleration when it is displaced 

62.3 mm from its equilibrium position.
b State any assumption that you made when answering a.

16 Look at the graph in Figure C1.24 which shows the 
motion of a mass oscillating on a spring. Determine:
a the amplitude
b the time period
c the displacement after 0.15 s
d the displacement after 1.4 s.

17 a Sketch a displacement–time graph showing two 
complete oscillations for a simple harmonic oscillator 
which has a time period of 2.0 s and an amplitude 
of 5.0 cm.

b Add to the same axes the graph of an oscillator which 
has twice the frequency and the same amplitude. 

c Add to the same axes the graph of an oscillator that 
has an amplitude of 2.5 cm and the same frequency 
but which is ¼ of an oscillation out of phase with the 
first oscillator.

18 a Sketch a velocity–time graph showing two complete 
oscillations for a simple harmonic oscillator which 
has a frequency of 4 Hz and a maximum speed of 
4.0 c ms–1. 

b On the same axes sketch graphs to show the 
variation of:
i displacement ii acceleration

 for the same oscillation.
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	■ Figure C1.24 Motion of a mass oscillating on a spring

There is more about phase difference, graphs of motion, and the equations which represent them, 
towards the end of this topic (for HL students).

	■ Energy changes during SHM

SYLLABUS CONTENT

 A qualitative approach to energy changes during one cycle of an oscillation.

When an object which can oscillate is pushed, or pulled, away from its equilibrium position, 
against the action of a restoring force, work will be done and potential energy will be stored in 
the oscillator. For example, a spring will store elastic potential energy and a simple pendulum will 
store gravitational potential energy. When the object is released, it will gain kinetic energy and 
lose potential energy as the restoring force accelerates it back towards the equilibrium position. Its 
kinetic energy has a maximum value as it passes through the equilibrium position and, at the same 
time, its potential energy is minimized. As it moves away from the equilibrium position, kinetic 
energy decreases as the restoring force opposes its motion and potential energy increases again.
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As an example, consider Figure C1.25, in which a simple pendulum has been pulled away 
from its equilibrium position, C, to position A. While it is held in position A, it has zero 
kinetic energy and its change of gravitational potential energy (compared to position C) 
is greatest. When it is released, gravity provides the restoring force and the pendulum 
exchanges potential energy for kinetic energy as it moves through position B to position C. 
At C it has maximum kinetic energy and the change in potential energy has reduced to zero. 
The pendulum then transfers its kinetic energy back to potential energy as it moves through 
position D to position E. At E, like A, it has zero kinetic energy and a maximum change of 
potential energy. The process then repeats every half time period.

If the pendulum was a perfect simple harmonic oscillator, there would be no energy 
losses, so that the sum of the potential energy and the kinetic energy would be constant 
and the pendulum would continue to reach the same maximum vertical height and 
maximum speed every oscillation. In practice, frictional forces will result in energy 
dissipation and all the energies of the pendulum will progressively decrease.

A
B C D

E

	■ Figure C1.25 A swinging pendulum

All mechanical oscillations involve a continuous exchange of energy between kinetic energy 
and some form of potential energy.

For a simple pendulum, the potential energy Ep is in the form of gravitational potential energy 
(see Topic A.3 where ΔEp was used instead of Ep):

Ep = mgΔh

For a mass on a spring, the potential energy is in the form of elastic potential energy (see Topic A.3, 
where the symbol EH was used instead of Ep and Δx was used instead of x):

Ep = 
1
2
kx2

Its maximum value is:

Epmax
 = 

1
2
kx0

2

which shows us that generally:

The total energy of an SHM is proportional to its amplitude squared.

Kinetic energy of the mass can be determined from (Topic A.3):

Ek = 
1
2
mv2

Figure C1.26 represents these exchanges during several oscillations of perfect SHM.

0
0

En
er

gy

potential kinetic total

Time/s  

	■ Figure C1.26 Energy 
changes during oscillation 
of perfect SHM
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C.1   Simple harmonic motion (SHM) 329

In more realistic situations, the energies of the system will decrease over time. This is shown in 
Figure C1.27. Energy dissipation from an oscillating system is called damping.

Figure C1.28 shows the variations in energy with displacement during each oscillation of SHM.

Time0
0

En
er

gy

total energy

kinetic energy or
potential energy

	■ Figure C1.27 Energy dissipation in a practical oscillator

Energy

kinetic
energy

total energy

Displacement, x

potential
energy

0–x0 x0

	■ Figure C1.28 Variation of energies of a simple 
harmonic oscillator with displacement

A mass oscillating in a mass–spring system 
has a maximum kinetic energy of 0.047 J. 
a If its maximum speed was 85 cm s−1, 

determine its mass. 
b State the maximum value of its potential 

energy. 
c Determine the spring constant if the 

amplitude of the oscillation was 1.9 cm.

Answer

a Ek = 
1
2mv2

 0.047 = 
1
2 × m × 0.852

 m = 0.13 kg
b 0.047 J
c Epmax

 = 
1
2kx0

2

 0.047 = 
1
2  × k × (1.9 × 10–2)2

 k = 2.6 × 102 N m−1

WORKED EXAMPLE C1.5

19 A simple pendulum, of mass 100 g, is released from rest 
at its maximum displacement, which is 5.0 cm higher 
than its central position. It then swings with SHM and a 
frequency of 1.25 Hz. 
a Calculate its maximum potential energy. 
b Sketch a graph with fully labelled axes to show the 

variations in potential energy of the pendulum in the 
first 1.6 s after it was released. 

c Determine the maximum speed of the pendulum.

20 The total energy seen in Figure C1.27 shows a nearly 
90% decrease in six oscillations. 
a Describe where this energy has been transferred to. 
b If the oscillating mass was passing through its 

equilibrium position at time t = 0, state what kind of 
energy is represented by the red line. 

c It is suggested that the total energy decreases to the 
same fraction each oscillation. Analyse data from the 
graph to check if this is true.

 ◆ Damping Occurs when 
resistive forces act on 
an oscillating system, 
dissipating energy and 
reducing amplitude. 
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21 a Use the equation:

 Ep = 
1 
2
kx2 where k = 12 N m−1

 to calculate values of elastic potential energy stored in 
a mass–spring system for SHM displacements, x, of 0, 
±0.05 m, ±0.10 m, ±0.15 m, ±0.20 m. Its amplitude 
was 0.20 m.

b Sketch a graph to display these results. 
c On the same axes, add a graph to represent the 

variations in kinetic energy of the mass. 
d If the mass was 50 g, determine its maximum speed.

 ATL C1B: Social skills 

Resolving conflicts during collaborative work
A group of four students was asked by their teacher to investigate four different oscillators and report 
back to the rest of their group one week later. One of the four students was chosen to be the team-
leader. Three of the students worked well, but the fourth showed no interest and did little. What should 
the team-leader do about this situation?

TH
E IB LEARNER PRO

FILE

Calculating displacements and 
velocities during SHM

SYLLABUS CONTENT

 A particle undergoing simple harmonic motion can be described using phase angle.
 Problems can be solved using the equations for simple harmonic motion as given by:
 x = x0 sin(ωt + ϕ)
 v = ωx0 cos(ωt + ϕ)

Figure C1.29 shows the variations of a perfect sine wave and compares it to a cosine wave. The 
two waves have identical shapes, but there is a phase difference of π/2 between them.

−1

1

0

cos p sin p

angle, θ
π/2 π 2π 5π/23 π/2 3π 7π/2 4π

 

The shape of the graph of SHM shown in Figure C1.20 is identical to the sine wave shown in 
Figure C1.29 and it could be represented by the equation of the form x = x0 sin θ.

We know from Topic A.4:

angular frequency, ω = 
Δθ 
Δt

 (or 
θ 
t )

so that: θ (radians) = ωt. And then we then can rewrite: x = x0 sin θ as x = x0 sin ωt.

This equation assumes that the initial value of x = 0 when t = 0. Under those circumstances, it 
enables us to calculate the displacement of a SHM at any time we choose (if the amplitude and 
frequency are known).

	■ Figure C1.29 Comparing 
sine and cosine waves
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In order to write an equation which allows for all other possibilities, we need to return to the concept 
of phase difference. We have already discussed the phase difference between two oscillations, 
but now we will refer to the phase angle of a single oscillator (sometimes just called phase). The 
oscillations are compared to a theoretical sine wave, which has zero displacement at time t = 0.

The phase angle, ϕ, of an oscillation is the fraction of an oscillation (expressed in terms of π) 
that occurs between when it has zero displacement and a sine wave which has zero 
displacement at time t = 0.

Figure C1.30 shows an example.

We can now write a full equation to describe the variation of 
displacement with time for any SHM:

displacement, x = x0 sin (ωt + ϕ)

For example, if the lines in Figure C1.30 show the variations 
in displacement of two oscillators with the same frequency 
and amplitude, the dotted blue line can be represented by:

x = x0 sin ωt

while the red line has the equation:

x = x0 sin (ωt + 
3π
2 )

We have seen (Figure C1.22) that the variations of displacement, x, and velocity, v, for the same 
SHM oscillator are π/2 out of phase with each other. So that, the equation representing the velocity 
of a SHM involves a cosine:

velocity, v = ωx0 cos (ωt + ϕ)

Common mistake
The presence of ω at the start of the term on the right-hand side need not be explained here, but it is a 
common mistake to leave it out of calculations.

LINKING QUESTION
l How can circular motion be used to visualize simple harmonic motion?

This question links to understandings in Topic A.2.

The maximum velocity, v0, will occur when the cosine in the equation has a value of one:

maximum velocity, v0 = ωx0

To help to understand these equations, consider first the simplest possible numerical example, with 
T = f = 1 and x0 = 1, for an oscillation beginning at x = 0 when t = 0. The phase angle is 0, so that 
the equation for displacement reduces to x = sin (2πt).

Using this equation at, for example, t = 0.20 s, leads to x = +0.95 m, and at t = 0.60 s, x = −0.59 m

The negative sign shows that the displacement at t = 0.60 s was in the opposite direction to the 
initial displacement (just after t = 0).

 ◆ Phase angle The 
difference in angular 
displacement of an 
oscillation compared to 
an agreed reference point. 
Expressed in terms of π 
radians.
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φ, = π/2

	■ Figure C1.30 Phase angle of an oscillator
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Using v = 2π × cos (2πt) with the same data, we get: at t = 0.20 s, v = +1.9 m s−1, and at t = 0.60 s, 
v = −5.1 m s−1.

The maximum velocity, v0 = ωx0 = 2π = 6.3 m s−1.

The negative sign shows that the velocity at t = 0.60 s was in the opposite direction to the velocity 
when t = 0.

This data is shown in Figure C1.31.

A mass oscillates with SHM of frequency 2.7 Hz and 
amplitude 1.7 cm. If its phase angle is π/2, calculate:
a its displacement after 2.0 s
b its velocity after 3.0 s
c its maximum velocity.

Answer
Remembering that ω = 2πf = 2 × π × 2.7 = 5.4π rad s−1:

a x = x0 sin(ωt + ϕ) = (1.7 × 10−2) × sin 

 ((5.4π × 2.0) + 
π
2) = −1.4 × 10−2 m

 The negative sign shows that the displacement was 
in the opposite direction to the displacement just 
after t = 0.

b v = ωx0 cos(ωt + ϕ) = (5.4π × 1.7 × 10−2) × cos 

 ((5.4π × 3.0) + 
π
2) = −0.17 m s−1

 The negative sign shows that the velocity at t = 3.0 s 
was in the opposite direction to the velocity when 
t = 0.

c v0 = ωx0 = 5.4π × (1.7 × 10−2) = 0.29 m s−1

WORKED EXAMPLE C1.6

22 A mass is oscillating between two springs with a 
frequency of 1.5 Hz and amplitude of 3.7 cm. It has a 
speed of 34 cm s−1 as it passes through its equilibrium 
position and a stopwatch is started.

 Calculate its displacement and velocity 1.8 s later.

23 An object of mass 45 g undergoes SHM with a frequency 
of 12 Hz and an amplitude of 3.1 mm. 
a Determine its maximum speed and kinetic energy. 
b What is the object’s displacement 120 ms after it is 

released from its maximum displacement?

24 A mass is oscillating with SHM with an amplitude of 
3.8 cm. Its displacement is 2.8 cm at 0.022 s after it is 
released from its maximum displacement.

 Calculate a possible value for its frequency.

25 A simple harmonic oscillator has a time period of 0.84 s 
and its speed is 0.53 m s−1 as it passes through its mean 
(equilibrium) position. 
a Calculate its speed 2.0 s later. 
b If the amplitude of the oscillation is 8.9 cm, what was 

the displacement after 2.0 s?

26 The water level in a harbour rises and falls with the tides, 
with a time of 12 h 32 min for a complete cycle. The 
high tide level is 8.20 m above the low tide level, which 
occurred at 4.10 am.

 If the tides rise and fall with SHM, determine the level of 
the water at 6.00 am.

27 Discuss what the area under a velocity–time graph of an 
oscillation represents.
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	■ Figure C1.31 Numerical data for displacement and velocity  
of SHM shown on a graph
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	■ Calculating energy changes during SHM

SYLLABUS CONTENT

 Problems can be solved using the equations for simple harmonic motion as given by:
 v = ±ω   x0

2 – x2

 ET = 
1 
2  mω2 x0

2

 Ep = 
1 
2  mω2x2

We have already discussed the energy exchanges that occur during SHM qualitatively (see Figures 
C1.26, C.127 and C.128). Now we will interpret those changes in more mathematical detail.

We saw in Topic A.3 that elastic potential energy can be determined from:

Ep = 
1
2
 kx2

where k is the spring constant.

We also know from earlier in this sub-topic that for a mass–spring oscillator:

ω2 = 
k
m

 

which leads to:

potential energy, Ep = 
1
2 
mω2x2

When the mass is at its maximum displacement, x0, its velocity has reduced to zero. It has zero 
kinetic energy and it has its maximum potential energy - which is then equal to the total energy, 
ET, of the SHM:

total energy, ET = 
1
2 
mω2x0

2

Since at any point, total energy = potential energy + kinetic energy.

kinetic energy, Ek = 
1
2 

mω2x0
2 – 

1
2 

mω2 x2 = 
1
2 

mω2 (x0
2 – x2)

The instantaneous velocity, v, at any point in the oscillation can be found by equating:

Ek = 
1
2 

mv2

with the previous equation. Which leads to:

v = ± ω   (x0
2 – x2)
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An oscillator of mass 750 g oscillates 
with SHM with an amplitude of 
3.47 cm and a period of 1.44 s. 
a Calculate its total energy. 
b When it has a displacement of 

2.15 cm determine:
i its potential energy
ii its kinetic energy. 

c When its kinetic energy 
is 2.00 × 10−3 J, what is its 
displacement? 

d Calculate the velocity of the mass 
when its displacement is 2.00 cm. 

e What is the maximum velocity of 
the mass?

Answer

a ET = 
1
2mω2x0

2 

  = 0.5 × 0.750 × ( 2π
1.44)2

 × 0.03472 = 8.60 × 10–3 J

b i Ep = 
1
2mω2x2 

  = 0.5 × 0.750 × ( 2π
1.44)2

 × 0.02152 = 3.30 × 10–3 J

ii Ek = ET – Ep = (8.60 × 10–3) – (3.30 × 10–3) = 5.30 × 10–3 J

c Ek = 
1
2mω2(x0

2 – x2)

 2.00 × 10–3 = 0.5 × 0.750 × ( 2π
1.44)2

 × (x0
2 – x2)

 (x0
2 – x2) = 2.80 × 10–4

 x2 = 0.03472 – (2.80 × 10–4)

 x = 9.24 × 10–4 m

d v = ±ω   (x0
2 – x2) = ( 2π

1.44) ×   (3.472 – 2.002) = ±12.4 m s–1 (in either direction)

e vmax occurs when displacement is zero.

 vmax  = ±ω   (x0
2 – 02) = ±ωx0 = ±( 2π

1.44) × 3.47 = ±15.1 m s–1 (in either direction)

WORKED EXAMPLE C1.7

28 A mass of 480 g is suspended on a spring of stiffness 
132 N m−1. 
a If it undergoes SHM, calculate its time period. 
b Calculate its angular frequency. 
c If the oscillations have an amplitude of 3.2 cm, 

determine:
i its maximum kinetic energy
ii its maximum speed. 

d Calculate how much potential energy is stored in the 
system when the displacement is 3.2 cm.

29 An SHM oscillator has a mass of 0.42 kg and a total 
energy of 1.7 J. If its frequency is 5.7 Hz, determine the 
amplitude of its motion.

30 A student stretched a vertical spring by placing a mass of 
100 g on its end. A second 100 g mass was added and the 
length of the spring increased by a further 4.7 cm. 

a Assuming that it obeyed Hooke's law, determine the 
spring constant. 

b The combined mass of 200 g was then displaced by 
5.0 cm so that it oscillated with SHM. What was 
its period? 

c Calculate how much energy was stored in 
these oscillations. 

d Show that the value of the ratio Ek/Ep when the 
displacement was 2.0 cm was about 5/1. 

e Determine by what factor the  total energy would 
increase if the amplitude was increased to 8 cm.

31 A mass was oscillating with SHM at a frequency 
of 7.6 Hz. 
a If its maximum speed was 1.4 m s−1, determine the 

amplitude of its motion. 
b If the mass was 54 g, determine the kinetic energy of 

it when its displacement was 1.8 cm.
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C.2 Wave model

• What are the similarities and differences between different types of waves?
• How can the wave model describe the transmission of energy as a result of local disturbances in 

a medium?
• What effect does a change in the frequency of oscillation or medium through which the wave is 

travelling have on the wavelength of a travelling wave?

Guiding questions

What is a wave?

SYLLABUS CONTENT

 The differences between mechanical waves and electromagnetic waves.

When we think of waves the first example that comes to mind is 
probably that of waves on the surface of water, like those seen in 
Figure C2.1.

When the equilibrium of the surface is disturbed (for example 
by a falling drop, or touching it with a finger), it results in 
oscillations of the water surface at that point. Because of the 
forces between water molecules, the oscillations are transferred 
to neighbouring molecules a short time later, and then they spread 
outwards as a two-dimensional wave on the water surface.

A simpler, one-dimensional, example is shown in Figure C2.2: 
in this example the waves are produced by continuously shaking 
one end of the rope. Point A is the oscillating source of the wave 
energy, which travels to the other end, point B. All points on the 
rope, point P for example, oscillate up and down (as shown)..

movement of
energy

oscillation
of rope

A B

P

	■ Figure C2.2 Creating a wave by shaking the end of a rope

These two examples are both travelling waves. Another kind of wave (a standing wave) is 
discussed in Topic C.4.

Scientists describe the motion of a wave away from its source as propagation of the wave. 
The matter through which the waves pass is called the medium of the wave.

 ◆ Wave (travelling) 
A wave that transfers 
energy away from a 
source. Sometimes called a 
progressive wave.

 ◆ Propagation (of 
waves) Transfer of energy 
by waves.

 ◆ Medium (of a wave) 
Substance through which a 
wave is passing.

	■ Figure C2.1 Circular waves spreading out on a pond
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All waves involve oscillations and they can be described as being either ‘mechanical’ 
or ‘electromagnetic’:

Mechanical waves involve the oscillations of masses.

Electromagnetic waves, such as light, involve the oscillations of electric and magnetic fields.

The first part of this topic will deal with mechanical waves. Electromagnetic waves are 
discussed later.

A mechanical travelling wave can be described as an oscillating disturbance that travels away 
from its source through the surrounding medium (solid, liquid or gas) transferring energy 
from one place to another. Most importantly, waves transfer energy without transferring the 
matter itself. 

 ◆ Wave (mechanical) 
A wave which involves 
oscillating masses 
(including sound).

 ◆ Wave (electromagnetic) 
A transverse wave 
composed of perpendicular 
electric and magnetic 
oscillating fields travelling 
at a speed of 3.0 × 108 m s −1 
in free space.

For example, ocean waves may ‘break’ and ‘crash’ on to a 
shore or rocks, transferring considerable amounts of energy 
(that they got from the wind), but there is no net, continuous 
movement of water from the ocean to the land. A wooden log 
floating on a lake will simply oscillate up and down as waves 
pass (unless there is a wind).

Examples of mechanical waves
l waves on strings, ropes and springs
l waves on water
l sound (and similar waves in liquids and solids)
l earthquake waves.

	■ Figure C2.3 Ocean waves transferring a large amount of energy at 
Brighton, England – there is no continuous net movement of the water itself

	■ Models of mechanical waves

SYLLABUS CONTENT

 Transverse and longitudinal travelling waves.

In order to understand more about the propagation of mechanical waves it is convenient to 
visualize the continuous medium in which they are travelling as being composed of separate 
(discrete) particles of mass, m, separated by springs representing the restoring forces that arise 
when the medium is disturbed from is equilibrium position. See Figure C2.4. The wave can be 
produced by shaking the end A, the wave then travels along the system to B.

wave energy
m

A B

m m m m m m

Experiments can confirm that the speed of the wave along the system increases if the masses are 
smaller, or if the springs are stiffer.

There are two different ways in which A can be shaken: left–right–left–right, or up–down–up–down 
(as shown). This identifies the two basic kinds of mechanical wave: transverse and longitudinal.

	■ Figure C2.4 Wave model 
of masses and springs
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Transverse and longitudinal mechanical waves

In a transverse wave, each part of the medium oscillates perpendicularly to the direction in 
which the wave is transferring energy.

The waves shown in Figure C2.1, C2.2 and C2.3 are transverse waves. The black line in 
Figure C2.5 represents the positions of the particles in a continuous medium which is transferring 
wave energy to the right. The arrows show which way the particles are moving at that moment. 
The red line represents their positions a short time later. Each particle is oscillating with the same 
amplitude and frequency, but each particle is slightly out of phase with its neighbour.

movement of energy

	■ Figure C2.5 Movement of particles as a transverse wave moves to the right

The tops of transverse waves are often called crests, while the bottoms of the waves are 
called troughs.

Mechanical waves on strings, ropes and water surfaces are all transverse in nature.

In a longitudinal wave, each part of the medium oscillates parallel to the direction in which 
the wave is transferring energy.

Stretched springs are often used to demonstrate waves. They are more massive than strings and 
this reduces the wave speed, so that the waves can be observed more easily. Stretched ‘slinky’ 
springs are particularly useful for demonstrating longitudinal waves. See Figure C2.6, which 
shows the characteristic compressions and rarefactions of longitudinal waves on a ‘slinky’. 
Longitudinal waves are sometimes called compression (or pressure) waves.

compressions

rarefactions

movement of
energy

oscillations
of coilsmotion of hand

P

Sound travelling through air is a good example of a longitudinal wave (more details below). 
Longitudinal compression waves can travel through solids and liquids. Earthquakes are a 
combination of longitudinal and transverse waves. Transverse mechanical waves cannot travel 
through gases (or liquids) because of the random nature of molecular movements. 

	■ Terms used to describe all types of waves

SYLLABUS CONTENT

 Wavelength, λ, frequency, f, time period, T, and wave speed, v, applied to wave motion as given by:

 v = fλ = 
λ 
T 

 ◆ Transverse wave 
A wave in which 
the oscillations are 
perpendicular to the 
direction of transfer of 
energy. 

 ◆ Crest Highest part of 
a transverse mechanical 
wave.

 ◆ Trough Lowest point of 
a transverse mechanical 
wave. 

 ◆ Longitudinal wave 
Waves in which the 
oscillations are parallel to 
the direction of transfer of 
energy. 

 ◆ Compressions (in a 
longitudinal wave) Places 
where there are increases 
in the density and pressure 
of a medium as a wave 
passes through it.

 ◆ Rarefactions (in a 
longitudinal wave) Places 
where there are reductions 
in the density and pressure 
of a gas as a wave passes 
through it.

	■ Figure C2.6 Oscillations 
of a spring transferring 
a longitudinal wave
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The concept of wavelength, λ, is central to the study of waves. See Figure C2.7.

wavelength

trough trough

crest crest

wavelength

One wavelength, λ, is the shortest distant between two crests, or two troughs. Or the shortest 
distance between two compressions or rarefactions in a longitudinal wave. More generally, it is 
defined as the shortest distance between two points moving in phase (SI unit: m).

Displacement, amplitude, time period and frequency have all been discussed before (Topics A.2 
and C.1) and are defined in a similar way in the study of waves:

The amplitude of a wave is the maximum displacement of the medium from its equilibrium position.

We saw in Topic C.1 that the energy of an oscillation was proportional to its amplitude squared. 
So, speaking generally, waves with greater amplitude transfer more energy. (We will see in 
Topic C.3 that the intensity of a wave is proportional to its amplitude squared.)

The time period of a wave, T, is the time for one oscillation of a particle within the medium, or 
the time it takes for one complete wave to pass a particular point (unit: second).

The frequency of a wave, f, is the number of oscillations per second of a particle within the 
medium, or the number of waves to pass a particular point in one second (SI unit: hertz). The 
following equation is repeated from Topic C.1:

f = 
1 
T 

A wave travels forward one wavelength, λ, every time period, T.

Therefore:

wave speed, v = 
λ
T

Since T = 1/f, we can write:

wave speed, v = fλ (or v = 
λ
T)

Water waves are passing into a harbour. 
Five crests are separated by a distance of 
9.6 m. An observer notes that 12 waves pass 
during a time of one minute. Determine:
a the wavelength
b the period
c the frequency 
d the speed of the waves.

Answer

a λ = 
9.6
4  = 2.4 m

b T = 
60 
12  = 5.0 s

c f = 
1

5.0 = 0.20 Hz

d v = fλ = 0.20 × 2.4 = 0.48 m s–1

WORKED EXAMPLE C2.1

	■ Figure C2.7 One 
wavelength of a transverse 
wave

 ◆ Wavelength, λ The 
distance between two 
adjacent crests of a wave. 
More precisely: the shortest 
distance between two 
points moving in phase. 

 ◆ Time period, T 
The time taken for one 
complete wave to pass 
a point.

 ◆ Wave speed, v The 
speed at which energy is 
transferred by a wave. 

DB
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1 Consider Figure C2.1. Explain why the amplitude of 
the waves decreases as they spread away from the 
central point.

2 Consider Figure C2.2. 
a State the type of wave which is travelling along 

the rope. 
b If the wave speed is 1.7 m s−1, calculate the wavelength 

produced by shaking the end seven times every 
10 seconds. 

c If the rope was replaced by a thinner one, would you 
predict that the wave speed would increase, or decrease 
(under the same conditions)? Explain your answer.

3 Describe how the point P on the slinky spring shown in 
Figure C2.6 moves as the wave passes through it.

4 If you watch waves coming into a beach, you will notice 
that they get closer to each other. 
a State and explain how their wavelength is changing.
b Suggest what has caused the waves to change speed.

5 After an earthquake, the first wave to reach a detector 
925 km away arrived 149 s later. This type of wave is 
called a P wave (pressure wave). 
a Suggest whether this is a longitudinal or 

transverse wave. 
b Calculate the average speed of the wave (m s–1). 
c Suggest why your calculation produces an ‘average’ 

speed.  
d If the wave had a period of 11.21 s, what was 

its wavelength?

Tool 2: Technology

Generate data from models and simulations

Some time after a Primary (longitudinal) wave is received from an earthquake, a different 
kind of wave will be detected. This is called a Secondary (transverse) wave. If the delay 
between the detection of the two waves is measured and the speeds of both waves are 
known, the distance to the original earthquake can be determined.

Set up a spreadsheet that will calculate the distance to the source of an earthquake 
(dependant variable) for various time delays (independent variable). Assume speeds of 
waves are 5500 m s−1 and 3200 m s−1.

LINKING QUESTION
l How can the 

length of a wave be 
determined using 
concepts from 
kinematics?

This question links 
to understandings in 
Topic A.1.

	■ Representing waves graphically

Waves can be represented by displacement–position or displacement–time graphs. They both 
have similar sinusoidal shapes.

Figure C2.8 shows how the displacements of particles (from their mean positions) vary with 
distance from a fixed point (position). x0 is the amplitude of their oscillations. It may be considered 
as a ‘snapshot’ of the wave at one particular moment.

0

Displacement of particles
from mean positions

wavelength, λ

Distance

x0

–x0

Figure C2.9 shows how the displacement of a certain particle (from its mean position) varies with 
time at one precise location. It could be considered as a video of that part of the medium.

	■ Figure C2.8 
Displacement–distance 
graph for a wave
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0

Displacement of a particle
from mean position

time period, T

Time

x0

–x0

   	■ Figure C2.9 Displacement–time graph for a wave

Pulses

A short duration oscillating disturbance passing through a medium may be described as a wave 
pulse. See Figure C2.10 for a simplified representation.

6 Sketch a displacement–time graph for a transverse wave of frequency 4.0 Hz and an amplitude 
of 2.0 cm. Assume that the wave has its maximum positive displacement at time t = 0. 
Continue the graph for a duration of 0.5 s.

7 Figure C2.11 represents a longitudinal wave.

Distance
from source/m

0.30

Displacement
away from source

A C

B

Displacement
towards source

0

	■ Figure C2.11 A longitudinal wave

a State its wavelength. 
b Describe the instantaneous movement of a particle which is 

i at a distance A from the source
ii at a distance C from the source. 

c Is there a compression, a rarefaction, or neither, at position B?

8 A wave pulse is made on a water surface by touching it once with a fingertip.
 Sketch a possible displacement–position graph of the resulting disturbance spreading out on 

the surface.

	■ Sound waves

SYLLABUS CONTENT

 The nature of sound waves.

A vibrating surface will disturb its surroundings and propagate longitudinal waves through the 
air. The human ear is capable of detecting this type of wave if the frequency falls within a certain 
range (approximately 20 Hz to 20 kHz). What we hear is called sound. Higher frequencies of 
the same type of wave, which we cannot hear, are called ultrasound. (Lower frequencies are 
called infrasound.)

Common 
mistake
Graphs like these can 
be used to represent 
both transverse and 
longitudinal waves. 
Because of their shape, 
it is a common mistake 
to think that they only 
represent transverse 
waves. The direction of 
the displacements shown 
on the vertical axes of 
these graphs are not 
specified, so they could 
be either 
l in the direction 

of wave travel 
(longitudinal waves), 
or

l perpendicular 
to wave travel 
(transverse waves).

	■ Figure C2.10 Wave pulse

 ◆ Pulse (wave) 
A travelling wave of short 
duration.

 ◆ Sound Longitudinal 
waves in air or other media 
that are audible to humans. 

 ◆ Ultrasound Frequencies 
of sound above the range 
that can be heard by humans 
(approximately 20 kHz). 
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Figure C2.12 shows how the surface of a loudspeaker can produce longitudinal waves in air. The 
random arrangement of molecules changes as the wave passes through the air. The compressions 
and rarefactions result in small periodic changes of air pressure.

R C R

R = rarefaction   C = compression

transfer of energy

C R

wavelength, λ

C R

oscillation of molecules

loudspeaker

	■ Figure C2.12 Arrangement of molecules in air as sound passes through

If the graphs shown in Figure C2.8 and C2.9 represented sound waves, the vertical axes could also 
be changed to represent variations of air pressure (above and below average air pressure).

Speed of sound

Sound is a mechanical wave involving oscillating particles and, as such, needs a medium to travel 
through. Sound cannot pass through a vacuum.

Generally, we would expect that sound will travel faster through a medium in which:

■ the particles are closer together
■ there are stronger forces between the particles.

This means that sound usually travels faster in solids than liquids, and slowest in gases, such as air.

The speed of sound in the air around us increases slightly with temperature because then the 
molecules move faster.

Inquiry 1: Exploring and designing

Designing

Figure C2.13 shows an electronic method for determining the speed of sound.

start

source
of

sound

stop
electronic
timer

0389

A

microphone 1 microphone 2

ms

     

	■ Figure C2.13 
Laboratory experiment 
to determine the 
speed of sound

Design an experiment and a valid methodology using this apparatus to determine a value for 
the speed of sound. Suggest improvements to the design shown in Figure C2.13 so that the 
speed of sound in air is measured as accurately as possible.
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Pitch and loudness of sound

The sounds that arrive at our ears at any one time usually include a range of 
waves with different frequencies and amplitudes. The oscillations are transferred 
to our eardrums and our brain interprets them as sounds of different pitch and 
loudness (volume).

Figure C2.14 shows pure sound waves of two different frequencies. We describe these 
sounds arriving at our ears as high pitched and low pitched.

Figure C2.15 shows two waves of the same frequency, but different amplitudes. The 
wave of larger amplitude transfers more energy and we describe the effects of this as 
a louder sound.
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	■ Figure C2.14 Sounds of different frequency / pitch 	■ Figure C2.15 Sounds of different amplitude / loudness

High amplitude loud sound

Time

Low amplitude quiet sound

Time

D
is

pl
ac

em
en

t
D

is
pl

ac
em

en
t

Tool 3: Mathematics

Logarithmic graphs and power laws

Sound intensity is the power that is carried 
perpendicularly by sound waves through unit area. It is 
easily measured by electronic meters, and apps for mobile 
devices are commonplace.

A normal human ear is capable of detecting sounds with a 
very wide range of intensities. This makes showing them 
all on a linear chart impossible. To get over this problem, 
we use a logarithmic scale. On a logarithmic scale (on a 
chart or a graph) each equal increment represents the fact 
that the quantity has been multiplied by the same factor 
(usually 10). As an example, we will consider the decibel 
scale. See Figure C2.16.

A student may wish to investigate the relationship 
between the intensity of sound (of a constant frequency) 
and the thickness of material placed between the source 
and the detector. The student may have no idea what this 
relationship will be.

Carry out calculations involving logarithmic 
and exponential functions

Sometimes there is no ‘simple’ relationship between two 
variables, or we may have no idea what the relationship 
may be. So, in general, we can write that the variables 
x and y are connected by a relationship of the form: 
y = kxp, where k and p are unknown constants. That is, y is 
proportional to x to the power p.

 ◆ Pitch The sensation produced 
in the human brain by sound of a 
certain frequency. 

 ◆ Loudness A subjective measure 
of our ears’ response to the level of 
sound received. 

 ◆ Logarithmic scale (on a graph) 
Instead of equal divisions (for example, 
1, 2, 3, … ), with a logarithmic scale each 
division increases by a constant multiple 
(for example, 1, 10, 100, 1000 …).

 ◆ Decibel A measure of sound level. 
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Taking logarithms of this equation we get:

log y = (p × log x) + log k

Compare this to the equation for a straight line, y = mx + c.

If a graph is drawn of log y against log x, it will have a 
gradient p and an intercept of log k.

Using this information, a mathematical equation can be 
written to describe the relationship. Note that logarithms 
to the base 10 have been used in the above equation, but 
natural logarithms (ln) could be used instead.

The decibel scale is widely used to compare the intensity of 
a sound to a reference level. Each additional 10 on the scale 
represents an increase by a factor of 10 in sound intensity. 
So, for example, a sound of 50 dB intensity is 10× more 
intense than a sound of 40 dB. A sound of 60 dB intensity is 
100× more intense than a sound of 40 dB, and so on.

Of course, sound intensities decrease with distances from 
their sources, which are not stated in Figure C2.16, so the 
numbers should be seen as just a rough guide.

Displaying all parts of the electromagnetic spectrum 
(later in this topic) is done with a logarithmic scale for the 
same reason.

Decibels Example

0 Silence

10 Breathing, ticking watch

20 Rustling leaves, mosquito

30 Whisper 

40 Light rain, computer hum

50 Quiet office, refrigerator

60 Normal conversation, air conditioner

70 Shower, toilet flush, dishwasher

80 City traffic, vacuum cleaner

90 Music in headphones, lawnmower

100 Motorcycle, hand drill

110 Rock concert

120 Thunder

130 Stadium crowd noise

140 Aircraft taking off

150 Fighter jet aircraft taking off

160 Gunshot

170 Fireworks 

180 Rocket launch

	■ Figure C2.16 An approximate guide to sound levels in decibels

 ATL C2A: Research skills 

Evaluating information sources for accuracy, bias, credibility and relevance
Find three websites that enable you to check your hearing and follow their instructions. Compare the 
results and write a short review of your findings.

Were there any differences in the results for each website?

What might account for those differences?

Evaluate the sites in terms of their reliability.

TH
E IB LEARNER PRO

FILE

a Calculate the wavelength of a sound of frequency 196 Hz if the speed of sound in air 
is 338 m s−1.

b If a longitudinal compression wave of the same frequency has a wavelength of 26.1 m 
in steel, determine the speed of the wave.

c Explain why the wave speed is greater in steel than in air.

Answer

a λ = 
v 
f  = 

338 
196  = 1.72 m

b v = fλ = 196 × 26.1 = 5.12 × 103 m s−1

c Because the particles are closer together and there are stronger forces between them.

WORKED EXAMPLE C2.2
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TOK

Knowledge and the knower
l What criteria can we use to distinguish between knowledge, belief and opinion?
l How do we distinguish claims that are contestable from claims that are not?
l How do our interactions with the material world shape our knowledge?

‘If a tree falls in a forest and no one is around to hear it, does it make 
a sound?

     
	■ Figure C2.17 

A fallen tree in a forest

This well-known philosophical question can be answered in different ways, depending on the perspective 
we take on what is meant by ‘sound.’

If we think of sound only as an effect in the human ear and brain, then the answer is clearly ‘no’, 
although there will still be longitudinal waves in the air. If we define sound as a hearable (audible) 
oscillation (regardless of whether anyone is there to hear it), then the answer is ‘yes’.

Consider how the knowledge questions above relate to this problem. You may also find the following 
guiding questions useful:
l Should we believe in things that we have not personally seen / observed / experienced?
l Can we assume that an unobserved event behaves in exactly the same way as an observed event?
l Does observation affect / change the event being observed?
l If the fall of a tree, and any consequential effects, are never observed, is this the same as saying that 

the tree never fell at all?

 ◆ Audible range Range of 
sound frequencies that can 
be heard by humans.

9 a Sketch a graph to show the air pressure variations 
(from normal) for a duration of 0.2 s at a certain point 
through which a sound wave of frequency 100 Hz is 
passing. Mark one time where there is a compression 
and one time where there is a rarefaction. 

b Determine a value for the period of the wave and 
show it on the graph.

10 Outline an experiment using hand-held stopwatches to 
determine a value for the speed of sound in air.

11 Many people know that you can estimate the distance 
to a storm centre by counting the number of seconds 

between a flash of lightning and hearing the thunder: 
about one kilometre for every three seconds. Explain the 
physics behind this idea.

12 The ultrasound waves used in a medical scanner had a 
frequency of 9.6 MHz. 
a  If the wavelength was 0.16 mm, determine the speed 

of ultrasound waves in the body. 
b  Suggest three properties of ultrasound that make 

it useful for obtaining scans from inside the 
human body.
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13 Figure C2.18 shows the use of ultrasound waves (sonar) 
to detect the depth of the ocean below a boat. Waves 
are produced in a transducer and a pulse is directed 
downwards. The transducer has a diameter of 3 cm. Some 
wave energy is reflected back from the seabed and then 
received and detected at the same transducer a short time 
later. The time delay is used to calculate the depth of 
the water. 
a If the speed of sound waves in sea water is 1520 m s−1, 

calculate the depth of water if the delay between the 
pulses is 29 ms. 

b To limit the spreading of the waves emitted by the 
transducer it is required that wavelength is much 
smaller than the size of the transducer. Show that this 
is true if the waves have a frequency of 214 kHz. 

c Suggest why the system uses wave pulses rather than 
continuous waves.

Ocean

Seabed

	■ Figure C2.18 Boat using sonar

14 The speed of sound in helium gas is much greater than in 
air, which is mostly nitrogen (for the same temperature 
and pressure). 

 Use knowledge from Topic B.2 to discuss reasons for 
this difference.

 ◆ Sonar The use of 
reflected ultrasound waves 
to locate objects. 

 ◆ Transducer Device 
that converts one form of 
energy to another. The 
word is most commonly 
used with devices that 
convert to or from 
changing electrical signals. 

 ◆ Vacuum A space 
without any matter. Also 
called free space. 

 ◆ Free space Place 
where there is no air (or 
other matter). Also called 
a vacuum.

Light waves
In Topic B.1 we described the range of thermal radiations (including light) emitted from various 
surfaces and ‘black bodies’ at different temperatures. The true nature of light was not discussed in 
B.1, but it was a major issue among scientists for hundreds of years.

In the seventeenth century, Isaac Newton believed that a beam of light consisted of particles 
(‘corpuscles’), others thought that light could travel as waves. The wave nature of light was not 
demonstrated until 1801, when the English physicist Thomas Young showed that light could 
‘interfere’. This famous experiment and the nature of interference are explained and discussed in 
Topic C.3.

Light is a transverse electromagnetic wave but, unlike mechanical waves, it does not require a 
medium to travel through. Light can travel across a vacuum, sometimes called ‘free space’. Light 
travelling from the Sun, through space, to arrive at the Earth is an obvious example.

Visualizing the oscillations of light waves is more difficult than the models of mechanical waves 
that we discussed earlier in this topic. Figure C2.19 shows that light oscillations are high frequency 
periodic variations in the strength of electric and magnetic fields (which are perpendicular to each 
other). Electric and magnetic fields are discussed in Theme D.

direction of
wave travelmagnetic field oscillation

electric field oscillation

	■ Figure C2.19 Light 
and other electromagnetic 
waves are combined electric 
and magnetic fields
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The speed of light in a vacuum is 3.00 × 108 m s−1 (more 
accurately: 299 792 458 m s−1). It is given the unique symbol ‘c’.

In transparent materials light travels at slightly slower 
speeds. For example, light travels at almost the same speed in 
air (299 970 500 m s−1) as in free space, but at 2.26 × 108 m s−1 

in water.

The continuous spectrum of visible white light, from red to 
violet, is a familiar sight (Figure C2.20). The different colours 
that we see are created by waves of different frequencies.

Red light has the lowest frequency, violet light has the highest 
frequency. ‘White light’ is not a precise scientific term, but 
it can be assumed to be the same as the light received in the 
black-body radiation from the Sun on a cloudless day.	■ Figure C2.20 Spectrum of visible light

 ◆ Transparent Describes 
a medium that transmits 
light without scattering or 
absorption. 

 ◆ Continuous spectrum 
The components of 
radiation displayed in 
order of their wavelengths, 
frequencies or energies 
(plural: spectra).

 ◆ White light Light 
which contains all the 
colours of the visible 
spectrum with approximate 
equal intensity.

The fundamental property of a light wave is its frequency. If a light wave enters a different 
medium and then travels more slowly, its frequency cannot change, but its wavelength will 
decrease (λ = v/f ). However, when we quote data for light waves, it is common to use wavelengths, 
rather than frequencies. This is because light wavelengths are easier to visualize and measure.

An orange light has a frequency of 4.96 × 1014 Hz. Determine its wavelength as it passes 
through 
a air
b a type of glass in which the speed of light has reduced to 1.94 × 108 m s−1.

Answer

a λ = 
c
f = 

3.00 × 108

4.96 × 1014 = 6.05 × 10–7 m

b λ = 
v
f = 

1.94 × 108

4.96 × 1014 = 3.91 × 10–7 m

WORKED EXAMPLE C2.3

Different animals, birds and insects are able to detect different ranges of frequencies. For 
example, bees are not good at detecting the colour red, but they are able to detect higher 
frequencies (ultraviolet).

Red light has the longest wavelength in the visible spectrum, approximately 7 × 10–7 m. Violet has 
the shortest wavelength, approximately 4 × 10–7 m.

Use data from the previous paragraphs.

15 a Calculate a typical value for the frequency of red light 
in air. 

b What is the frequency of the same light in glass?

16 Estimate a value for the wavelength of yellow light:
a in air b in water.

17 The ‘light year’ is widely used as a unit of distance in 
astronomy.

 How far does light travel (km) in free space in one year?

18 Briefly outline why light waves are described as 
electromagnetic waves.
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TOK

Knowledge and the knower
l How do our interactions with the material world shape 

our knowledge?

Perception of colour

We may all agree that light waves have a certain 
frequency, and whether those waves can be detected 
in some way by a human eye. There is no ambiguity 
in that, and most people would agree on the 
‘colours of the rainbow’. However, how our brains 
process signals about the light waves detected by 
our eyes, and how we communicate our impressions of 
specific colours to other people can be problematic. 
‘That dress is green’ can never be an indisputable 

scientific fact. ‘Colour blindness’ (see Figure C2.21) may be an 
unusual medical condition, but it highlights the fact that human 
brains can interpret signals in different ways.

Added to that, different people, societies and cultures are known 
to describe colours in different ways. If two people see, or 

describe, a colour differently, can one be ‘right’ and the 
other ‘wrong’?

Finally, in terms of physics, it should be pointed out 
that if you say that a ‘dress is green’ you probably 
assume it is being seen under normal lighting 
conditions, with white light. The colour perceived 

will change if the lighting is changed. For example, 
if a red light was used, or it was seen through a 
yellow filter. Even looking at the dress at night under 
artificial lighting could change its appearance.   

	■ Figure C2.21 Test 
for colour blindness

Electromagnetic waves

SYLLABUS CONTENT

 The nature of electromagnetic waves.

The extent of a visible spectrum such as that seen in Figure C2.20 is limited by:
l the inability of the human eye to detect higher or lower frequencies, and/or 
l the ability of any particular source to produce a wider range of frequencies. Light is just a 

small part of a much wider continuous spectrum.

Just beyond the red end of the visible spectrum, there are waves which have longer wavelengths, 
called infrared. Infrared radiation was discussed in Topic B.1. Just beyond the violet end of the 
visible spectrum, there are waves of shorter wavelength, called ultraviolet.

The complete range (spectrum) of possible electromagnetic wavelengths extends from more than 
100 000 km to less than 10−16 m. They have different origins and no single source produces all of 
these waves.

All electromagnetic waves travel at the same speed in vacuum, c = 3.00 × 108 m s−1.

They are all composed of oscillating electric and magnetic fields (Figure C2.19).

Together they are known as the electromagnetic spectrum (Figure C2.22). They are also 
described as electromagnetic radiation.

10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 102100 104 106 108

γ rays X - rays UV

400

V  I  B  G  Y  O  R

wavelength/nm

wavelength/m

energy

700

IR radio wavesmicrowaves

	■ Figure C2.22 Electromagnetic spectrum

‘Energy’ refers to the energy carried by photons of the radiation, as explained later in the course.

 ◆ Ultraviolet Part of the 
electromagnetic spectrum 
which has frequencies 
just greater than can be 
detected by human eyes. 

 ◆ Electromagnetic 
spectrum Electromagnetic 
waves of all possible 
different frequencies, 
displayed in order. 

 ◆ Electromagnetic 
radiation Waves which 
consist of combined 
oscillating electric and 
magnetic fields. 

Common 
mistake
Remember that the 
spectrum is continuous 
and the boundaries 
chosen between 
different named sections 
are somewhat arbitrary.

DB
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LINKING QUESTION
l How can light be modelled as an electromagnetic wave?

This question links to understandings in Topic D.2.

Inquiry 1: Exploring and designing

Exploring

Select sufficient and relevant sources 
of information

After deciding on a general area of interest, for an 
investigation you will often need to select and research 
other sources of information for background knowledge 
and any physics needed which is beyond the IB course (if 
appropriate). Your teachers should be an excellent source 
of advice and information and, obviously, the internet has 
multiple sources (of various quality). Physics books, science 
magazines and books from libraries can all be sources of 
information and inspiration.

Example 1: If you wish to investigate the effect that water 
vapour in the air has on the rate of evaporation from a 
water surface, you will need to learn about humidity.

Example 2: If you wish to investigate the world-wide use 
of solar heating of water, you will need to learn about the 

hours of sunlight in different locations, the variation in 
altitude of the Sun, comparative costs and so on.

Your intended investigation could be both interesting 
and unusual, but it needs to be realistic in terms of the 
apparatus that is available in your school, and the time 
available. So, it may be wise to check with teachers about 
whether an intended investigation is sensible under the 
circumstances.

Any sources of information should be acknowledged 
in the investigation report, including those which were 
researched but not used (with a reason given).

Task: Apart from sources on Earth, waves from all parts of 
the electromagnetic spectrum arrive at Earth from space. 
Use the internet to gather information about the origins of 
these waves and to what extent they are able to pass through 
the atmosphere and reach the Earth’s surface.

The list in Table C2.1 shows some origins of electromagnetic waves and a selection of their uses.
	■ Table C2.1 The different sections of the electromagnetic spectrum

Name
Typical 
wavelength / m

Origins  
(all are received from Outer Space) Some common uses

radio waves 102 electronic circuits / aerials communications, radio, television

microwaves 10−2 electronic circuits / aerials communications, mobile phones, ovens, radar

infrared (IR) 10−5 everything emits IR but hotter objects 
emit much more than cooler objects

lasers, heating, cooking, medical treatments, remote controls

visible light 5 × 10−7 very hot objects, light bulbs, the Sun vision, lighting, lasers

ultraviolet (UV) 10−8 the Sun, UV lamps fluorescence

X-rays 10−11 X-ray tubes medical diagnosis and treatment, investigating the structure of matter

gamma rays 10−13 radioactive materials medical diagnosis and treatment, sterilization of medical equipment

LINKING QUESTION
l How are waves used in technology to improve society? (NOS)

This question links to understandings in Topics C.3, C.4, C.5, D.2, D.3 and D.4.

Top tip!
The fact that electromagnetic waves have some properties that could not be explained satisfactorily by 
their wave nature had very important consequences. A new ‘particle’ model for light, introduced at the 
start of the twentieth century, was the beginning of quantum physics. This is introduced in Topic E.2.

 ◆ Quantum physics Study 
of matter and energy at the 
subatomic scale. At this level 
quantities are quantized. 
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LINKING QUESTIONS
l How are electromagnetic waves able to travel through a vacuum?
l Can the wave model inform the understanding of quantum mechanics? (NOS)

These questions link to understandings in Topic E.2.

Nature of science: Experiments 

Pure research

The first artificial electromagnetic (radio) waves

Heinrich Hertz (Figure C2.23) 
was the first to produce and detect 
artificial electromagnetic waves 
(1887 in Karlsruhe in Germany). 
He used high voltage electrical 
sparks. The electrical currents in 
sparks involve the necessary high 
frequency oscillating electric and 
magnetic fields. Although the 
distance involved was very small, 
it was the start of modern wireless 
communication. It was left to 
others (such as Guglielmo Marconi) to develop the technology for 
transmission over longer and longer distances – and then to design 
techniques to modify the amplitude, frequency or phase of the 
radio waves to transfer information, such as speech.

Tragically, Hertz died at the age of 36 in 1894. This was long 
before the far-reaching consequences of his discovery had 
been exploited.

Hertz had been trying to provide evidence for the 
electromagnetism theories of James Clerk Maxwell, and he has 
been widely quoted as saying that his discovery was ‘of no use 
whatsoever’. He was not alone in that opinion at the time.

	■ Figure C2.24 Hertz’s apparatus for the first artificial production of 
electromagnetic waves

‘Pure research’ is about extending knowledge and confirming 
theories, it is not about solving practical problems. But there are 
many historical examples of pure research leading to unexpected 
benefits of major significance – such as radio communication.

Of course, a large number of examples of pure research have 
not produced any worthwhile gains for society. An often-asked 
question is ‘should governments spend large amounts of money on 
open-ended research which has no obvious benefits (at that time)?’

In terms of laboratory investigations that you might carry out as a 
student: the common expectation is that they should have an ‘aim’, 
which may be answering a specific question. But maybe that is 
too restrictive?

	■ Figure C2.23 Heinrich Hertz

19 Determine the frequency (in MHz) of a gamma ray 
which has a wavelength of 4.1 ×10−12 m.

20 A mobile phone network uses electromagnetic waves of 
frequency 1200 MHz. 
a Calculate their wavelength. 
b State which part of the electromagnetic spectrum 

contains these waves. 
c Use the internet to find out the frequency used in 

microwave ovens. 
d Suggest why our bodies are not warmed up by using 

mobile phones.

21 As you are reading this, which types of electromagnetic 
radiation are there in the room?

22 a State which types of electromagnetic radiation are 
considered to be dangerous. 

b What do they have in common?

23 Outline what properties of X-rays make them so useful 
in hospitals.

24 a Calculate how long it takes for a Bluetooth signal 
to travel from a mobile phone to a speaker which is 
4.7 m away. 

b How much time (to the nearest minute) does it take 
light to reach the Earth from the Sun? 

c i How much time does it take a radio signal to 
travel to Mars from Earth? 

ii Explain why your answer is uncertain. (Use the 
internet to obtain relevant data.)
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C.3 Wave phenomena

• How are observations of wave behaviours at a boundary between different media explained?
• How is the behaviour of waves passing through apertures represented?
• What happens when two waves meet at a point in space?

Guiding questions

What are the basic behaviours of all waves?
l Reflection
l Refraction
l Diffraction
l Interference

Each of these properties will be discussed in this topic. But first we need to consider how we can 
represent travelling waves in two dimensions on paper, or screens.

	■ Wavefronts and rays

SYLLABUS CONTENT

 Waves travelling in two and three dimensions can be described through the concepts of wavefronts 
and rays.

Waves in two dimensions

Figure C3.1 shows a ripple tank: a common arrangement used to 
observe the behaviour of waves. Small waves (ripples) can be made by 
touching the surface of shallow water at a point, or with a wooden bar. 
Usually, a motor is attached to the bar to make it vibrate and produce 
continuous parallel waves at various frequencies. The light above 
enables the moving waves to be seen on the screen below the tank. (A 
stroboscope is often used to make the waves appear stationary.)

The ‘waves’ seen on the screen show the positions of wave crests. 
These lines are called wavefronts. They are one wavelength apart. 
More precisely:

A wavefront is a line joining neighbouring points moving in phase 
with each other.

The blue lines seen in Figure C3.2 represent the pattern produced by 
regular disturbances of the water at point P. The waves are spreading 
with equal speed in all directions (in two dimensions), so that the 
pattern is circular. Wave speed depends on the depth of the water, 
which is usually constant if the tank is horizontal.

lamp

support

wooden bar

water

to power
supply

electric
motor

elastic
bands

viewing
screen

	■ Figure C3.1 A ripple tank is used to 
investigate wave behaviour

 ◆ Ripple tank A tank 
of shallow water used 
for investigating wave 
properties.

 ◆ Wavefront A line 
connecting adjacent 
points moving in phase 
(for example, crests). 
Wavefronts are one 
wavelength apart and 
perpendicular to the rays 
that represent them.
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The red lines with arrows in Figure C3.2 are called rays. These rays can be described as radial, 
meaning that they are spreading out in straight lines from a point. Radial rays represent circular 
(or spherical) wavefronts.

Rays are lines showing the direction in which wavefronts are moving and energy is transferred. 
Rays and wavefronts are always perpendicular to each other.

The wavefronts that we will be considering in this course are either circular (or spherical), see 
Figure C3.2, or the other common possibility: parallel wavefronts, as shown in Figure C3.3. 
Parallel wavefronts can be made on the water surface in a ripple tank by using a wooden bar.

circular
wavefronts
spreading in
all directions

radial rays showing the
directions in which the

waves are movingP λ

	■ Figure C3.2 Circular wavefronts and radial 
rays spreading from a point source

parallel
rays

parallel
wave fronts

λ

	■ Figure C3.3 Parallel wavefronts and 
parallel rays that are not spreading out

The movement of parallel wavefronts is represented by parallel rays.

Waves in three dimensions

Waves spreading from a point with constant speed in three dimensions can be represented by 
spherical wavefronts. If the source of waves is a very long way away (compared to the wavelength) 
the wavefronts will be (almost) straight and parallel. Such waves are described as plane waves. A 
common example: light waves from a distant point. The Sun is an obvious source of plane waves.

TOK

Knowledge and the knower, The natural sciences
l How do our interactions with the material world shape our knowledge?
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?

Different ways of describing the same thing

We can use either the concept of wavefronts, or the concept of rays, to describe the movement of the 
same waves, but they are not normally used at the same time.

The use of wavefronts to describe waves on water surfaces, which are easily visible, is easily understood, 
but the associated concept of ‘rays’ seems unnecessary. However, when describing another wave 
phenomenon, the invisible passage of light through the air, why do we usually prefer the visualization 
of rays, although they have no physical reality? How might such visualizations extend, affect, or perhaps 
limit our understanding of the natural world?

 ◆ Ray A line showing the 
direction in which a wave 
is transferring energy. 

 ◆ Radial Diverging in 
straight lines from a point. 

 ◆ Plane waves Waves 
travelling in three 
dimensions with parallel 
wavefronts, which can be 
represented by parallel 
rays.

 ◆ Visualization Helping 
understanding by using 
images (mental or graphic).
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1 a Describe and explain how parallel wavefronts in a 
ripple tank appear if they are moving perpendicularly 
into shallower water. 

b Discuss how the wavefronts from a point source 
would appear if the tank was raised on one side. 
Explain your answer. 

2 Figure C3.4 represents some light wavefronts passing 
from left to right through a lens. 

not to scale

	■ Figure C3.4 Light wavefronts passing from left to right through a lens

a Explain how you know that the source of light is a 
long way away. 

b Make a sketch of the lens and show the path of five 
rays to represent the movement of the wavefronts. 

c State which word we use to describe the effect of the 
lens on the light rays.

3 Figure C3.5 shows ocean waves as they approach 
the coast.

 Suggest possible reasons why the separation and 
direction of the waves change.

	■ Figure C3.5 Ocean waves refracting (and 
diffracting) as they approach a beach

	■ Transmission, absorption and scattering of waves

SYLLABUS CONTENT

 Wave behaviour at boundaries in terms of transmission.

The process in which waves are able to travel through a medium is described as wave 
transmission. For example, light and sound can be transmitted through air and water. During 
the transmission of waves, there is often absorption of energy: some or all of the wave energy is 
transferred to internal energy within the medium. Waves may also be randomly misdirected by 
interactions with irregularities within the medium. This is called scattering. Figure C3.6 illustrates 
these terms: waves are transmitted by medium 1, then enter medium 2, where they are each either 
transmitted, absorbed or scattered. In reality, all three processes can occur with the same waves.

 ◆ Transmission Passage 
through a medium without 
absorption or scattering. 

 ◆ Opaque Unable to 
transmit light (or other 
forms of energy). 

A medium through which light can be transmitted, and through which we 
can see clearly, is described as being transparent. A medium through which 
light cannot be transmitted is described as opaque.

Wave power, intensity and amplitude

As waves spread out, and/or their energy is dissipated, the power that 
they transfer is reduced. We usually describe this as a reduction of wave 
intensity, a concept that was introduced in Topic B.1, and is defined 
again here:

intensity, I = 
P 
A 

 SI Unit: W m−2

medium 1 medium 2

transmission

absorption

scattering

	■ Figure C3.6 Transmission, absorption and scattering
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Speaking generally, we know that the energy transferred by a wave is proportional to its amplitude 
squared (Topic C.2). More precisely:

intensity ∝ amplitude2

Waves spreading from a point without absorption

There are reasons, discussed above, why waves may lose energy during transmission through 
a medium, but, if the waves were spreading out from a point source (that is, they are not plane 
waves), their intensity will decrease for that reason alone, without any absorption.

In two dimensions (surface waves)
As surface waves spread away from a point source the wavefronts will extend over greater and 
greater lengths. For example, if a circular wavefront increases its distance from its centre from r to 
2r, then its circumference will increase from 2πr to 4πr. See Figure C3.7.

In each spreading wavefront the same amount of energy is spread over a greater length, so that 
the wave amplitude will decrease. If surface waves are a great distance from their source, the 
wavefronts will become almost parallel to each other, so that no loss of energy / power may 
be noticeable.

In three dimensions (such as light and sound)
We discussed the spreading of light and infrared waves from the Sun in Topic B.2. Refer back to 
Figure B2.1 in that chapter. The intensity of any waves spreading radially in three dimensions, 
without absorption, from a point source follows an inverse square relationship, which is 
repeated here:

intensity, I ∝ 
1

distance2

Figure C3.8 represents this kind of relationship in graphical form.

But note that, as before, if the waves are a great distance from their point source, the wavefronts 
will become almost parallel / plane waves, so that no loss of energy/power due to spreading may 
be noticeable.

Common 
mistake
Some books use the 
symbol A to represent 
amplitude, but this can 
cause confusion with 
the symbol for area. We 
will use the symbol A to 
represent area and the 
symbol x0 to represent 
amplitude.

point source
of waves

r

2r

3r

	■ Figure C3.7 Amplitude of circular wavefronts 
decreases with the distance from source
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	■ Figure C3.8 Inverse square relationship
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Tool 3: Mathematics

Plot linear and non-linear graphs 
showing the relationship between 
two variables

Check the data shown in Table C3.1 to 
determine if there is an inverse square 
relationship between x and y:
l numerically
l graphically.

	■ Table C3.1

x y 

1.34 9

0.96 17

0.81 24

0.70 32

0.64 38

0.59 45

0.55 52

0.52 58

0.49 66

4 Light and infrared radiation arriving perpendicularly on 
a solar panel have a total intensity of 780 W m−2. 
a If the panel has dimensions of 50 × 80 cm, calculate 

the incident power. 
b Explain why this power will change during the course 

of the day.

5 A girl is reading a book at night using the light from a 
single lamp, which may be assumed to be a point source.

 If the lamp was originally 1.80 m away from the book, 
show that the intensity of the light on the book doubles  if 
it is moved 0.53 m closer to the lamp.

6 Figure C3.9 shows some typical aerials used for 
transmitting (and receiving) signals to mobile phones.

	■ Figure C3.9 Typical aerials for transmitting mobile phone signals

a Explain why it desirable that the waves from these 
aerials are not emitted equally in all directions. 

b Suggest which feature of the aerials limits the vertical 
spreading of the waves.

7 The radiation from the Sun which reaches the top of the 
Earth’s atmosphere has an intensity of 1360 W m−2 (see 
Topic B.1). It is approximately 40% visible light, 50% 
infrared and 10% ultraviolet.

 The intensity reaching the Earth’s surface is 
approximately 1000 W m−2.

 The approximate proportions reaching the Earth’s surface 
are 44% visible light, 53% infrared and 3% ultraviolet.

 Use this data to estimate the percentages of these three 
radiations which are:
a transmitted by the Earth’s atmosphere
b absorbed / scattered by the Earth’s atmosphere.

8 Why is the sky blue? (Research on the internet 
if necessary.)

9 It is considered to be a health risk to expose our ears to 
sounds of intensity greater than 10 mW m−2 for more than 
a few minutes. 
a Calculate the total power received on an eardrum of 

area 0.48 cm2 from this intensity. 
b  If the sound intensity 2.10 m from a loudspeaker at a 

rock concert was 0.44 W m–2, estimate how far away 
you would need to be in order to reduce the intensity 
to 100 mW m–2. 

c  State two assumptions that you made in answering b. 
Discuss whether these assumptions are reasonable.
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	■ Reflection of waves and rays

SYLLABUS CONTENT

	 Wave	behaviour	at	boundaries	in	terms	of	reflection.

When a wave meets a boundary between different media some, or all, of the wave energy will be 
re-directed back into the first medium. This is called reflection.

To develop understanding, we will first consider the simplest possible 
example: a single wave pulse on a rope or string, being reflected at a fixed 
boundary, as shown in Figure C3.10. A wave travelling towards a boundary 
is called an incident wave. The reflected wave is inverted from this type of 
boundary: there is a phase change of π/2.

If the incident waves are continuous, they may combine with the reflected 
waves to produce a standing wave, as discussed in the next topic, C.4.

Apart from fixed boundaries, where there is no possibility of transmission, 
waves may also reflect from a boundary where some transmission occurs. 
Usually, the wave will have different speeds in the two different media.

 ◆ Reflection (waves) 
Change of direction that 
occurs when waves meet 
a boundary between two 
media such that the waves 
return into the medium 
from which they came.

incident wave

reflected wave

fixed
boundary

	■ Figure C3.10 Reflection of a 
pulse off a fixed boundary

before
more ‘dense’ stringless ‘dense’ string

after

incident wave

reflected wave

transmitted wave

	■ Figure C3.11 A pulse travelling into a ‘denser’ medium

In Figure C3.11 the ‘denser’ rope has a greater mass per unit length, 
so that the wave travels more slowly through it. The reflected wave is 
still inverted. The energy is shared between the reflected wave and 
the transmitted wave, so that both amplitudes are less than that of the 
incident wave.

Figure C3.12 shows the situation in which a wave pulse meets a 
boundary with a medium in which its speed would increase. Note that 
there is no phase change.

before
less ‘dense’ stringmore ‘dense’ string

after

incident wave

reflected wave transmitted wave

	■ Figure C3.12 Longitudinal waves and pulses behave 
in a similar way to transverse waves

We will now extend the discussion of reflection to two and 
three dimensions.

	■ Figure C3.13 Light reflected off and 
being transmitted by a window

369917_13_IB_Physics 3rd_Edn_SEC_C_3.indd   355369917_13_IB_Physics 3rd_Edn_SEC_C_3.indd   355 04/01/2023   21:1504/01/2023   21:15

.



Theme C: Wave behaviour356

Reflected wavefronts

When parallel wavefronts meet a plane (flat) boundary, some or all of them will be reflected so 
that the angle that the incident wavefront makes with the boundary is equal to the angle that the 
reflected wavefront makes with the boundary. See Figure C3.14.

incident
wavefronts

reflected
wavefronts

ir boundary
angle of incidence = angle of reflection

	■ Figure C3.14 Reflection of parallel wavefronts from a straight boundary

When discussing the reflection of light, instead of wavefronts, it is more common to refer to rays, 
as shown in the ray diagram of Figure C3.15. A normal is a line perpendicular to the surface (at 
the point of incidence). The angle of incidence and the angle of reflection are measured between 
the ray and the normal (not the surface).

The law of reflection:

The angle of incidence equals the angle of reflection.

Figure C3.16 shows radial light rays spreading from a point source (an ‘object’). When they strike 
the plane mirror, the law of reflection can be used to determine the directions of the reflected rays. 
An eye looking into the mirror will see an image located as far behind the mirror as the object is 
in front.

Figure C3.17 represents the same situation using wavefronts 
instead of rays. The reflected waves appear to come from a 
point as far behind the reflecting surface as the actual source 
of the waves (the ‘object’) is in front.

Top tip!
When drawing 
wavefronts diagrams, 
make sure that they 
are continuous at the 
boundaries.

 ◆ Ray diagrams 
Drawings that represent 
the directions of different 
waves or particles as they 
pass through a system.

 ◆ Incidence, angle The 
angle between an incident 
ray and the normal.

 ◆ Angle of reflection 
(rays) Angle between 
a reflected ray and the 
normal. 

 ◆ Reflection, law of 
Angle of incidence = angle 
of reflection.

reflected rayincident ray

normal

angle of reflection

plane
surface

angle of incidence

	■ Figure C3.15 Reflection of rays from a plane surface

object image

plane mirror

	■ Figure C3.16 Image formed by reflection of rays in a plane mirror

plane mirror

apparent centre
of reflected waves

reflected
wavefront

S
source

	■ Figure C3.17 Reflection of circular 
wavefronts by a plane surface.
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10 Figure C3.18 shows an idealized pulse on a string 
approaching a fixed end at a speed of 100 cm s−1.

 Draw a sketch to show the position of this pulse 0.8 s later.

(1 square = 10 cm)    
	■ Figure C3.18 An idealized 

pulse on a string

11 Figure C3.19 shows a man looking at a wall. Make a rough 
copy and add to the wall the smallest mirror that would 
enable the man to see both the top of his head and his feet. 
Include light rays that explain your positioning of the mirror.

12 Predict if there will be a phase change when light waves 
reflect off a glass surface. Explain your answer.

13 Figure C3.20 shows light rays from the Sun being 
reflected to a focus. Describe the shape of the wavefronts 
a arriving from the Sun
b being reflected to the focus.

   	■ Figure C3.19 A man looking at a wall

focusparabolic
reflector

parallel rays
of sunlight

   

	■ Figure C3.20 
Light rays from 
the Sun being 
reflected to a focus

Inquiry 1: Exploring and designing

Exploring

Sound reflections in large rooms

Sound	reflects	well	off	hard	surfaces	like	walls,	whereas	
soft surfaces, such as curtains, carpets, cushions and 
clothes, tend to absorb sound. A sound that reaches our 
ears may be quite different from the sound that was 
emitted from the source because of the many and various 
reflections	it	may	have	undergone.	Because	of	this,	singing	
in the shower will sound very different from singing 
outdoors or singing in a furnished room. In a large room 
designed for listening to music (such as an auditorium, 
Figure C3.21), sounds travel a long way between 
reflections.

	■ Figure C3.21 A large auditorium designed for 
effective transfer of sound to the audience

Since	it	is	the	reflections	that	are	responsible	for	most	of	the	
absorption of the sound waves, it will take a longer time 
for a particular sound to fall to a level that we cannot hear. 
This effect is called reverberation. The longer reverberation 
times of bigger rooms mean that a listener may still be able 
to hear reverberation from a previous sound at the same 
time as a new sound is received. That is, there will be some 
‘overlapping’	of	sounds.	Reflections	of	sounds	off	the	walls,	
floor	and	ceiling	are	also	an	important	factor	when	music	is	
being produced in a recording studio, although some effects 
can be added or removed electronically after the original 
sound has been recorded.

Does your school or college have a performance space, such 
as a hall or a theatre, where you can make sounds and listen 
to them carefully when they arrive back at your ears? Or is 
there a performance space nearby you could visit?
1 Research online using search terms such as 

‘sound reverberation’ to find out how professional 
designers adapt and design performance spaces to 
change reverberation. Then investigate your chosen 
performance space, inspecting it for installations which 
affect sound reverberation.

2 Discuss and suggest what measurements you could 
make to test the reverberation in the space.

3 Are there any improvements that could be made? State 
these and explain your reasoning.
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	■ Refraction of waves

SYLLABUS CONTENT

 Wave behaviour at boundaries in terms of refraction.
 Wavefront-ray diagrams showing refraction.
 Snell’s law, critical angle and total internal reflection.
 Snell’s law as given by:

 
n1 
n2 

 = 
sin θ2 
sin θ1 

 = 
v2

v1 
 where n is the refractive index and θ is the angle between the normal and 

the ray.

Waves will usually change speed when they travel into a different 
medium. Such changes of speed may result in a change of direction of 
the wave.

The speed of waves on the surface of water generally decreases as they 
move into shallower water.

Figure C3.22 shows parallel wavefronts arriving at a medium in which 
they travel more slowly. The wavefronts are parallel to the boundary and 
the ray representing the wave motion is perpendicular to the boundary.

In this case there is no change of direction but because the waves are 
travelling more slowly, their wavelength decreases, although their 
frequency is unchanged (consider v = fλ). Now consider what happens if 
the wavefronts are not parallel to the boundary, as in Figure C3.23.

Different parts of the same wavefront reach the boundary at different 
times and consequently, they change speed at different times. There is a 
resulting change of direction which is called refraction. The greater the 
change of speed, the greater the change of direction.

When waves enter a medium in which they travel more slowly, they 
are refracted towards the normal (assuming that the wavefronts are 
not parallel to the boundary).

Conversely, when waves enter a medium in which they travel faster, 
they are refracted away from the normal. This is shown in Figure C3.24; 
note that this is similar to Figure C3.23, but with the waves travelling in 
the opposite direction.

The refraction of light is a familiar topic in the study of physics, 
especially in optics work on lenses and prisms, but all waves tend to 
refract when their speed changes. Often this is a sudden change at a 
boundary between media, but it can also be a gradual, or irregular 
change. In Figure C3.25 differences in gas density produce irregular 
refraction and a blurred image above the fire. Stars twinkle in the night 
sky because of refraction in a shifting atmosphere.

boundary

waves
travelling

faster

waves
travelling
slower

for normal incidence there is no
change of direction

incident
waves/ray

	■ Figure C3.22 Waves slowing down 
as they enter a different medium

incident
waves

refracted
waves

waves
travelling

faster

waves
travelling
slower

normal

waves are refracted towards
the normal when they enter

a medium in which they travel
more slowly

boundary

	■ Figure C3.23 Waves refracting as 
they enter a denser medium

incident
waves

refracted
waves

waves
travelling
slower

waves
travelling

faster

normal

waves are refracted away
from the normal when they
enter a medium where they

travel faster

	■ Figure C3.24 Waves refracting as 
they enter a less dense medium

 ◆ Refraction Change of direction that can occur when a wave changes speed (most 
commonly when light passes through a boundary between two different media). 

 ◆ Prism A regularly shaped piece of transparent material (such as glass) with flat 
surfaces, which is used to refract and disperse light.
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Refractive index

The amount of refraction that occurs when a light wave passes from 
one medium into another depends on the change of speed involved. 
This is represented numerically by the refractive index, n, of 
a medium:

refractive index of a medium = 
speed of light in vacuum

speed of light in the medium

n = 
c
v

Refractive index is a ratio of speeds, so it does not have a unit.

For example, the speed of light in water is 2.26 × 108, so that:

refractive index of water = 
3.00 × 108

2.26 × 108 = 1.33

In practice, we will not usually be concerned with light travelling into, or out of a vacuum, but the 
speed of light in air is almost identical to the speed in a vacuum. This means that we can use the 
same refractive indices for light passing from air into, or out of, a medium.
	■ Table C3.2 Refractive indices

Medium Speed of light / 108 m s−1 Refractive index

diamond 1.2 2.4

glass 1.8–2.0 1.5–1.7

plastic 1.9–2.3 1.3–1.6

lens in human eye 2.1 1.4

pure water 2.26 1.3

air 2.997 1.0

vacuum 2.998 -

As has been stated in Topic C.2, waves from all parts of the electromagnetic spectrum travel at 
exactly the same speed (c = 3.00 × 108 m s−1) in free space (vacuum), but they all travel slower in 
other media. However, there are also some very small differences in the wave speeds in the same 
medium, for example, yellow light travels very slightly faster than green light in glass. For many 
applications this is not important, but it can result in the dispersion of white light into a spectrum 
(see later).

Snell’s law

When we observe the refraction of light, the only direct measurements that can be 
made are of the angles involved. Figure C3.26 shows the paths of rays that could 
be seen in a standard experiment with a parallel-sided glass, or plastic, block. Two 
measurements are possible: θ1, the angle that the incident ray makes with the normal, 

and θ2, the angle that the refracted ray makes with the normal. The rays are refracted 
towards the normal because the speed of light in glass is less than the speed of light in 
air. Because the block is parallel-sided, the same angles occur again as the ray emerges 
from the block. A ray of light entering the lower surface (as shown) will follow exactly 
the same path as a ray entering the upper surface, but in the opposite direction.

Some of the incident light will be reflected off the glass surface, but this has not 
been shown in the diagram.

	■ Figure C3.25 Irregular refraction over a fire

 ◆ Refractive index, n The 
ratio of the speed of waves 
in vacuum (or air) to the 
speed of waves in a given 
medium.

θ1

θ2

θ2

θ1

	■ Figure C3.26 Light passing through 
a parallel-sided transparent block.
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Figure C3.27 shows the situation in a little more detail and includes wavefronts.

θ1 θ1

θ1

θ2

θ1

θ2

θ2
θ2

normala b normal

slower
waves

faster
waves

less dense

less densemore dense

more dense

medium 1
speed v1

refractive index n1

medium 2
speed v2

refractive index n2

wavefro
nt wavefro

nt

The Dutch scientist, Willebrord Snellius, was the first to show how the angles were related to the 
speeds of the waves and the refractive indices, as light passes from a medium of refractive index 
n1, where its speed is v1, to a medium of refractive index n2, where the wave speed is v2 (as seen in 
Figure C3.26).

Snell’s law:
n1

n2

 = 
sin θ2

sin θ1

 = 
v2

v1

 

If medium 1 is air, this reduces to:

refractive index of medium 2, n2 =  
sin θ1

sin θ2

 = 
c
v2

For light entering from air, refractive index, n = sine of the angle of incidence divided by the 
sine of the angle of refraction.

Consider Figure C3.26. If the angle of 
incidence on a plastic block was 48°, and 
the angle of refraction was 32°:
a determine the refractive index of the 

plastic, and 
b calculate the speed of light in the plastic.

Answer

a nplastic = 
sin θ1 
sin θ2 

 =  
sin 48 
sin 32  = 

0.743 
0.530  = 1.40

b nplastic = 1.40 = 
c 

vplastic 
 = 

3.00 × 108 
vplastic 

 

 vplastic = 2.14 × 108 m s−1

WORKED EXAMPLE C3.1

A light ray travelling in water of refractive 
index 1.33 is incident upon a plane glass 
surface at an angle of 27° to the normal.
Calculate the angle of refraction if the glass 
has a refractive index of 1.63.

Answer
n1 
n2 

 = 
sin θ2 
sin θ1 

 ⟹ 
1.33 
1.63  = 

sin θ2 
sin 27° 

sin θ2 = 0.3704
θ2 = 22°

WORKED EXAMPLE C3.2

	■ Figure C3.27 Light 
rays being refracted 
a towards the normal and 
b away from the normal

DB

 ◆ Snell’s law (of 
refraction) Connects 
the sines of the angles of 
incidence and refraction 
to the refractive indices in 
the two media (or the wave 

speeds). 
n1

n2

 = 
sin θ2

sin θ1

 = 
v2

v1

.
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Critical angle and total internal reflection

Consider again Figure C3.24, which shows a wave / ray entering an 
optically less dense medium (a medium in which light travels faster). 
If the angle of incidence is gradually increased, the refracted ray 
will get closer and closer to the boundary between the two media. 
At a certain angle, the refracted ray will be refracted at an angle of 
exactly 90º along the boundary (see Figure C3.28). This angle is 
called the critical angle, θc, shown in red in the diagram.

For any angle of incidence some light will be reflected at the boundary, but for angles of incidence 
greater than the critical angle, all the light will be reflected back and remain in the denser 
medium. This is known as total internal reflection.

We know that:
n1

n2

 = 
sin θ2

sin θ1

 

but at the critical angle, θ1 = θc and θ2 = 90°, so that sin θ2 = 1, and then:

n1

n2

 = 
1

sin θc

Most commonly, the light will be passing from an optically denser material (medium 1) like 
glass, plastic or water, into air (medium 2), so that n2 = nair = 1, and so:

nmedium = 
1

sin θc

a Determine the critical angle for a water 
/ air boundary. (nwater = 1.33)

b Determine the critical angle for a glass / 
water boundary. (nglass = 1.60)

Answer

a nmedium = 
1

sin θc 
 ⇒ 1.33 = 

1
sin θc

 ⇒ θc = 48.8°

b 
nglass

nwater  
 = 

1
sin θc

 ⇒ 
1.60
1.33 = 

1
sin θc

 ⇒ θc = 56.2°

WORKED EXAMPLE C3.3

Applications of total internal reflection
One very important application of total internal reflection is in digital communication. Light 
passing into a glass fibre can be ‘trapped’ within the fibre because of multiple internal reflections 
and it will then be able to travel long distances, following the shape of the fibre (see Figure C3.29). 
The light can be modified to transmit digital information very efficiently.

 ATL C3A: Communication skills 

Clearly communicate complex ideas in response to open-ended questions
Most of the data transferred around the world is done using optical fibres. Choose one aspect of this 
important topic and use a variety of sources to access enough information that you can make an 
interesting three- to five-minute presentation to the rest of your group.

For example, you could choose one of the following: the choice of wavelength used, the use of binary 
signals, underwater cables, the cladding used in the fibres, the purity of the glass used, possible 
bandwidths, how far the signals can travel without the need for regeneration, how optical fibres are 
connected to copper wires, and so on.

medium 1

more dense

less dense

medium 2

θ1

θc

θ2

	■ Figure C3.28 Total internal reflection occurs if the 
angle of incidence is greater than the critical angle θc

 ◆ Critical angle Largest 
angle at which a ray of 
light can strike a boundary 
with another medium of 
lower refractive index, 
without being totally 
internally reflected. 

 ◆ Total internal 
reflection All waves are 
reflected back within the 
medium. Can only occur 
when a wave meets a 
boundary with another 
medium with a lower 
refractive index (in which 
it would travel faster).

 ◆ Optically dense If 
light travels slower in 
medium A, compared to 
medium B, then medium 
A is described as more 
optically dense.

	■ Figure C3.29 Total 
internal reflection 
along a glass fibre
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Total internal reflection is also used in endoscopes for carrying out medical examinations. Light 
from a source outside is sent along fibres to illuminate the inside of the body. Other optical fibres, 
with lenses at each end, are used to bring a focused image outside for viewing directly, or via a 
camera and monitor (see Figure C3.30).

14 A ray of light travelling in air was incident at an angle 
of 47° to the surface of a plastic which had a refractive 
index of 1.58 Calculate:
a the angle of refraction (to the normal) in the plastic
b the speed of light in the plastic.

15 Parallel water waves travelling at 48 cm s−1 enter a region 
of shallow water with the incident wavefronts making an 
angle of 34° with the boundary. If the waves travel with 
a speed of 39 cm s−1 in the shallower water, predict the 
direction in which they will move.

16 Light rays travel at 2.23 × 108 m s–1 in a liquid. 
a Determine the refractive index of the liquid. 
b Light rays coming out of the liquid into air meet the 

surface at an angle of incidence of 25°.
 Calculate the angle of the emerging ray to the normal 

in air.

17 A certain kind of glass has a refractive index of 1.55.
 If light passes into the glass from water (refractive index 

= 1.33) and makes an angle of refraction of 42°, what was 
the angle of incidence?

18 a Use trigonometry to show that the refractive index 
between two media is equal to the ratio of wave 
speeds (v1/v2 ) in the media. 

b Show that the refractive index for waves going from 
medium 1 into medium 2 is given by:

 1n2 = n2/n1

19 Explain why it is impossible for any medium to have a 
refractive index of less than one.

20 The refractive index of red light in a certain type of glass 
is 1.513. 
a If a ray of red light strikes an air / glass boundary at 

an angle of incidence of 29.0°, determine its angle 
of refraction. 

b A ray of violet light was incident at exactly the same 
angle (29.0°), but its angle of refraction was slightly 
less. Explain why. 

c If the angle of refraction for violet light was 18.5°, 
determine values for 
i the refractive index of violet light in this glass 
ii the speed of violet light in the glass. 

d We say that the red and violet light rays have been 
dispersed. Explain what that means. (See also 
next section.)

21 The speed of light in sea water is 2.21 × 108 m s–1.
 Calculate the critical angle for light striking a boundary 

between sea water and air.

22 A certain kind of glass has a refractive index of 1.54 and 
water has a refractive index of 1.33. 
a In which medium does light travel faster? 
b Describe the circumstances which must occur for 

light to be totally internally reflected when meeting a 
boundary between these two substances.

c Calculate the critical angle for light passing between 
these two media

	■ Figure C3.30 An 
endoscope can be used to 
inspect a patient’s stomach

 ◆ Optical fibre Thin, 
flexible fibre of high-
quality glass that uses 
total internal reflection 
to transmit light along 
curved paths and over large 
distances.
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Dispersion of light into a spectrum

The speeds of different colours (frequencies) of light in a particular 
medium (glass, for example) are not exactly the same. Red light travels 
the fastest and violet is the slowest. This means that different colours 
travelling in the same direction from the same source will not travel 
along exactly the same paths when they are refracted. When light goes 
through parallel-sided glass (like a window), the effect is not usually 
significant or noticeable. However, when white light passes into and out 
of other shapes of glass (like prisms and lenses), or water droplets, it can 
be dispersed (separated into different colours which spread apart). A 
triangular prism, as shown in Figure C3.31, is commonly used to disperse 
white light into a spectrum.

Diffraction of waves

SYLLABUS CONTENT

 Wave diffraction around a body and through an aperture.
 Wavefront-ray diagrams showing diffraction.

Waves of all types often encounter obstacles in their path, so it is important to understand how 
waves pass around (and through) such objects.

Waves will tend to spread around corners and as they pass through gaps (apertures). This 
important effect is known as diffraction. The simplest and most important example is shown in 
Figure C3.32. In this diagram the size of the aperture is the same as the wavelength, and the waves 
spread almost equally in all directions.

aperture = λ

	■ Figure C3.32 Diffraction of plane waves by 
an aperture of width equal to one wavelength

aperture > λ

	■ Figure C3.33 aperture > wavelength

For apertures of greater width (compared to the wavelength), the effects of diffraction are 
less noticeable, as shown in Figure C3.33. Most of the wave energy continues travelling in its 
original direction. If aperture width is much greater than the wavelength, diffraction usually 
becomes insignificant.

Diffraction	effects	are	most	significant	when	the	size	of	aperture	or	object	≈	wavelength.

	■ Figure C3.31 A triangular prism used to 
produce a continuous spectrum of white light

 ◆ Dispersion (light) 
Separation into different 
wavelengths / colours 
(to form a spectrum, for 
example).

 ◆ Aperture A hole or gap 
designed to restrict the 
width of a beam of light (or 
other radiation).

 ◆ Diffraction The 
spreading of waves as they 
pass obstacles, or through 
apertures. 
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	■ Figure C3.34 Diffraction around objects

It is important to realize that diffraction at an aperture also occurs when waves are 
emitted from a source or aerial, or received by an observer. Consider, for example, 
sound waves coming from a loudspeaker, or light waves entering an eye.

Figure C3.34 shows how waves can diffract around the edges of objects.

	■ Examples of diffraction
Sound

A typical sound wave may have a wavelength of about 1 m. This is similar to the size of 
everyday objects and that is why we expect to be able to hear sources that we cannot see 
(because they are around a corner).

Light

Tool 1: Experimental techniques

Recognize and address relevant safety, ethical or environmental 
issues in an investigation

Laser light is very useful in light experiments, especially for observing diffraction. 
But, because of its intensity, a laser beam can be dangerous if it enters an eye.

Everybody should wear laser googles if they are available. If not, the beam should 
be kept horizontal and well below eye level. It should also not be directed towards 
a highly reflective surface.

Students should remain in the same places and, as soon as observations have been 
made, the laser should be quickly turned off.

As we have seen in Topic C.2, light has a very short wavelength (10−7–10−6 m). This means that 
the diffraction of light around everyday objects will not normally be noticed. However, light is 
diffracted, and this can be observed with a very small aperture and a bright light. Figure C3.35 
shows the diffraction of laser light through an aperture of width less than 0.1 mm. The laser light 
is monochromatic, which means there is only one colour (frequency).

The fact that light diffracts is important evidence of its wave-like nature.

An explanation of the pattern seen in Figure C3.35 is not important in this section, but is provided 
in the HL section towards the end of this topic.

Microwaves

A typical wavelength of the microwaves used in a mobile phone network is 0.1 m. Look again 
at Figure C3.9. The horizontal widths of the apertures emitting the waves encourages waves to 
be diffracted horizontally, parallel to the ground. The greater height of the aperture reduces the 
diffraction of waves vertically.

 ◆ Laser Source of intense, coherent, 
monochromatic light. 

 ◆ Monochromatic Containing only one 
colour / frequency / wavelength (often, 
more realistically, a narrow range). 

 ◆ Aerial A structure that receives or 
emits electromagnetic signals. Also 
called an antenna.

	■ Figure C3.35 Diffraction 
pattern of light
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Microwaves are detected and transmitted by an aerial (antenna) inside the phone, which is also 
similar in size to the wavelength.

Conversely: a microwave beam of similar wavelength from an aircraft detection system at an 
airport (radar – discussed in Topic C.5) needs to be directional (not spreading out). Aircraft in 
different directions are located by rotating the aerial. This means that diffraction is not wanted, so 
the aerial’s reflector is designed to be much bigger than the wavelength.

X-rays

X-ray wavelengths are comparable to the sizes of atoms and ions, and their separations, in solids. 
This means that X-rays are diffracted well by the regular arrangements of atoms / ions in most 
solids. By analysing X-ray diffraction patterns, we can learn about the structure of matter.

23 Suggest a reason why loudspeakers for producing lower 
pitched sounds are usually larger in size than speakers 
for higher pitched sounds.

24 If red light and blue light are passed through the same 
narrow slit, which will be diffracted more, and why?

25 Bluetooth technology uses a frequency of 2.4 GHz.
a Calculate its wavelength. 
b Explain why this makes is suitable for, say, 

connecting a mobile phone to a Bluetooth speaker.

26 Sketch the wavefronts you would expect to see if parallel 
water waves of wavelength 1 cm were passing through an 
aperture of width 5 cm.

27 a  State a value for a typical X-ray wavelength. 
b Compare your answer to 0.28 nm, the approximate 

regular spacing of ions in a salt crystal. 
c Would you expect a distinct diffraction pattern to 

occur if X-rays were sent through water? Explain 
your answer.

Nature of science: Theories

Changing theories about diffraction

The	first	detailed	observations	of	the	diffraction	patterns	produced	in	the	shadows	by	light	passing	
through	apertures	were	made	more	than	350	years	ago	but,	at	that	time,	the	phenomenon	defied	any	
simple explanation because light itself was not understood, although many believe that a light beam 
consisted of some type of ‘particles’. Many years later, after the wave theory of light became established, 
a theory of diffraction could be developed that involved the adding together of waveforms arriving at the 
same point from different places within the aperture. (Depending on the context of the discussion, the 
addition of waveforms can be variously described as superposition, interference or Fourier synthesis.) 
The more recent photon theory of light (Theme E) returns, in part, to a ‘particle’ explanation.

Superposition of waves

SYLLABUS CONTENT

 Superposition of waves and wave pulses.

When waves pass through each other at a point, we can add their displacements to determine the 
overall result at that place at that moment. This is called the superposition of waves.

The principle of superposition of waves: the overall displacement is the vector sum of the 
individual wave displacements.

When similar waves pass through each other they will usually have a wide range of different 
frequencies and amplitudes. Under these circumstances superposition effects are negligible.

 ◆ Superposition 
(principle of) The 
resultant of two or more 
waves arriving at the same 
point can be determined by 
the vector addition of their 
individual displacements.
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But when waves have similar frequencies and 
amplitudes, the effect can be significant. 
Figure C3.36 shows a simple example of combining 
wave displacements to find a resultant.

We will use the principle of superposition in the next 
sub-topic (interference).

wave A

wave B

A + B

0

x

x

x

0

0

Time

Time

Time

(resultant)

	■ Figure C3.36 Adding 
wave displacements using the 
principle of superposition

28 a Sketch a displacement–time graph for a sinusoidal oscillation of amplitude 4.0 cm and 
frequency 2.0 Hz. Start with a displacement of zero and continue for 0.75 s.

b On the same axes draw a graph representing an oscillation of amplitude 2.0 cm and 
frequency 4.0 Hz. 

c Use the principle of superposition to draw a sketch of the resultant of these two waves.

29 Figure C3.37 shows two idealized square pulses moving towards each other. Draw the 
resultant waveform after 
a 6.0 s b 7.0 s c 8.5 s d 12.0 s.

2cm 10cm

1cm s–1

1cm s–1

6cm

  

	■ Figure C3.37 Two 
idealized square pulses 
moving towards each other

30 Two sinusoidal waves (A and B) from different sources have the same frequency and pass 
through a certain point, P, with the same amplitude. 
a Sketch a displacement–time graph for the resultant waveform if A and B arrive at P in phase. 
b Repeat for two waves that arrive at P exactly (π) out of phase.

Interference of waves

SYLLABUS CONTENT

 Double source interference requires coherent sources.

When the superposition of wavefronts produces a constant two- or 
three-dimensional pattern we describe it as an interference pattern. 
Most commonly, this effect occurs between two sources of waves 
which have the same single frequency and the same wave shape. 
Such sources (and the waves that they produce) are described as 
being coherent. Figure C3.38 shows an interference pattern produced 
by two sources of water waves on a ripple tank.

 ◆ Interference pattern 
(fringes) Pattern observed 
when coherent waves 
interfere.

 ◆ Coherent waves 
Waves that have the same 
frequency and a constant 
phase difference.

	■ Figure C3.38 The interference of water waves on a ripple tank
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	■ Constructive and destructive interference

SYLLABUS CONTENT

 The condition for constructive interference as given by: path difference = nλ

 The condition for destructive interference as given by: path difference = (n + 
1
2) λ.

To explain an interference pattern like that seen in Figure C3.38, we need to consider the path 
differences between the waves arriving at various points from the two sources. Consider Figure 
C3.39, in which the straight lines are representing distances, not rays.

P0

P2

P2

2nd maximum
path difference = 2λ

X

Y

central maximum
path difference = 0

P1

Q2

Q1

1st maximum
path difference = λ 

P1

Q2

Q1

1st maximum
path difference = λ 

2nd maximum
path difference = 2λ

	■ Figure C3.39 Interference and path difference

If the waves are emitted in phase from points X and Y, and both waves travel the same 
distance at the same speed to any point such as P0, the waves will always be in phase 
at that position. Figure C3.40a shows the result, using the principle of superposition: 
the resulting wave has double the amplitude of the original waves. This is called 
constructive interference.

The path difference for the waves arriving at P0, or any other point which is the same 
distance from X and Y, is zero. Constructive interference will also occur at any place 
where the waves always arrive in phase, which occurs where the path difference 
is 1λ, or 2λ, or 3λ … or nλ (where n is a whole number), as shown by P1 and P2 in 
Figure C3.39.

The condition for constructive interference:

path difference = nλ

Destructive interference is shown in Figure C3.40b. This will occur at all points 

where the waves arriving from one source have travelled 
1
2 
λ, or 

3 
2 
λ, or 

5 
2 
λ, or (n + 

1
2 ) λ  

more than the waves from the other source, as shown by the points Q1 and Q2 in 
Figure C3.39.

 ◆ Path difference The 
difference in the distances 
from a particular point to 
two sources of waves.

 ◆ Interference 
Superposition effect that 
may be produced when 
similar waves meet. Most 
important for waves of the 
same frequency and similar 
amplitude. Waves arriving 
in phase will interfere 
constructively because 
their path difference = nλ. 
Waves completely out 
of phase will interfere 
destructively because their 
path difference = (n + ½)λ.
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	■ Figure C3.40 a Constructive 
and b destructive interference
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The condition for destructive interference:

path difference = (n + 
1
2)λ

These conditions assume the usual situation: the waves are emitted in 
phase with each other. If the waves were exactly out of phase, these 
conditions would be reversed.

Constructive interference and destructive interference describe the 
extreme possibilities of wave superposition. At other locations the amount 
of interference varies between these extremes.

From Figure C3.40a, we can see that two sets of waves, each of amplitude 
x0, result in a wave of amplitude 2x0. Since we know, from earlier in 
this topic, that wave intensity is proportional to amplitude squared, at 
places of constructive interference the intensity has quadrupled. This is 
possible because the intensity at places of destructive interference has 
been reduced.

Figure C3.41 shows the overall interference pattern produced as described 
in Figure C3.39. The right-hand half of Figure C3.41 can be compared to 
Figure C3.38.

Interference is a property only of waves, including electromagnetic waves like light. The 
interference of light cannot be explained, for example, by imagining that light consists of tiny 
particles. Thomas Young was the first to demonstrate that light could interfere (see below), thus 
demonstrating for the first time that light had wave properties.

Nature of science: Theories

Competing theories

The nature of light has been widely debated for centuries. Different scientists developed different theories 
which seemed to partly contradict each other, and no single theory was able explain all the properties of 
light.	This	is	not	unusual	in	the	development	of	scientific	knowledge.	There	are	many	modern	examples,	
including the consequences of climate change and the reasons for an ever-expanding Universe.

Clearly, we would prefer a single theory to help explain any particular phenomenon and to make useful 
predictions. However, if that is not possible at the present time, we can continue to use the best available, 
but less than perfect, competing theories which have proved to be useful. This is illustrated by a famous 
quote about the two theories of light, from William Henry Bragg: ‘Physicists use the wave theory on 
Mondays, Wednesdays and Fridays and the particle theory on Tuesdays, Thursdays and Saturdays.’

	■ Young’s double-slit interference experiment

SYLLABUS CONTENT

 Young’s double-slit interference as given by: s = 
λD 
d , where s is the separation of fringes, d is the 

separation of the slits, and D is the distance from the slits to the screen.

The interference of light waves is not an everyday observation because:
l Separate light sources are not coherent.
l Light has very small wavelengths, so that any interference pattern will be very small and 

difficult to observe.

DB

X

Y

P0

Q1

P1

Q2

P3

constructive
interference 

destructive
interference 

	■ Figure C3.41 The interference pattern produced 
by coherent waves from two sources, X and Y

Top tip!
When using two similar 
wave sources which 
are in phase, perfect 
destructive interference, 
resulting in waves 
of zero amplitude, is 
not possible. This is 
because one wave will 
always have a reduced 
amplitude because it has 
travelled further than 
the other wave to reach 
any particular point.

369917_13_IB_Physics 3rd_Edn_SEC_C_3.indd   368369917_13_IB_Physics 3rd_Edn_SEC_C_3.indd   368 04/01/2023   21:1504/01/2023   21:15



C.3   Wave phenomena 369

The interference of light can be demonstrated by passing monochromatic laser light through two 
narrow slits which are very close together (a modern version of Young’s interference experiment 
(1801)). The resulting interference pattern can be seen on a distant screen, see Figure C3.42.

interference
pattern

screen

laser

double
slit

bright and
dark fringes  

The double slits act as the necessary two coherent sources of waves. Figure C3.43 illustrates an 
example of the basic principle: each plane wavefront is diffracted into two beams as it emerges 
from the slits. The waves are coherent because they came from the same original wavefront. The 
diffracted waves then interfere.

A series of interference fringes is seen on the screen, as shown in the Figure C3.44a. The shape 
of the pattern depends on the shape of the apertures / slits. The closer the two slits, the wider 
the spacing of the interference pattern. Figure C3.44b shows the appearance of the fringes if 
white light is used with the same slits: fringes of different colours / wavelengths occur in slightly 
different places but overlap.

The wavelength of the light used can be determined from the geometry of the experiment 
(see Figure C3.45) by using the following equation, which is explained later in this topic for 
HL students.

	■ Figure C3.44 Interference patterns

a

b

double slit
slit-to-screen distance, D

not to scale

d

s

	■ Figure C3.45 Geometry of the double-slit experiment

Separation of fringes in Young’s experiment:

s = 
λD
d

	■ Figure C3.42 
Interference of light waves

	■ Figure C3.43 Diffracted 
waves crossing over each 
other as they emerge 
from double slits

DB

 ◆ Young’s interference 
experiment Famous 
experiment which provided 
the first evidence that light 
travelled as waves.
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The separation, s, of the centres of the fringes is assumed to be constant, so that it is convenient 
to measure the total width of a number of fringes. (We are also assuming that D >> s and that the 
light consists of plane wavefronts arriving in a direction which is perpendicular to the slits.)

In an experiment similar to that seen in Figure C3.42, the centres of the slits were 
separated by 0.48 mm and the screen was placed 1.96 m away from the slits. A student 
measured across nine equally spaced fringes and found that the centre of the first and the 
centre of the ninth fringe were separated by a distance of 2.25 cm. 
a Determine the wavelength of the light used. 
b How will the appearance of the fringes change if:

i the screen is moved to a distance of 4.5 m from the slits
ii the red light laser is replaced with a green light laser?

Answer

a s = 
λD
d 

 ⇒ 
2.25×10–2

8  = λ × 
1.96

0.48 × 10–3

 ⇒ λ = 6.9 × 10–7 m
b i The width and separation of the fringes will more than double, but their intensity 

(brightness) will be reduced. 
ii Green light has a smaller wavelength than red light, so the fringes will be closer 

together.

WORKED EXAMPLE C3.4

The interference of light as it passes through two or more slits is discussed in more detail for HL 
students towards the end of this topic.

TOK

The natural sciences
l What kinds of explanations do natural scientists offer?

As we have seen many times, a simple equation (for example, s = λD/d) can be used as a starting point 
to model scientific phenomena. Once that has been thoroughly understood, it can be adapted to more 
complicated situations. But is this kind of ‘modelling’ unique to science?

For example, would it be possible in principle to develop a mathematical model to describe the political 
and/or economic situation in Europe before the start of World War 1? And could such a model be used 
to predict what happened? Is there something fundamentally different between knowledge in physics 
and history, or is any historical situation just too complicated, or dependent on human behaviour, for 
mathematical analysis?

TH
E IB LEARNER PRO

FILE

	■ Interference of other types of waves
In theory, all types of waves can produce interference patterns. However, it may be impossible, 
or very difficult, to produce two coherent sources for some types of wave, because the waves 
are emitted in uncontrolled, random processes. This means that interference will not usually 
be observed with naturally produced waves. That is why the interference of light is not a 
common phenomenon.
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So, to observe interference, we need to turn our attention to artificially produced waves. Apart 
from the interference of light, two other examples may be demonstrated in school laboratories.

Microwaves

Waves from this section of the electromagnetic spectrum are easily produced by electronic 
circuits and can have a wavelength of a few centimetres, which is ideal for demonstrations. 
See Figure C3.46.

microwave
transmitter

receiver

aluminium sheets

	■ Figure C3.46 Interference of microwaves

The	two	gaps	between	the	aluminium	sheets	each	have	a	width	of	about	one	wavelength	(≈	3	cm).	
They have the same effect as the double slits in Young’s experiment: two diffracted, coherent 
waves emerge from the other side and then interfere. When the microwave detector is moved from 
side to side, constructive and destructive interference will be detected.

The equation s ≈ λD/d cannot be used accurately in this situation, or with sound (as described 
below). This is because the assumptions made about the geometry of the light interference 
experiment (because of the very small wavelength of light) are not valid in the arrangement shown 
in Figure C3.46.

Sound

See Figure C3.47. The signal generator provides an oscillating electric current to the two 
loudspeakers, which then produce coherent longitudinal sound waves of the same frequency. As a 
listener walks past the speakers, as shown in the figure, the sound intensity rises and falls, because 
of constructive and destructive interference.

speaker

P

signal generator

LOUD
QUIET

LOUD
QUIET

LOUD
QUIET

	■ Figure C3.47 Interference of sound waves

 ◆ Signal generator 
Electronic equipment used 
to supply small alternating 
currents of a wide range of 
different frequencies. 
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31 Figure C3.48 is one-quarter of the real size. It shows two 
coherent wave sources on a ripple tank and a point P. If 
the wavelengths are 2.5 cm, take measurements from the 
diagram to determine what kind of interference occurs at P.

S1

S2

P

 
	■ Figure C3.48 Two coherent 

wave sources on a ripple tank

32 Consider Figure C3.46. 
a If constructive interference produces a maximum signal 

when the receiver is 57 cm from the centre of one slit, 
and 45 cm from the other, show why 3 cm and 4 cm are 
both possible values for the wavelength being used.  

b Discuss how the actual wavelength can be quickly 
determined.

33 A teacher wants to demonstrate the interference of 
light to her class using green laser light of wavelength 
5.32 × 10−7 m. She uses double slits of separation 0.50 mm. 
She would like the fringes to be at least 0.50 cm apart. 
a  Determine the closest distance she can place the 

screen to the slits. 
b  With the slits and screen still in the same places, 

explain how  the teacher can change the experiment 
to produce fringes which are slightly further apart.

34 Consider Figure C3.47. 
 The centres of the speakers were 1.20 m apart. And the 

girl’s closest distance to point P was 80 cm, which was 

where the sound was loudest. The next position where the 
sound was loud was 50 cm away in the direction shown. 
a Are the sound waves from the two speakers emitted 

in phase, or out of phase? 
b Use Pythagoras’s theorem to determine the path 

difference and calculate the wavelength of the sound.
c Describe how the interference pattern would change if 

i the sound frequency was increased.
ii the connections to one of the speakers was reversed.

35 The waves used to cook food in a microwave oven 
reflect repeatedly off the metal walls and can produce 
interference effects. 
a Suggest how this could affect the way in which the 

food is cooked. 
b Research into how microwave ovens are designed to 

overcome this problem.

36 Outline why the interference of light is not a common 
observation.

37 A boy stands halfway between two loudspeakers facing 
each other in a large open space. Both speakers are 
producing sounds of frequency 180 Hz. In this position he 
hears a loud sound. 
a Explain why the sound level will decrease if he starts 

to walk towards either speaker. 
b Discuss how the sound level will change if he walks 

from the mid-point along a line perpendicular to a 
line joining the speakers. 

c How far must he walk directly towards one of the 
speakers before the sound level will rise to a maximum 
again? Assume that the speed of sound is 342 m s−1. 

d Explain why this experiment is best carried out in ‘a 
large open space’.

Inquiry 1: Exploring and designing

Designing

Design and carry out an investigation into the properties of the waves emitted by a 
(television) remote control.

 ATL C3B: Self-management skills 

Breaking down major tasks into a sequence of stages
A good friend of yours is in the same physics class, but he has not been doing well and lately he 
seems to have become discouraged because he feels overwhelmed by work and deadlines. There are 
important physics examinations coming up in three weeks’ time. Suggest ways in which you could 
advise him to prepare for the examinations.

TH
E IB LEARNER PRO

FILE
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A closer look at single-slit diffraction of light

SYLLABUS CONTENT

 Single-slit diffraction, including intensity patterns, as given by: θ = 
λ
b, where b is the slit width.

Figure C3.32 showed a diffraction pattern produced by monochromatic light passing through a 
narrow slit. It can be produced by an experimental arrangement similar to that seen in Figure 
C3.42, but with the double slits replaced by a single slit.

In the introduction to diffraction, Figure C3.33 indicated the pattern of diffraction we would 
expect when waves pass through an aperture greater than the wavelength. Now, we need to 
explain why the diffraction pattern produced when light passes through a single narrow slit is 
different: it has fringes similar to that produced by double slits.

Firstly, it is important to understand that even a ‘narrow’ slit of width, for example, b = 0.1 mm is 
much greater than one wavelength, λ, of light. In fact:

b
λ
	≈	

0.1 × 10–3

5 × 10–7  = 200

	■ Interference within a single wavefront
We need to imagine that a plane wavefront emerging from a single slit acts as if it was a series 
of point sources of ‘secondary wavelets’, maybe one for every wavelength. These ideas were 
famously first put forward as an explanation for the propagation of all waves by Christian 
Huygens in 1690.

These wavelets will be coherent and they will interfere.

Firstly, consider how secondary wavelets from the edge of the slit may interfere.

Figure C3.49 shows a typical direction, θ, in which secondary waves travel away from a single 
narrow slit of width, b.

If θ is zero, all the secondary waves will interfere constructively in this direction (straight through 
the slit) because there is no path difference between them. (Of course, in theory, waves travelling 
parallel to each other in the same direction cannot meet and interfere, so we will assume that the 
waves’ directions are very nearly parallel.)

Consider what happens for angles increasingly greater than zero. The path 
difference, as shown in Figure C3.49, equals b sin θ and this increases as 
the angle θ increases. There will be angles at which the waves from the 
two edges of the slit interfere constructively because the path difference 
has increased to become equal to a 1λ, 2λ, 3λ … and so on.

But if secondary wavelets from the edges of the slit interfere 
constructively, what about interference between all the other secondary 
wavelets? Consider Figure C3.50 in which the slit has been divided into 
a number of point sources of secondary wavelets. (Ten points have been 
chosen, but it could be many more.)

Common 
mistake
Single-slit diffraction 
patterns and double-slit 
interference patterns are 
similar to each other and 
easily confused. The 
most obvious difference 
is that the central 
fringe of the single-slit 
diffraction pattern is 
brighter and wider than 
the other fringes.

b
θ

θ

θ

path difference = b sin θ

	■ Figure C3.49 Path 
differences and interference

 ◆ Secondary waves The propagation of waves in two or three dimensions 
can be explained by considering that each point on a wavefront is a source of 
secondary waves.

1
2
3
4
5
6
7
8
9

10

θ

pairs of waves travelling
in all these directions
interfere destructively

	■ Figure C3.50 Secondary waves that will 
interfere destructively can be ‘paired off’
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If the angle, θ, is such that secondary wavelets from points 1 and 10 would interfere constructively 
because the path difference is one wavelength, then secondary waves from 1 and 6 must have 
a path difference of half a wavelength and interfere destructively. Similarly, waves from points 
2 and 7, points 3 and 8, points 4 and 9 and points 5 and 10 must all interfere destructively. In 
this way waves from all points can be ‘paired off’ with others, so that the first minimum of the 
diffraction pattern occurs at such an angle that waves from the edges of the slit would otherwise 
interfere constructively.

The first minimum of the diffraction pattern occurs when the path difference between secondary 
waves from the edge of the slit is equal to one wavelength. That is, if b sin θ = λ.

For the diffraction of light, the angle θ is usually small and approximately equal to sin θ, if the 
angle is expressed in radians. (This is valid for angles up to approximately 10°, 0.17 rad.). So that:

The angle for the first minimum of a single-slit diffraction pattern is:

θ = 
λ
b 

Similar reasoning will show that other diffraction minima will occur at angles, θ = 2λ/b, 3λ/b, 
4λ/b… and so on (θn = nλ/b). These angles are represented on the intensity-angle graph shown in 
Figure C3.51.

θ = λ
b

l
b b

2λ
b
3λθ =

b
2λθ = θ = θ =

b
3λθ = 1st minimum

as seen on a screen
Re

la
tiv

e
in

te
ns

ity

Angle

	■ Figure C3.51 Variation of intensity with angle for single-slit diffraction

Top tip!
As we have seen, a full explanation of diffraction involves discussing interference, and this can easily 
cause confusion, especially if they are thought to be two separate phenomena. To be clear: diffraction 
is the change of direction that occurs when waves pass gaps and obstacles. Diffracted wavefronts may 
then undergo superposition effects, which can lead to a pattern being formed which is usually called a 
‘diffraction pattern’, although the principles of interference are used to explain it.

DB

 ◆ Single-slit diffraction 
The simplest diffraction 
pattern is that produced by 
wavefronts interfering after 
they have passed through 
a narrow, rectangular slit. 
The first minimum occurs 
at an angle such that  

θ = 
λ
b

.
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Monochromatic light of wavelength 663 nm (663 ×10−9 m) is shone through a gap of width 
0.0730 mm.

width of central maximum

slit to
screen

distance

centre of
first minimum

(not to scale)

as seen on
the screen

θ
θ

b

	■ Figure C3.52 Monochromatic light shone through a gap

a Calculate the angle at which the first minimum of the diffraction pattern is formed. 
b If the pattern is observed on a screen that is 2.83 m from the slit, determine  the width 

of the central maximum.

Answer

a θ = 
λ
b = 

663 × 10–9

7.30 × 10–5 = 9.08 × 10–3 radians

b θ	≈	sin	θ = 
half width of central maximum

slit to screen distance
 half width of central maximum = (9.08 × 10−3) × 2.83 = 0.0257 m (0.02569... seen on 

calculator display)
 width of central maximum = 0.02569 × 2 = 0.0514 m

WORKED EXAMPLE C3.5

38 Electromagnetic radiation of wavelength 2.37 × 10−7 m 

passes through a narrow slit of width 4.70 × 10−5 m. 
a State in which part of the electromagnetic spectrum 

this radiation occurs.
b Suggest how it could be detected. 
c Calculate the angle of the first minimum of the 

diffraction pattern.

39 Determine the wavelength of light that has a first 
diffraction minimum at an angle of 0.0038 radians when 
it passes through a slit of width 0.15 mm.

40 When light of wavelength 6.2 × 10−7 m was diffracted 
through a narrow slit, the central maximum had a width 
of 2.8 cm on a screen that was 1.92 m from the slit.

 Calculate the width of the slit.

41 a Sketch and label a relative intensity–angle graph for 
the diffraction of red light of wavelength 6.4 × 10−7 m 

through	a	slit	of	width	0.082	mm.	Include	at	least	five	
peaks of intensity. 

b Add to your graph a sketch to show how 
monochromatic blue light would be affected by the 
same slit.
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 ATL C3C: Thinking skills 

Providing a reasoned argument to 
support conclusions

Resolution

When light waves enter our eyes, they are diffracted and this 
affects our ability to see detail. The ability of our eyes (and/or  
optical instruments) to see objects as separate is called 
resolution. For example, our eyes will not be able to resolve the 
individual leaves seen on a distant tree.
This is easiest explained by considering two identical sources 
of light at night, for example car headlights a long way away. 
Considering the distance involved, we can assume that the light 
waves are effectively emitted from points sources, but when they 
are received by the eye, the images on the back of the eye (retina) 
are not points, but diffraction rings. (Rings are formed because 
the aperture in the eye is circular.) Consider Figure C3.53.
When the lights are close (Figure C3.53a), we can see two 
headlights, but when the lights are a long way away (maybe 
5 km or more), the diffraction patterns overlap and cannot be 
distinguished – only one light is seen.

a b

 

	■ Figure C3.53 Images of two point sources observed through 
circular apertures that are a easily resolvable and b just resolvable

Most of the wave intensity will be concentrated near the centre of 
diffraction rings, so that under most circumstances, diffraction 
effects are not significant. However, when we want to see fine 
details under a microscope, or make astronomical observations on 
distant objects, diffraction is the major factor limiting resolution.
We have seen that the amount of diffraction at an aperture can 
be represented by the ratio λ/b, so that the resolution of any 
telescope, or a microscope, can be improved by increasing 
the width of the aperture receiving the waves, or reducing the 
wavelength involved (often not possible).
Radio telescopes such as that seen in Figure C3.54 are much 
larger than optical telescopes. Explain why. Support your 
explanation with scientific reasoning.

	■ Figure C3.54 The Jodrell Bank radio telescope in England, UK

 ◆ Resolution (optical) 
The ability of an imaging 
system to identify objects 
as separate. 

a ba b

Two slits, multiple slits and diffraction gratings

SYLLABUS CONTENT

 Interference patterns from multiple slits and diffraction gratings as given by: nλ = d sin θ. 

In this section we will discuss 
l the advantages of passing light waves through more and more parallel slits
l how the pattern of single-slit diffraction affects interference between two or more slits.

Earlier in this topic we discussed the interference patterns seen when light waves pass through 
two narrow slits which are close together: for a given wavelength, λ, we saw that the spacing, s, of 
the pattern seen on a fixed screen depends on the separation of the slits, d, and the slits to screen 

distance, D (s = λ
D 
d ). See Figure C3.45.

Before we look at this in more detail, we need to obtain a more generalized equation which can 
be used for predicting where constructive interference occurs with any number of slits. Consider 
Figure C3.55, which shows two (almost) parallel rays from adjacent slits representing plane waves 
which interfere constructively when they have an angle θ to the original direction in which the 
waves were travelling. (For the moment, we will not consider any interference effects between 
wavelets from the same slit.)

LINKING QUESTIONS
l What can an 

understanding 
of the results of 
Young’s double-slit 
experiment reveal 
about the nature 
of light?

l What evidence is 
there that particles 
possess wave-like 
properties such as 
wavelength? (NOS)

These questions link 
to understandings in 
Topic E.2.
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The extra distance travelled by the lower ray, the path difference, can be determined 
from the right-angled triangle: path difference = d sin θ.

Since the waves interfere constructively, we know that the path difference must also be 
equal to a whole number, n, of wavelengths. This leads to:

Constructive interference occurs at angles such that:

nλ = d sin θ

In other words, constructive interference will occur at angles which have sines equal to 
λ/d, 2λ/d, 3λ/d, 4λ/d … and so on.

sin θ = 
nλ
d

  

For n = 1 and small angles:

sin θ = 
s
D

 = 
nλ
d

 

(which can be re-arranged to give:

s = 
λD
d

 

as used previously for two slits).

Similarly, destructive interference occurs at angles such that:

(n +  
1
2)λ = d sin θ

These equations can be used with any number of slits. Indeed, its most common application 
is with the very large number of slits of a diffraction grating, as discussed below. In such 
arrangements the angles are typically large enough that sin θ must be used, not θ in radians.

Note that the angles at which constructive and destructive interference occur depends on the 
separation of the slits, but not the number of slits.

Figure C3.56 represents these equations in the form of an intensity–sin θ graph (for a small number 
of slits).

Figure C3.57 shows how what is seen on the screen relates to the various angles and values of n.

Intensity

2λ
d

λ
d

0 sin θλ
d

2λ
d

	■ Figure C3.56 Variation of intensity 
with angle for multiple-slit interference

θ1

θ3

2 or
more slits

(not to scale)

n = 1

n = 2

n = 3

n = 1

n = 2

n = 3

n = 0

θ2

	■ Figure C3.57 Separation and numbering of fringes seen on a screen

DB

Common 
mistake
Students often confuse 
the equations θ = λ/b 
and sin θ = nλ/d.

θ = λ/b predicts the 
small angle for which 
diffraction at a single 
slit, of width b, produces 
an intensity minimum.

sin θ = nλ/d predicts 
the angles at which 
interference of light 
from two or more slits, 
of separation d, produces 
intensity maxima.

path difference = d sin θ

d

θ

θ

θ

	■ Figure C3.55 Explaining 
path difference = d sin θ
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After passing green laser light through a few parallel slits 
of spacing 0.059 mm, an interference pattern was seen 
on a screen placed 3.12 m from the slits. It was similar in 
appearance to that seen in Figure C3.56. If the distance 
from the centre of the pattern to the centre of the third 
fringe was 8.42 cm 
a Determine the:

i tan ii sin
 of the angle, θ3, between two rays from the slits going 

to the centre of the pattern and the centre of the third 
fringe. 

b What is this angle in:
i degrees ii radians? 

c Calculate a value for the wavelength of the laser light.

Answer

a i tan θ3= 
8.42
312  = 0.0270

ii sine of the same angle = 0.0270 (same as tan)
b i 1.55° 

ii 0.0270 (same as tan and sin)
c nλ = d sin θ
 3λ = (0.059 × 10−3) × 0.0270
 λ = 5.3 × 10−7 m
 Because the angles are small the same answer for the 

wavelength could have been determined from  

s = 
λD 
d 

WORKED EXAMPLE C3.6

Effect of having more slits (of the same width and separation)
It has already been stressed that the number of slits does not affect the directions in which 
constructive interference occurs. So, what is the advantage of having a light beam pass 
through more slits? Certainly, this should make the fringes brighter / more intense, but there is 
another, more important, reason for using multiple slits: the intensity peaks become ‘sharper’, 
more precisely located. This is shown in Figure C3.58, which compares the sharpness of the 
interference peaks obtained with different number of slits.
This effect is used particularly in diffraction gratings.

Diffraction gratings
A diffraction grating (see Figure C3.59) is a very large number of slits, very close together. 
A typical grating has 600 parallel slits every mm. We usually refer to this as 600 lines/mm. 
The separation of the centres of such lines, d, is 1.67 × 10−6 m, which is equivalent to about 
(only) three average wavelengths of light. This is much smaller than the width of the slits we 
have been discussing so far.
This very small separation of the slits, d, results in large 
values of sin θ (consider nλ = d sin θ). If the light incident 
on the grating is also spread over a large number of lines, 
the intensity peaks will be well separated, intense and 
sharp. Figure C3.60 compares the intensity peaks produced 
by a diffraction grating to those produced by double slits. 
(The difference in intensity levels will be even greater than 
that shown.)

2 slits

5 slits

10 slits

	■ Figure C3.58 How an 
interference pattern changes 
as more slits are involved

 ◆ Multiple slits By 
increasing the number 
of parallel slits (of the 
same width) on which a 
light beam is incident, it 
is possible to improve the 
resolution of the fringes / 
spectra formed.

 ◆ Diffraction grating A 
large number of parallel 
slits very close together. 
Used to disperse and 
analyse light. 

600 lines/mm

	■ Figure C3.59 
Diffraction grating
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0

n = 3 n = 3

pattern due
to two slits

pattern due
to diffraction

grating

n = 2 n = 2
n = 1 n = 1

Relative
intensity

sin θ

Use the data in the paragraphs above 
to calculate the angles (in degrees) 
for the first, second and third 
peaks from the centre, for light of 
wavelength 594 nm (5.94 × 10−7 m).

Answer
nλ = d sin θ
For n = 1, sin θ = 

λ 
d  = 

5.94 × 10–7 
1.67 × 10–6  = 0.3557 ⟹ θ = 20.8 °

For n = 2, sin θ = 2 × 0.3557 = 0.7114 ⟹ θ = 45.3 °
For n = 3, sin θ = 3 × 0.3557 = 1.067 ⟹ sin θ > 1, which is not possible.
Only two peaks can be seen under these conditions. This is common when 
using gratings. One or two intense peaks are usually all that are required.

WORKED EXAMPLE C3.7

Observing spectra with diffraction gratings

Diffraction gratings are widely used for producing spectra and determining unknown wavelengths 
of light. (Prisms can also be used.)

Continuous white light spectrum
If white light is sent through a diffraction grating, different wavelengths/colours will be sent in 
slightly different directions. The light will be dispersed into spectra, as seen in Figure C3.61.

diffraction grating 
with 600 lines/mm

white light
white central maximum

1st-order spectrum

1st-order spectrum

2nd-order spectrum

2nd-order spectrum

	■ Figure C3.60 Comparing 
the maxima produced 
by double slits and a 
diffraction grating using 
monochromatic light

	■ Figure C3.61 White 
light passing through a 
diffraction grating
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We commonly refer to the order of a spectrum. All the wavelengths / colours with n = 1 are 
called the first-order spectrum, all the wavelengths / colours with n = 2 are called the second-order 
spectrum and so on.

Line spectra
If atoms of a particular element, or some compounds, are given enough energy they will emit 
light in the form of a line spectrum (see Figure C3.62), not a continuous white light spectrum. 
This is discussed in much more detail in Topic E.1, and a full understanding is not expected here.

Diffraction gratings offer an excellent way of producing and measuring line spectra. This is 
shown in Figure C3.63, which compares the ability of double slits and a diffraction grating to 
produce separate lines. The grating produces a much greater resolution.

Diffraction grating have very large numbers of lines very close together. This means that they 
are excellent at producing intense line spectra with high resolution.

0

from double slits

from diffraction
grating

Relative
intensity

sin θ

	■ Modulation by single-slit diffraction

SYLLABUS CONTENT

 The single-slit pattern modulates the double-slit interference pattern.

 ◆ Spectral orders 
Considering the diffraction 
grating equation, 
nλ = d sin θ: different 
orders correspond to 
different values of n.

 ◆ Spectrum, line 
A spectrum of separate 
lines (rather than a 
continuous spectrum), each 
corresponding to a discrete 
wavelength and energy.

	■ Figure C3.62 Line 
spectra of various elements

	■ Figure C3.63 High 
resolution produced by 
diffraction gratings
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The explanation of the interference effects produced between light waves coming from multiple 
slits (including diffraction gratings) has so far ignored one very important factor: the effect of the 
single-slit diffraction pattern produced by the interference of secondary wavefronts within each 
and every slit. (We will assume that all slits are identical.)

The conclusions from a detailed superposition analysis of all wavefronts can be expressed in the 
following description:

The intensity of the interference peaks produced by double slits, or multiple slits, is modulated 
by the shape of the single-slit diffraction produced by each individual slit.

This is explained by Figure C3.64. Note that d must always be larger than b, so that the spacing of 
the interference pattern must always be smaller than the spacing of the diffraction pattern from 
each slit. The shape and spacing of the single-slit diffraction pattern act as a guiding ‘envelope’ for 
the size of the interference peaks.

missing
third order

Relative
intensity

sin θλ
b

– λ
b

interference peaks
as predicted by

nλ
d

sin θ =λ
b

    shape of single slit
    diffraction pattern as

predicted by θ (= sin θ) = 
modulated

interference pattern

	■ Figure C3.64 How single-slit diffraction modulates multiple slit interference

This ‘modulation’ can result in some orders being suppressed or missing. For example, the third 
order in Figure C3.64 and the fourth and fifth orders in Figure C3.65.

	■ Figure C3.65 Missing orders because of the modulation effect of single-slit diffraction

 ◆ Modulation Changing 
the amplitude (or 
frequency) of a wave 
according to variations in a 
secondary effect.
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42 Light of wavelength 460 nm is incident normally on 
a diffraction grating with 200 lines per millimetre. 
Calculate the angle to the normal of the third-order 
maximum.

43 A diffraction grating is used with monochromatic light 
of wavelength 6.3 × 10−7 m and a screen a which is 
perpendicular distance of 2.75 m away.

 Calculate how many lines per millimetre are on 
the diffraction grating if it produces a second-order 
maximum 68 cm from the centre of the pattern.

44 Monochromatic light of wavelength 530 nm is incident 
normally on a grating with 750 lines per millimetre. The 
interference pattern is seen on a screen that is 1.82 m 
from the grating.

	 Calculate	the	distance	between	the	first	and	second	
orders seen on the screen.

45 A prism can also be used to produce a spectrum. Outline 
why red light is refracted less than blue light in a prism, 
but red light is diffracted more than blue light by a 
diffraction grating.

46 When using white light, explain why red light in the 
second-order spectrum overlaps with blue light in the 
third-order spectrum.

47 Sketch a relative intensity against sin θ graph for 
monochromatic light of wavelength 680 nm incident 
normally on a diffraction grating with 400 lines per mm.

48 A diffraction grating produced two first-order maxima 
for different wavelengths at angles of 7.46° and 7.59° to 
the normal through the grating. This angular separation 
was not enough to see the two lines separately.

 What is the angular separation of the same lines in the 
second order?

49 Figure C3.66 shows a centimetre ruler placed next to an 
interference pattern seen on a screen which was placed 
3.40 m away from double slits. 
a If the separation of adjacent slits was 0.64 mm, 

determine the wavelength of the light being used. 
b Estimate the width of the individual slits. 
c How would the pattern change if the light passed 

through 10 slits (of the same width and separation)?

0 1 2 3 4 5

	■ Figure C3.66 A centimetre ruler placed next to an interference pattern
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C.4   Standing waves and resonance 383

C.4 Standing waves and resonance

• What distinguishes standing waves from travelling waves?
• How does the form of standing waves depend on the boundary conditions?
• How can the application of force result in resonance within a system?

Guiding questions

The nature of standing waves

SYLLABUS CONTENT

 The nature and formation of standing waves in terms of superposition of two identical waves 
travelling in opposite directions.

 Nodes and antinodes, relative amplitude and phase difference of points along a standing wave.

So far, the discussion of waves has been about travelling waves, which transfer energy progressively 
away from a source. Now we turn our attention to waves that remain in the same position.

Consider two travelling waves of the same shape, frequency, wavelength and amplitude moving 
in opposite directions, such as shown in Figure C4.1, which could represent transverse waves on a 
string or a rope.

	■ Figure C4.1 Two travelling waves of the same shape, frequency, 
wavelength and amplitude moving in opposite directions

As these waves pass through each other, they will combine to 
produce an oscillating wave pattern that does not change its 
position. Such patterns are called standing waves.

Standing waves usually occur in confined systems in which 
waves are reflected back upon each other repeatedly.

Typical examples of standing wave patterns (on strings) are 
shown in Figure C4.2. Note that a camera produces an image 
over a short period of time (not an instantaneous image) and 
that is why the fast-moving string appears blurred. This is 
also true when we view such a string with our eyes.

	■ Figure C4.2 Standing waves on a stretched string

369917_14_IB_Physics 3rd_Edn_SEC_C_4.indd   383369917_14_IB_Physics 3rd_Edn_SEC_C_4.indd   383 04/01/2023   22:5204/01/2023   22:52



Theme C: Wave behaviour384

Simple standing wave patterns can be produced by shaking one end of a rope, or long stretched 
spring, at a suitable frequency, while someone holds the other end stationary. Patterns like those 
shown in Figure C4.2 require high frequencies (because a string is much less massive than a rope), 
but can be produced in a laboratory by vibrating a stretched string with a mechanical vibrator 
which is controlled by variable electrical oscillations from a signal generator. This apparatus can 
be used to investigate the places at which the string appears to be stationary and the frequencies at 
which they occur.

	■ Nodes and antinodes
A standing wave pattern remains in the same place.

Points where the displacement is always a minimum (often zero) are called nodes. Points where 
the amplitude is greatest are called antinodes.

Figure C4.3 represents the third wave from the photograph in Figure C4.2 diagrammatically. Note 
that the distance between alternate nodes (or antinodes) is one wavelength.

A = antinode
N�node N

λ

λ

N N

A A A

N

	■ Figure C4.3 Nodes and antinodes in a standing wave

A system in which there is a standing mechanical wave has both kinetic energy and potential 
energy, but energy is not transferred away from the system in the form of a wave along the system. 
However, there will be energy dissipation within the system because of resistive forces, so that the 
amplitude of the standing wave will decrease, unless it is sustained by energy transferred from an 
external driving frequency (see later).

Nodes occur at places where the two waves are always exactly 
out of phase. At other places, the displacements will oscillate 
between zero and a maximum value which depends on the phase 
difference between the waves moving in opposite directions. At 
the antinodes the two waves are always exactly in phase. You 
should try using a computer simulation to illustrate this time-
changing concept.

Between adjacent nodes all parts of the medium oscillate in 
phase with each other with the same frequency. Each position 
has a constant amplitude, but the amplitudes vary as shown in 
Figure C4.4.

 ◆ Standing wave The 
kind of wave that can be 
formed by two similar 
travelling waves moving 
in opposite directions. The 
most important examples 
are formed when waves 
are reflected back upon 
themselves. The wave 
pattern does not move 
and the waves do not 
transfer energy.

 ◆ Nodes The positions in 
a standing wave where the 
amplitude is zero. 

 ◆ Antinodes The positions 
in a standing wave where 
the amplitude is greatest. 

node node

	■ Figure C4.4 Variation of amplitude between nodes
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Standing waves are possible with any kind of wave (transverse or longitudinal) moving in one, two 
or three dimensions. But, for simplicity, discussion will be confined to one-dimensional waves, 
such as transverse waves on a stretched string, or longitudinal sound waves in pipes.

	■ Boundary conditions
Standing waves occur most commonly when waves are reflected repeatedly back from boundaries 
in a confined space. The frequencies of the standing waves will depend on the nature of the ends 
of the system. These are called the boundary conditions. For example, the ends of a string, or 
rope, may be fixed in one position or free to move; the ends of a pipe could be closed or open. 
When the ends are free to move, we would assume that standing wave has antinodes there. There 
will be nodes at fixed ends.

The boundary conditions of a standing wave system describe whether there are nodes or 
antinodes at the end of the system.

Comparing standing waves with travelling waves
	■ Table C4.1 Comparison of standing waves and travelling waves

Standing waves Travelling waves

Wave pattern standing (stationary) travelling (progressive)

Energy transfer no energy is transferred energy is transferred through the 
medium

Amplitude (assuming no energy 
dissipation)

amplitude at any one place is constant 
but it varies with position between 
nodes: maximum amplitude at 
antinodes, zero amplitude at nodes

all oscillations have the same 
amplitude

Phase all oscillations between adjacent nodes 
are in phase

oscillations one wavelength apart 
are in phase; oscillations between 
are not in phase

Frequency all oscillations have the same frequency all oscillations have the same 
frequency

Wavelength twice the distance between adjacent 
nodes

shortest distance between points in 
phase

	■ Standing wave patterns in strings

SYLLABUS CONTENT

 Standing waves patterns in strings.

If a stretched string fixed at both ends is struck or plucked, it can only vibrate as a standing wave 
with nodes at both ends. The amplitude of the standing wave will usually decrease quickly as 
energy is dissipated.

The simplest way in which it can vibrate is shown at the top of Figure C4.5. This is known as the 
first harmonic. It is usually the most important mode of vibration, but a series of other harmonics 
(modes of vibration) is possible and can occur at the same time as the first harmonic. Some of 
these harmonics are shown in Figure C4.5.

 ◆ Boundary conditions 
The conditions at the ends 
of a standing wave system. 
These conditions affect 
whether there are nodes or 
antinodes at the ends. 

 ◆ Harmonics Different 
frequencies (modes) of 
standing wave vibrations 
of a given system. The 
frequencies are all 
multiples of the frequency 
of the first harmonic.

 ◆ Modes of vibration The 
different ways in which a 
standing wave can arise in 
a given system. 
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1st harmonic

l

2nd harmonic

N NA

N NNA A

N NNNA A A

N NNNNA A AA

3rd harmonic

4th harmonic

λ = 2l/2, f = 2f0

λ = 2l/3, f = 3f0

λ = 2l/4, f = 4f0

λ0 = 2l, frequency = f0

N = node
A = antinode

The first harmonic is the standing wave with the lowest possible frequency, f0 (greatest 
wavelength). Other harmonic are mathematical multiples of this frequency.

If a string is fixed at both ends, the wavelength, λ0, of the first harmonic is 2l, where l is the length 
of the string. The speed of the wave, v, along the string depends on the tension and the mass per 
unit length. If the wave speed is known, the frequency of the first harmonic, f0, can be calculated 
using v = fλ (from Topic C.2):

f0 = 
v
λ0

 = 
v
2l

The wavelengths of the harmonics are, starting with the first (longest), 2l, 
2l 
2 

, 
2l 
3 

, 
2l 
4 

 and so on.

The corresponding frequencies, starting with the lowest, are f0, 2f0, 3f0, 4f0 and so on.

The wavelength of the first harmonic can be found from the length of the system and the 
boundary conditions.

v = fλ can then be used to connect frequency and wave speed.

A stretched rope with two fixed ends has a length of 
0.98 m, and waves travel along it with a speed of 6.7 m s−1.
a Calculate:

i the wavelength of the first harmonic 
ii the frequency of the first harmonic.

b Calculate:
i the wavelength of the fourth harmonic
ii the frequency of the fourth harmonic.

c Explain how your answers would change if the tension 
in the rope was increased.

Answer
a i λ0 = 2l = 2 × 0.98 = 2.0 m (1.96 seen on calculator 

display)

ii f0 = 
v 
λ0 

 = 
6.7 
1.96  = 3.4 Hz

b i λ = 
2l
4  = 

λ0 
4  = 

1.96 
4  = 0.49 m

ii f = 4f0 = 4 × 3.4 = 14 Hz

c The wavelengths would remain the same, but the 
frequencies would increase because the wave would 
travel faster if the tension was increased.

WORKED EXAMPLE C4.1

Standing waves on strings and ropes are usually between fixed ends, but it is possible that one, 
or both, boundaries could be ‘free’. If the two ends are free (an unusual event), there will be 
antinodes at each end / boundary, so that the frequency of the first harmonic will be the same as 
for fixed boundaries, which has nodes at each end.

	■ Figure C4.5 Modes 
of vibration of a stretched 
string fixed at both ends
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If there is a node at one end and an antinode at the other, the wavelength of the first 
harmonic will be greater and its frequency will be lower. An example of this situation 
would be a standing wave produced on a chain hanging vertically. (In that case, the 
wavelength would not be constant: see Question 4.)

Inquiry 1: Exploring and designing

Designing 

Musical instruments

An amazing variety of musical instruments have been used 
all around the world for thousands of years (see Figure C4.6). 
Most involve the creation of standing wave patterns (of 
different frequencies) on strings, wires, surfaces or in tubes 
of some kind. The vibrations disturb the air around them 
and thereby send out sound waves (musical notes).

When musical notes are played on stringed instruments, 
such as guitars, cellos and pianos, the strings vibrate 
mainly in their first-harmonic modes, but various other 
harmonics will also be present. This is one reason why 
each instrument has its own, unique sound. Figure C4.7 
shows a range of frequencies that might be obtained from 
a guitar string vibrating with a first harmonic of 100 Hz.

	■ Figure C4.6 Vina, an Indian stringed instrument
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The factors affecting the frequency of the first harmonic are 
the length of the string, the tension and the mass per unit 
length. For example, middle C has a frequency of 261.6 Hz. 
The standing transverse waves of the vibrating strings are 
used to make the rest of the musical instrument oscillate 
at the same frequency. When the vibrating surfaces strike 
the surrounding air, travelling longitudinal sound waves 
propagate away from the instrument to our ears.

	■ Figure C4.8 Creating standing waves on a cello

Using the following apparatus, design an experiment 
to investigate the sound waves produced by different 
instruments.
l oscilloscope or app on computer or phone
l microphone.

What independent variables will you change or control?

Use a ‘screen capture’ technique on the oscilloscope to 
produce images and compare the waveforms produced.     

 ◆ Oscilloscope An instrument for 
displaying and measuring potential 
differences that change with time.

 ◆ Waveform Shape of a wave.

	■ Figure C4.7 Frequency spectrum 
from a guitar string

369917_14_IB_Physics 3rd_Edn_SEC_C_4.indd   387369917_14_IB_Physics 3rd_Edn_SEC_C_4.indd   387 04/01/2023   22:5204/01/2023   22:52



Theme C: Wave behaviour388

An experiment similar to that shown in Figure C4.9 can be used to determine the speed of 
a wave along a stretched string. 
a If the length of the vibrating string was 79.4 cm and the first harmonic had a frequency 

of 140 Hz, calculate the wave speed. 
b Determine the wavelength and frequency of the fifth harmonic. 
c A student finds the following formula on the internet:

 wave speed =  (tension × 
length
mass ) 

 If the mass of the vibrating string was 2.6 g, and the tension was 147 N, show that use of 
this formula confirms the answer to part a.

l

load

	■ Figure C4.9 Experiment to determine wave speed

Answer
a v = f0λ0 = 140 × (2 × 0.794) = 222 m s–1

b 5f0 = 5 × 140 = 700 Hz

 
λ0 
5  = 

1.588 
5  = 0.318 m

c v =   (147 × 
0.794

0.0026) 
  = 2.1 × 102 m s–1

 This is within 5% of the answer to part a, so the two answers are consistent, within 
experimental uncertainties.

WORKED EXAMPLE C4.2

1 A string on a violin has a length of 32.8 cm and produces 
a note of 262 Hz (middle C). 
a Calculate the speed of the wave on the string. 
b State any assumption that you made. 
c Suggest what will happen to the speed of the wave on 

the string and the frequency of the note if sometime 
later the same string has lost some tension.

2 The velocity of a transverse wave on a string of length 
28 cm is 240 m s−1. 
a Calculate the frequency of the second harmonic 

of a standing wave on this string when both ends 
are fixed. 

b Determine the wavelength of the sound that this 
produces in the surrounding air. Assume the speed of 
sound in air is 340 m s−1.

3 A teacher wishes to show his class standing waves on a 
thin string, similar to those seen in Figure C4.2. He uses 
a vibration generator set at a frequency of 384 Hz. 
a Determine the length of string that is needed to 

produce the fourth harmonic if the speed of the wave is 
285 m s−1. 

b Using the same apparatus, the teacher increases the 
length of the string to exactly 2.00 m. Predict the 
wavelength and frequency of the third harmonic in 
this new arrangement.
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4 The top of a thin chain hanging vertically is shaken with 
increasing frequency until the standing wave pattern seen 
in Figure C4.10 is produced.
a Suggest why the wavelength on this system decreases 

towards the lower end of the chain. 
b Describe the boundary conditions of this system. 
c State which harmonic is shown in the picture. 
d Explain why it is not possible to produce the second 

harmonic on this system.

     	■ Figure C4.10 A standing wave on a hanging chain.

Nature of science: Patterns 
and trends
Pythagoras is often credited with being the first to realize that there 
was a mathematical relationship between musical notes and the 
dimensions of the instrument that produced them. That was about 
2500 years ago. More generally, this may have been one of the first 
occasions when mathematical / ‘scientific’ reasoning was used to 
describe features of everyday life.

	■ Figure C4.11 Pythagoras

	■ Standing wave patterns of air in pipes

SYLLABUS CONTENT

 Standing waves patterns in pipes.

Standing longitudinal waves of sound can be created easily in the air contained by a pipe / tube / 
column. The air may be set into motion by, for example. the simple action of blowing across the 
open end of the pipe. The sound produced by blowing across the top of an empty bottle is an 
everyday example. Musical wind instruments, like trumpets or flutes, use the same principle.

As with strings, in order to understand which wavelengths can be produced, we need to 
consider the length of the system and the boundary conditions.

The first harmonic is the standing wave with the greatest possible wavelength, λ0, and 
lowest possible frequency, f0. Other harmonics are multiples of this frequency.

After determining possible wavelengths, the equation v = fλ can then be used to predict 
harmonic frequencies if the wave speed is known.

Figure C4.12 show the three possible combinations of boundary conditions.

A pipe open at both ends must have antinodes, A, at the ends, and at least one node, 
N, in between. A pipe open at only one end has one antinode and one node as its 
boundary conditions.

A A

N A

N N

l

a

b

c

	■ Figure C4.12 Nodes and antinodes 
at the ends of open and closed pipes
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A pipe closed at both ends (an unusual situation) must have nodes at the ends and at least one 
antinode in between.

Figure C4.13 graphically represents the first three harmonics (vibration modes) for a pipe open at 
both ends.

2nd harmonic , f = 2f0
2l
2

λ =

3rd harmonic ,f = 3f0
2l
3

λ =

1st harmonic λ0 = 2l, f0

l

	■ Figure C4.13 The first three harmonics in a pipe open at both ends

The wavelength of the first harmonic (twice the distance between adjacent nodes or antinodes) is 2l.

Common mistake
Note that the representations of standing longitudinal waves seen in Figure C4.13 and Figure C4.15 
may cause confusion: the curved lines in the diagrams are an indication of the maximum sideways 
displacement of vibrating air molecules. They should not be mistaken for transverse waves, like those 
on a string. Figure C4.14 shows how the second harmonic shown in Figure C4.13 is representing the 
movements of some molecules.

     

	■ Figure C4.14 How the second 
harmonic can represent the 
movements of some molecules

For a pipe which is closed at one end, but open at the other, the possible standing waves are shown 
in Figure C4.15. The first harmonic has a longer wavelength and lower frequency than for a 
similar length pipe which is closed, or open, at both ends. Note that only odd-numbered harmonics 
are possible with these boundary conditions.

3rd harmonic
frequency = 3f0 

l4
3

λ =

5th harmonic
frequency = 5f0 

l4
5

λ =

1st harmonic
λ0 = 4l

frequency = f0 

l

   

	■ Figure C4.15 
Harmonics in a pipe 
open at one end
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One way of demonstrating standing sound waves in air is by using a small loudspeaker attached to 
the end of a long, clear plastic tube, which is closed at the other end. See Figure C4.16. Electrical 
signals of different frequencies can be applied to the loudspeaker which then sends sound waves 
of the same frequencies down the tube. When the waves reflect back off the end of the tube, a 
standing wave can be set up only if the frequency is equal to the frequency of the one of the possible 
harmonics. Some powder can be scattered all along the pipe and when the loudspeaker is turned on 
and the frequency carefully adjusted, the powder is seen to move into separate piles. This is because 
the powder tends to move from places where the vibrations of the air are large (antinodes) to the 
nodes, where there are no vibrations. The tube may be considered as closed at both ends.

speaker

heaps of powder

wires to
signal
generator

NA NA NA NA NA NN A

Consider Figure C4.16. 
a State which harmonic is shown in Figure C4.16.
b Calculate the wavelength of this standing wave if the length of the tube is 73.5 cm. 
c Determine the speed of the sound wave in air if the frequency used by the loudspeaker 

was 1410 Hz. 
d Calculate the theoretical frequencies of the first two observable harmonics if the tube 

was left open at the end on the right-hand side.

Answer
a  sixth
b 73.5/3 = 24.5 cm
c v = fλ = 1410 × 0.245 = 345 m s−1 (345.45 seen on calculator display)
d See Figure C4.15. The wavelength of the first harmonic will be 4 × length of tube = 

2.94 m.

 f0 = 
v 
λ  = 

345.45 
2.94  = 1.18 × 102 Hz (117.5 seen on calculator display)

 The second harmonic does not occur.
 Frequency of third harmonic = 3f0 = 3 × 117.5 = 353 Hz

WORKED EXAMPLE C4.3

Figure C4.17 shows another way of investigating standing waves in pipes. The length of the pipe 
is easily changed by raising or lowering it in the tall container of water. The pipe is always open at 
one end and closed at the other. Air in the pipe is disturbed by the pure, single frequency emitted 
from a tuning fork (see Figure C4.20) placed just above the open end of the tube, and the length 
of the pipe is adjusted until the sound of the standing wave becomes audible.

	■ Figure C4.16 
Demonstrating a standing 
wave with a loudspeaker

 ◆ Tuning fork Device 
designed to vibrate at only 
one precise frequency.
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The length of the tube seen on the left of the 
Figure C4.17 has been adjusted to the shortest length for 
which a standing wave can be heard. This will be the 
first harmonic for a tube of that length. The position on 
the right corresponds to the third harmonic for a tube of 
the new length. (The speed, wavelength and frequency 
of the wave are unchanged.) There is no second 
harmonic possible with these boundary conditions 
(open at one end, closed at the other). Higher harmonics 
may be heard if the tube and container are long enough.

 ATL C4A: Social skills 

Working collaboratively
Suggest how physics and music students could work 
together to produce a presentation called ‘The Science of 
Music’ for the rest of their year group.

Consider how you could share your presentations online 
for future students.

TH
E IB LEARNER PRO

FILE

For these questions, where necessary, assume that the speed 
of sound in air is 342 m s−1.

5 a If the tuning fork in Figure C4.17 had a frequency of 
384 Hz, show that the length of the pipe needed for 
the first harmonic to be heard is about 20 cm. 

b How far will the pipe need to be raised until the next 
harmonic is heard?

6 Sketch the first three harmonics for air in a pipe which is 
closed at both ends.

7 A pipe has a length of 1.32 m and is closed at both 
ends. Determine the wavelength and frequency of its 
third harmonic.

8 The flute is the oldest of musical instruments. See 
Figure C4.18. There are a very large number of designs. 
It can be considered as a pipe which is open at both ends. 
Sound is produced when air is blown across an opening 
near the end of the pipe.
a Determine what length (cm) of pipe will produce a 

first harmonic of frequency 493 Hz.
b Explain the purpose of the holes along the length of 

the flute. 
c A clarinet is a similar type of musical instrument to a 

flute, but the pipe is closed at one end. Compare the 
length of the pipes of a flute and clarinet that produce 
musical notes of the same frequency.

     
	■ Figure C4.18 Radha 

listening to Krishna’s flute

9 Apparatus similar to that shown in Figure C4.17 was 
used to investigate the variation of the speed of sound 
with air temperature. At a temperature of 30 °C, adjacent 
nodes were found to be separated by a distance of 
23.3 cm when using a frequency of 750 Hz. 
a Determine the speed of sound at this temperature. 
b Give a molecular explanation of why this speed is 

greater than the 342 m s−1 used in other questions.

10 Water being poured into a bottle may produce many 
sounds, but there will usually be a noticeable increase 
in frequency of the sound as the bottle fills up. Explain 
this effect.

vibrating
tuning fork

first position
where loud
sound is heard

vibrating
air column

water

L2

L1

second position
where loud
sound is heard

	■ Figure C4.17 Demonstrating standing waves with a tuning fork
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TOK

The natural sciences
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?

When electrons were discovered in 1897, they were believed to be tiny solid particles. Twenty-seven 
years later, it was proved that electrons have wave properties (see Theme E). This led on to the theory 
that electrons could only be confined within atoms in the form of standing waves.

Most people will struggle to visualize electrons as three-dimensional standing waves in unimaginably 
small atoms. But, after about one hundred years, this still remains the accepted theory. There is no good 
reason for us to believe that the atomic-scale particles must behave in ways that are the same as masses 
which we can see with our eyes.

Natural frequencies of vibration

SYLLABUS CONTENT

 The nature of natural frequency.
 The effects of light, critical and heavy damping on the system.

When many objects are struck briefly by an external force, they vibrate ‘freely’, or ‘naturally’ 
(although, for most objects, the vibrations may be insignificant and/or very short-lasting because 
energy is quickly dissipated into the surroundings). Such vibrations often disturb the air around 
them and send longitudinal waves into the environment, which may be heard as sound, if they 
have a suitable frequency.

When an object is disturbed and then left to oscillate without further interference, 
it is said to oscillate at its natural frequency (or frequencies).

Relatively small amplitude mechanical oscillations are commonly called vibrations.

The simplest examples of natural frequencies are those of a simple pendulum and 
mass on a spring, as discussed in Topic C.1. A further example is a clamped ruler, or 
hacksaw blade, as shown in Figure C4.19.

Vibrating objects will oscillate at a natural frequency(s) which depends on their 
dimensions and masses.

Tool 3: Mathematics

Linearize a graph

A student has read that the square of the time period of a hacksaw blade oscillator is 
proportional to the cube of the vibrating length.

What graph, involving frequency, should she draw in order to see if the relationship is correct?

An object made of only one material in a simple shape, such as a tuning fork (see Figure C4.20), 
may produce a single, ‘pure’, natural frequency. But most objects will have more complicated 
structures and a range of natural frequencies, although one frequency may dominate.

	■ Figure C4.19 Vibrating hacksaw blade

 ◆ Frequency, natural 
The frequency at which a 
system oscillates when it 
is disturbed and then left 
to oscillate on its own, 
without influence from 
outside.

 ◆ Vibration Mechanical 
oscillation (usually of 
relatively small amplitude).
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The two-dimensional standing wave patterns of a horizontal metal plate can be observed by 
placing small grains, such as fine sand or salt, onto a surface that is disturbed into vibration at 
the plate’s natural frequencies. See Figure C4.21. (Oscillations can be easily maintained using a 
mechanical oscillator, driven by a signal generator, to vibrate the plate.)

	■ Figure C4.20 This tuning fork produces a 
frequency of exactly 440 Hz (a musical A)

	■ Figure C4.21 Demonstrating the oscillations of a metal plate

	■ Damping
The motions of all macroscopic objects have resistive forces of one kind or another acting against 
them. Resistive forces will always act in the opposite direction to the instantaneous motion of an 
oscillator, and result in a reduction of its speed and kinetic energy.

Therefore, as with all other mechanical systems, useful energy is transferred from an oscillator 
into the surroundings (dissipated) in the form of thermal energy and maybe some sound. 
Consequently, an oscillator will move at slower and slower speeds, and its successive amplitudes 
will decrease in size. This effect is called damping.

Damping is the dissipation of energy from an oscillator due to resistive forces.

It is common for the frequency (and time period) of a vibration to remain approximately constant 
during damping, as shown by the graph in Figure C4.22. This is because, although the 
displacements are reduced, the speeds and accelerations also decrease.

D
is

pl
ac

em
en

t

Time

     

	■ Figure C4.22 Decreasing 
amplitude (at constant frequency) 
of a damped oscillation

Tool 3: Mathematics

Propagate uncertainties in processed data

Successive amplitudes (in cm) of the free vibration of a hacksaw blade were measured to be 
2.7, 2,4, 2.1, 1.8, 1.6, 1.4, 1.3, 1.1. The measurements were made to the nearest millimetre. 
Considering uncertainties in measurement, is it possible that this data fits an exponential 
pattern?

Top tip!
The magnitude of 
each successive peak 
of the graph shown 
in Figure C4.22 
can be determined 
by multiplying the 
previous value by the 
same fraction. For 

example: 1, 
1 
2, 

1 
4, 

1 
8… 

(This is known as an 
exponential series, or a 
geometric sequence.)
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Damping can be investigated experimentally using simple apparatus like 
that shown in Figure C4.19, but with horizontal cards of different areas 
taped to the blade in order to increase air resistance.

The amount (degree) of damping in oscillating systems can be very 
different, as shown in Figure C4.23.

Some oscillations are heavily damped because of considerable frictional 
forces. In effect no oscillations occur because resistive forces are such that 
the object takes a long time (compared to its natural time period) to return 
to its equilibrium position.

Conversely, an oscillator may be lightly damped, so that it continues to oscillate, taking a relatively 
long time to dissipate its energy. A pendulum and a mass oscillating on a spring are good 
examples of lightly damped systems.

If an oscillation is opposed by resistive forces, such that it settles relatively quickly (compared 
to its natural time period) back into its equilibrium position, without ever passing through it, the 
process is described as critical damping. A car’s suspension (see Figure C4.24) is an example of 
this kind of damping.

11 Describe how the natural frequency of 
a a simple pendulum, 
b a mass hanging vertically from a spring 

 can be increased.

12 A student was investigating the vibrations of a hacksaw blade, as shown in Figure C4.19. 
 She displaced the end of the blade and then left it to vibrate freely, but she found that the 

vibrations were too quick for her to observe easily. 
a Suggest how she could decrease the frequency of the vibrations. 
b The blade then vibrated with a frequency of 1.0 Hz, while its amplitude was (almost) 

constant, at 0.50 cm, for several seconds.
 Sketch a displacement–time graph for the first two seconds of its motion. 
c The vibrations were then damped.
 Add a second line to your sketch for part b, to represent the damped oscillations. 
d Suggest how the student could have damped the vibrations.

13 Outline why the fine sand shown in Figure C4.21 moves into places which demonstrate the 
standing wave pattern on the plate.

14 Figure C4.25 shows an automatic 
door closer. 
a Describe its intended purpose. 
b What type of damping does it exhibit? 
c Give an example of where it might 

be used.

	■ Figure C4.25 Automatic door closer

	■ Figure C4.24 A 
car’s shock absorber

 ◆ Vibration (free) 
Vibration without any 
external influence.

 ◆ Damping (critical) 
When an oscillating system 
returns relatively quickly 
to its equilibrium position 
without oscillating.

lightly damped

heavily damped

critically
damped

A
m

pl
itu

de

Time
	■ Figure C4.23 Light 

damping, heavy damping 
and critical damping
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	■ Forced vibrations

A forced vibration (oscillation) occurs when an external oscillating (periodic) force acts 
on a system. This may tend to make it oscillate at a frequency which is different from its 
natural frequency.

We are surrounded by a range of oscillations. It is important to consider how these 
oscillations affect other things around them. In other words, what happens when an 
external oscillating force is continuously applied to a separate system?

To understand this, it is helpful to consider a very simple example: what happens 
when we keep pushing a child on a swing (see Figure C4.26)?

In this case it is fairly obvious: it depends on when we push the swing and in 
which direction. If we want bigger swings (increasing amplitudes), then we should 
push once every oscillation in the direction in which the child is moving at that 
moment. In more scientific terms, we would say that we need to apply an external 
force that has the same frequency as, and is in phase with, the natural frequency of 
the swing.

The most important examples of forced oscillations are those in which the frequency 
of the external force (driving frequency) is the same as the natural frequency. 
The child on the swing described above is a good example of this. When a regular 
periodic stimulus to a system results in an increasing amplitude the effect is 
called resonance.

	■ Resonance

SYLLABUS CONTENT

 The nature of resonance including the amplitude of oscillations based on driver frequency.
 The effect of damping on the maximum amplitude and resonant frequency of oscillation.

Resonance is the name given to the increase in amplitude and energy of an oscillation that 
occurs when a periodic external driving force has the same frequency as the natural frequency 
of a system.

The oscillations of the driving force must be in phase with the natural oscillations of the system.

Simple quantitative laboratory experiments into the effects of resonance can be difficult to 
perform, but they can produce interesting results that show how varying the driving frequency 
affects the amplitude of an oscillating system. When the force is first applied, the oscillations 
may be erratic, but the system will settle into a regular pattern of movement with a measurable 
maximum amplitude.

Figure C4.27 shows a possible arrangement. The resonant frequency of the mass–spring system 
can be changed by using different springs and/or different masses. The driving frequency is 
provided by the vibration generator, which can be driven using different frequencies from the 
signal generator.

A typical frequency–response graph drawn from the results of an experiment like that shown in 
Figure C4.28 rises to a maximum amplitude at the resonant frequency. This occurs when the rate 
of energy dissipation (damping) has risen to a level that is equal to the power supplied from the 
source of the driving frequency.

	■ Figure C4.26 How can we increase 
the amplitude of a swing?

 ◆ Frequency, driving The 
frequency of an oscillating 
force (periodic stimulus) 
acting on a system from 
outside. Sometimes called 
forcing frequency.

 ◆ Resonance The increase 
in amplitude that occurs 
when an oscillating system 
is acted on by an external 
periodic force that has 
the same frequency as the 
natural frequency of the 
system. The driving force 
must be in phase with the 
natural oscillations of 
the system.

 ◆ Frequency–response 
graph Graph used to 
show how the amplitude 
of a system’s oscillations 
responds to different 
driving frequencies.

 ◆ Resonant frequency 
The frequency at which 
resonance occurs.

 ◆ Vibration (forced) 
Vibration affected by 
external periodic forces.
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signal generator
to change driving

frequency

vibration generator

spring

masses

	■ Figure C4.27 Investigating the resonance of a mass on a spring

light damping

natural
frequency

Driving frequency

increased damping
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	■ Figure C4.28 Typical frequency–response 
curves with different degrees of damping

The resonant frequency is at, or very close to, the natural frequency, but the sharpness and height 
of the peak also depend on the amount of damping in the system. The greater the damping, 
the greater the dissipation of energy and, therefore, the smaller the amplitude. The value of the 
resonant frequency reduces slightly with greater damping.

If there is a powerful input, or very little damping, amplitudes of vibration can become large and 
this may have destructive, or useful, consequences.

The energy of an oscillation is proportional to its amplitude squared.

There may be smaller resonance peaks at values of the driving frequency which are equal to the 
natural / resonant frequency divided by 2, 3, 4 and so on (not shown in the diagram).

Inquiry 2: Collecting and processing data

Processing data

Table C4.2 shows the results obtained in an 
experiment similar to that seen in 
Figure C4.27. The uncertainties in this 
experiment were significant.

Draw a graph of these results, including 
uncertainty bars, with a curve of best 
fit to determine a value for the resonant 
frequency. You should not assume that the 
largest recorded measurement is the peak of 
the graph.

	■ Table C4.2 Results of resonance experiment

Applied frequency /  
Hz ± 2 Hz

Maximum amplitude /  
cm ± 0.5 cm

4 1.7

6 2.1

8 2.7

10 4.9

12 5.4

14 3.3

16 2.5

18 1.9

LINKING QUESTIONS
l How does the 

amplitude of 
vibration at 
resonance depend 
on the dissipation 
of energy in the 
driven system?

l How can resonance 
be explained in terms 
of conservation 
of energy?

These questions link 
to understandings in 
Topic A.3.

Examples of resonance

Some examples of resonance are useful but many more are unwanted, and we usually try to 
reduce their destructive effects. Avoiding resonance in all types of structure is a major concern for 
engineers and it provides an interesting combination of physics theory and practical engineering.
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Unwanted resonance
Parts of almost all machinery (and their immediate surroundings) 
may vibrate destructively when their motors are operating at 
certain frequencies. For example, a washing machine may 
vibrate strongly when the spinner is running at a certain 
frequency, and parts of vehicles can vibrate when the engine 
reaches a certain frequency, or they travel at certain speeds.

Earthquakes may well affect some buildings more than others. 
The buildings that are most damaged are often those that have 
natural frequencies closest to the frequencies of the waves 
produced by the earthquake (Figure C4.29).

Strong but steady winds, or currents, can also cause dangerous resonance 
in structures such as bridges and towers. This is often due to the effect of 
eddies and vortices as the wind or water flows around the structures. See 
Figure C4.30.

If you have ever crossed a small suspension bridge for walkers (such as 
the one in Figure C4.31), you will probably know how easy it is to set 
it vibrating with increasing amplitude by shaking it or stamping your 
feet at a certain frequency. This is because it would be too difficult or 
expensive to build such a simple bridge with a natural frequency that is 
very different from a frequency that people can easily reproduce, or to use 
a design that incorporated damping features.

The resonance of bridges has been well understood for many years and the flexibility of 
suspension bridges makes them particularly vulnerable. The famous collapse of the newly 
built Tacoma Narrows Bridge in the USA in 1940 is widely given as a simple example 
of resonance caused by the wind, although this is only part of a much more complex 
explanation. Videos of the collapse are easily found on the internet. In June 2000, the 
Millennium Bridge across the River Thames in London had to be closed soon after its 
opening because of excessive lateral (sideways) oscillations due to resonance (Figure C4.32).

In this case positive feedback was important. The slow oscillations of the bridge made 
people sway with the same frequency, and their motion simply increased the periodic forces 
on the bridge that were causing resonance. The problem was solved by adding energy-
dissipating dampers, but it was about 18 months before the bridge could reopen.

	■ Figure C4.29 Resonance may be one reason why 
some buildings collapse in an earthquake

wind

oscillating
forces

structure likely
to resonate

	■ Figure C4.30 A steady wind can cause oscillating forces 
because of the alternate way in which vortices can be formed

	■ Figure C4.31 Walker on a 
suspension bridge in Nepal

	■ Figure C4.32 The Millennium Bridge in 
London was affected by resonance

To reduce the risk of damage from resonance engineers can:
l alter the shape of the structure to change the flow of the air 

or water past it
l change the design so that the natural frequencies are not 

the same as any possible driving frequencies – this will 
involve changing the stiffness and mass of the relevant parts 
of the structure

l ensure that there is enough damping in the structure and 
that it is not too rigid, so that energy can be dissipated.
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Useful resonance
l The molecules of certain gases in the atmosphere oscillate at the same frequency as thermal 

radiation emitted from the Earth. These gases absorb energy because of resonance; this results 
in the planet being warmer than it would be without the gases in the atmosphere. This is 
known as the greenhouse effect, as discussed in Topic B.2.

l Microwave ovens use electromagnetic radiation in the microwave region. The microwave 
wavelength equals a vibrational frequency of water molecules, so that the molecules absorb 
the radiation.

l Your legs can be thought of as pendulums with their own natural frequency. If you walk with 
your legs moving at that frequency, energy will be transferred more efficiently and it will be 
less tiring (we tend to do this without thinking about it).

l Quartz crystals can be made to resonate using electronics – the resulting oscillations are useful 
in driving accurate timing devices such as watches and computers.

l The sound from musical instruments can be amplified if the vibrations are passed on to a 
supporting structure that can resonate at the same frequency. An obvious example would be 
the strings on a guitar causing resonance in the box on which they are mounted. Because the 
box has a much larger surface area it produces a much louder sound than the string alone.

l Magnetic resonance imaging (MRI) is a widely used technique for obtaining images of features 
inside the human body. Electromagnetic waves of the right frequency (radio waves) are used to 
change the spin of protons (hydrogen nuclei) in water molecules in the patient’s body.

15 Consider the oscillations of a mass on a spring, as shown 
in Figure C1.5. 
a Use the formula from Topic C.1 to determine the 

natural frequency of a 740 g mass oscillating vertically 
on a spring which has a spring constant of 17.2 N m−1. 

b Sketch a frequency–response curve to show how 
the amplitude of oscillation could change when 
the applied frequency from the vibration generator 
increases from 0.5 Hz to 2.0 Hz. 

c Discuss how the results of the experiment will 
change if the mass was placed in water (in a beaker). 
Illustrate your answer by adding a second curve to 
your sketch for part b of this question.

16 a Estimate the natural frequency of your leg when it 
swings freely like a pendulum. 

b If, when walking, your leg moves with the same 
frequency, predict your approximate speed, in km h−1.

17 a Use the internet to find out a typical frequency of 
waves generated by an earthquake. 

b Suggest ways in which an architect / civil engineer 
can ensure that their designs do not resonate 
dangerously at that frequency.

18 It is claimed that an opera singer can shatter a wine glass 
using sound resonance. Research the internet for any 
video evidence of this effect. Quote your conclusions 
and sources.

19 A wing mirror on a car resonates at multiples of its 
natural frequency of 20 Hz. 
a Sketch a graph to show the frequency response of the 

mirror as the rpm (revolutions per minute) of the car 
engine increase from 1000 to 4000. 

b Suggest how the vibrations of the mirror could 
be reduced. 

c Add a second curve to your graph to show the new 
frequency response.

20 Carbon dioxide gas in the Earth’s atmosphere, CO2, 
is an important cause of the greenhouse effect. In a 
simplified model, the molecule may be visualized as a 
simple harmonic oscillator, with the two oxygen atoms 
oscillating to and from a central carbon atom, as shown 
in Figure C4.33.

OO C

	■ Figure C4.33 Oscillations of a carbon dioxide molecule

a If each oxygen molecule has a mass of 2.7 × 10−27 kg, 
use the formula for the time period of a mass on a 
spring, with k = 530 N m−1, to determine a value for a 
resonant frequency of the carbon dioxide molecule.

b In what part of the electromagnetic spectrum are 
waves of this frequency to be found?

LINKING QUESTION
l How can the idea 

of resonance of 
gas molecules be 
used to model the 
greenhouse effect? 
(NOS)

This question links 
to understandings in 
Topic B.2.
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C.5 Doppler effect

• How can the Doppler effect be explained both qualitatively and quantitatively?
• What are some practical applications of the Doppler effect?
• Why are there differences when applying the Doppler effect to different types of waves?

Guiding questions

What is the Doppler effect?

SYLLABUS CONTENT

 The representation of the Doppler effect in terms of wavefront diagrams when either the source or the 
observer is moving.

The Doppler effect is the name given to a phenomenon that is observed when there is relative 
motion between a source and an observer of waves. The term ‘observer’ is being used here to 
represent the person, or the device, receiving waves (of any type). The Austrian physicist Christian 
Doppler first identified in 1842 the effect that bears his name.

When there is relative motion between a source of waves and an observer, the waves received 
by the observer will have a different frequency (and wavelength) than the waves emitted by the 
source. This is called the Doppler effect.

The easiest way to explain the Doppler effect is by drawing wavefronts. Figure C5.1a shows the 
common situation in which a stationary source, S, emits waves that travel towards a stationary 
observer, O, with the same speed in all directions. Figure C5.1b shows an observer moving 
directly towards a stationary source and Figure C5.1c shows a source moving directly towards a 
stationary observer.

Similar diagrams can be drawn to represent the situations in which the source and detector are 
moving apart. The Doppler effect may be better understood by observing computer simulations 
which show moving sources or observers.

b Detector moving towards
 stationary source

c Source moving towards
 stationary detector

a Source and detector
 both stationary

O
S

observer, Osource, S OS

	■ Figure C5.1 Wavefront diagrams to demonstrate the Doppler effect

 ◆ Doppler effect When 
there is relative motion 
between a source of waves 
and an observer, the 
emitted frequency and the 
received frequency are not 
the same. 
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The observer in Figure C5.1b will meet more wavefronts in a given time than if it remained in the 
same place, so that the received frequency, f ′, is greater than the emitted frequency, f. 

Since λ = 
v 
f 
 (from Topic C.2) and the wave speed, v, is constant, the received wavelength will be 

less than the emitted wavelength.

In Figure C5.1c, the distance between the wavefronts (the wavelength, λ) between the source and 
the observer is reduced, which again means that the received frequency will be greater than the 

emitted frequency. ( f = 
v 
λ 
 and the wave speed, v, is constant.)

The most common everyday examples of the Doppler effect are with sound, but the effect is 
usually only noticeable if the sound is loud and the movement is fast, from a moving vehicle, 
for example.

	■ Doppler effect for sound waves

SYLLABUS CONTENT

 The nature of the Doppler effect for sound waves.

sound transmitter
observer

	■ Figure C5.2 Demonstrating the Doppler effect with sound waves

Figure C5.2 shows a way in which the Doppler effect with sound can be demonstrated. A small 
source of sound (of a single frequency) is spun around in a circle. When the source is moving 
towards the observer a higher frequency is heard by the observer; when it is moving away, a lower 
frequency is heard.

The speed of sound through air depends only on the physical properties of the air. It does not vary 
with the motion of the source, or the observer. However, the speed with which sound passes a 
moving observer depends on their relative speeds. For example, a sound travelling away from a 
stationary source at 340 m s−1, will pass an observer who is moving directly away from the source 
at 200 m s−1, with a speed of 140 m s−1.

The most common and easiest understood examples of the Doppler effect for sound include 
trains or cars which are moving quickly at a constant speed in an approximate straight line 
towards, or away from, a stationary observer.

Common 
mistake
Ambulances and police 
sirens are often given as 
examples of the Doppler 
effect, which they are. 
But be aware that they 
also emit sounds of 
varying frequency and 
loudness which should 
not be confused with the 
Doppler effect itself.
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Many types of bats use the Doppler effect. See Figure C5.3.

The Doppler effect for sound is covered in more mathematical detail later in this topic 
at the Higher Level.

A train travelling at a constant speed 
approaches a station where it will not 
stop. The driver of the train sounds a 
warning horn, of frequency 200 Hz, 
as the train approaches and then 
passes through the station. Sketch 
graphs (on the same axes) to show 
how the frequency heard by:
a the driver varies with time
b the people at the station varies 

with time.

Answer

Fr
eq

ue
nc

y
/H

z

sound heard
by driver

Time

sound heard by
people at station

200

	■ Figure C5.4 There is a sudden 
frequency change as the train 
passes the people at the station

WORKED EXAMPLE C5.1

The measurement of the rate of blood flow in an artery is an application of the Doppler effect for 
sound (ultrasound), which is shown in Figure C5.5.

transducer

gel

v
θ

pulses

blood flow

the transducer
measures v cos θ 

artery

blood cell

     
	■ Figure C5.5 Measuring blood flow 

rate using the Doppler effect

Pulses of ultrasonic waves are sent into the body from the transducer and are reflected back from 
blood cells flowing in an artery. (A transducer is a general term used to describe any device 
which converts another form of energy into, or from, electrical energy.) The received waves have 
a different frequency because of the Doppler effect, and the measured change of frequency can 
be used to calculate the speed of the blood flowing in the artery. This information can be used by 
doctors to help to diagnose many medical problems. Because the waves usually cannot be directed 
along the line of blood flow, the calculated speed will be the component (v cos θ).

1  Draw diagrams similar to Figure C5.1b and c to 
represent the wavefronts when: 
a an observer is moving directly away from a 

stationary source
b a source is moving directly away from a 

stationary observer.

2 A hospital patient had a Doppler ultrasound scan to check 
the blood flow in an artery, as shown in Figure C5.5. The 
transducer used a frequency of 6.0 MHz, and a healthy 
blood flow rate was expected to be about 10 cm s−1. 

a State whether the detected frequency will be higher, 
or lower, than 6.0 MHz. Explain your answer. 

b i Explain why a calculation based only on the 
frequency change predicts that the blood speed in 
an artery is lower than its true value. 

ii If the patient has a medical problem affecting 
blood flow rate, predict what effect this will have 
on the frequency measurements. 

c Suggest what properties of ultrasound make it useful 
for this medical examination.

	■ Figure C5.3 These bats in Malaysia 
use the Doppler effect to navigate

Top tip!
When the motion of 
the source is directly 
towards, or away from, 
the observer (or the 
other way around), there 
is sudden change of 
frequency when they 
pass. But the change of 
frequency is gradual if 
they do not pass close to 
each other.
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Tool 3: Mathematics

Sketch graphs, with labelled but unscaled axes, to qualitatively 
describe trends

A ‘sketch’ graph should be drawn neatly, using a ruler where appropriate. The axes should 
be clearly labelled, with zeros and negative values indicated (if applicable). Usually there is 
no requirement to add scales, or numerical values to the axes, but important features should 
be labelled.

3 Sketch a frequency–time graph to show how the sound 
heard by the observer in Figure C5.2 varies during one 
oscillation of the sound transmitter.

4 Figure C5.6 shows the shape of waves spreading from the 
front of a boat (its bow).
a Describe the overall shape of the wave fronts.
b Explain why bow waves similar to these can cause 

damage to the surroundings if the boat is close to shore. 	■ Figure C5.6 The shape of waves spreading from the front of a boat

Nature of science: Global impact of science

Shock waves: breaking the sound barrier

As an object, like an aircraft, flies faster and faster, the sound 
waves that it makes get closer and closer together in front of it. 
When an aircraft reaches the speed of sound, at about 1200 km h−1, 
the waves superpose to create a ‘shock wave’. This is shown in 
Figure C5.7.

When an aircraft reaches the speed of sound it is said to be 
travelling at ‘Mach 1’ (named after the Austrian physicist, Ernst 
Mach). Faster speeds are described as ‘supersonic’ and twice 
the speed of sound is called Mach 2, and so on. As Figure C5.8 
shows, the shock wave travels away from the side of the aircraft 
and can be heard on the ground as a ‘sonic boom’.

For many years some engineers doubted if the sound barrier could 
ever be broken. The first confirmed supersonic flight (with a pilot) 
was in 1947. Now it is common for military aircraft to travel 

faster than Mach 1. Concorde and Tupolev 144 were the only 
supersonic passenger aircraft in regular service, but their use has 
been discontinued. There are plans to introduce a new supersonic 
passenger aircraft before the year 2030.

Choose search terms to find out about the planned designs for 
future passenger / commercial supersonic aircraft.

Explore the reasons why previous supersonic airliners were 
discontinued. Were these reasons technological, scientific, 
economic, environmental, political? Explain your reasoning.

It is possible to use a whip to break the sound barrier. If the whip 
gets thinner towards its end, then the speed of a wave along it can 
increase until the tip is travelling faster than sound (in air). The 
sound it produces is often described as a whip ‘cracking’.

subsonic

shock wave

Mach 1 supersonic

	■ Figure C5.7 Creating a shock wave in air 	■ Figure C5.8 Aircraft breaking the sound barrier
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	■ Doppler effect for light and other electromagnetic waves

SYLLABUS CONTENT

 The nature of the Doppler effect for electromagnetic waves.
 The relative change in frequency, or wavelength, observed for a light wave due to the Doppler effect 

where the speed of light is much larger than the relative speed between the source and the observer, as 

given by: 
Δf
f  = 

Δλ
λ  ≈ 

v
c.

Apart from mechanical waves like sound, the Doppler effect also occurs with electromagnetic 
waves, but the situation is more complicated because the speed of electromagnetic waves, as 
measured by any observer, is always the same: it is unaffected by the speed of the source, or the 
speed of the observer (this is a relativistic effect – see Topic A.5 – however, this theory is not of 
concern here).

The following equation for the change (shift) in frequency, Δf (= received frequency – emitted 
frequency), or shift in wavelength, Δλ, can be used if the relative speed between source and 
observer, v, is very much less than the speed of the electromagnetic waves, c (v << c). This is 
usually a valid assumption because of the very high value of c.

Δf
f

 = 
Δλ
λ

 ≈ 
v
c

Using the Doppler effect to determine speeds

Microwaves of known frequency, f, are easily produced and transmitted as a beam which can be 
directed at a moving object. A small fraction of the radiation will be arrive back at the source after 
reflecting off the object.

The change in frequency, Δf, due to the Doppler effect can be used to determine the speed of 
an object.

LINKING QUESTION
l What are the 

similarities and 
differences between 
light and sound?

This question links 
to understandings in 
Topic C.2.

DB

Examples include:
l Speed ‘guns’ are used by police for checking the speed of moving vehicles.
l Radar is used for monitoring aircraft, or boat movements. (See below for an 

explanation of radar.) 
l Radar is used for tracking the movement of storms.

In all these examples, the microwaves travel from the source to the object and 
then back to the source. For this reason, a factor of 2 should be added to the 
right-hand side of the equation above. 

Radar (RAdio Detection And Ranging) is a system used for determining 
the direction, distance and speed of an aircraft (or other object). Pulses of 
microwaves are sent from a rotating aerial (see Figure C5.9 for an example). 
After a very small fraction of a second, some microwaves which were reflected 
off the aircraft are received back at the aerial. The time delay can be used to 
determine the distance to the aircraft and the orientation of the aerial provides 
information about the direction to the aircraft.

The use of the Doppler effect with the radar also enables a direct calculation of 
aircraft speed and has the advantage of being able to ignore reflections from 
objects which are not moving or are only moving slowly.

	■ Figure C5.9 Radar dish

 ◆ Radar A system which 
uses microwaves to detect 
the distance, direction and 
speed of moving objects. 
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C.5   Doppler effect 405

a Calculate the change of frequency which will be 
detected by a police speed gun (see Figure C5.10) using 
a frequency of 20.6 GHz, when it is directed at a car 
moving directly away at a speed of 130 km h−1 (36.1 m s−1).

	■ Figure C5.10 A police speed check

b State what change of frequency would be detected if 
the vehicle was moving directly towards the speed 
gun, at the same speed.

Answer

a 
Δf
f0

 = 
2v
c

 Δf = 2 × 36.1 × 
20.6 × 109

3.00 × 108 = 4.96 × 103 Hz (decrease)

b The same magnitude as in part a, but the frequency 
would increase, rather than decrease.

WORKED EXAMPLE C5.2

 ATL C5A 

Research and communication skills
Use a variety of internet websites to learn about Doppler weather radar.
Evaluate your sources for reliability.

Plan a short presentation of the key information for other IB physics students.

5 The speed limit in a town is 50 km h−1 (13.9 m s−1). In a 
safety check by the police, using the Doppler effect, a 
frequency increase of 2.85 kHz was detected from a car 
moving along a straight road.
a State whether the car was moving towards, or away 

from, the check point.
b If the speed gun used a frequency of 32.8 GHz, show 

that the car was travelling slower than the legal limit.

6 An airport radar system using microwaves of frequency 
2.72 GHz sends out a pulse of waves that is reflected off 
an aircraft that is within its control area.

 A reflected signal is received back at the airport 
1.374 × 10−4 s later, at a frequency of 1050 Hz more than 
the emitted wave. At that time the aerial was pointing 
exactly north.
a Determine the distance between the aircraft and the 

radar aerial.

b i Use the equation:

 
Δf 
f0 

 = 
2v 
c 

 to determine a value of v for the aircraft.
ii Was the aircraft getting closer to, or further away 

from, the airport? 

	■ Figure C5.11 Air traffic control uses the Doppler effect
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c Your answer to part b should be less than the true 
value of the aircraft’s speed (120 m s−1) because it was 
not flying directly to the aerial at the airport at that 
moment. v was the component of its velocity towards 
the airport.

 Make a sketch showing the positions of the airport 
and the aircraft, and the direction to north. Add 
vector arrows to represent the true speed of the 
aircraft and its component towards the airport.

7 Suggest how it might be possible for a military aircraft to 
avoid being detected by radar.

Tool 3: Mathematics

Propagate uncertainties in processed data

A motorist accused of driving over the speed limit might claim that their speed was within 
the ‘margin of error’ of the equipment used by the police. Consider again the data provided 
in Question 5.

If the value of the microwave frequency used was believed to be accurate to ± 0.2 GHz, 
and the change of frequency accurate to ± 0.05 kHz, what was the uncertainty in the 
determination of the car’s speed (in km h−1)?

	■ Doppler effect with light received from distant stars 
and galaxies

SYLLABUS CONTENT

 Shifts in spectral lines provide information about the motion of objects like stars and galaxies 
in space.

Top tip!
Everything emits thermal radiation, and we have seen in Topic B.1 that this emitted radiation is in the 
form of a continuous spectrum, with a wide range of frequencies. In Topic C.2 we saw that a continuous 
light spectrum can be displayed on a screen using a prism to disperse the radiation.

Individual atoms and simple molecules emit electromagnetic radiation of certain precise frequencies, 
rather than a continuous range of frequencies. Topic E.1 explains how this is connected to changing 
energy levels within the atoms. When elements (in the form of gases) are given enough energy, the 
spectra of the light that they emit are seen as a series of bright lines on black backgrounds – called line 
spectra. See Figure C5.12. Each line corresponds to a precise frequency.

	■ Figure C5.12 The principal lines of the line spectrum of hydrogen

When a continuous spectrum passes through a gas, the atoms in the gas will absorb the same frequencies 
as they would emit when given energy. This results in a spectrum with black absorption lines, as seen in 
Figure C5.13.

Atoms of the elements present in the outer layers of a star absorb light of certain frequencies 
from the continuous spectrum of radiation emitted from the star. Each different element produces 
a unique set of lines and frequencies, and this can be used to identify the element emitting 
the radiation.

LINKING QUESTION
l What gives rise to 

emission spectra 
and how can they be 
used to determine 
astronomical 
distances?

This question links 
to understandings in 
Topics B.1 and E.5.
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The line spectra received from stars within distant galaxies are received at lower frequencies than 
light from similar elements on Earth. This can be considered to be a Doppler effect and it suggests 
that the source and the observer are moving apart from each other.

Measurements of the Doppler effect in line spectra from stars in distant galaxies show that 
most galaxies are moving apart from each other – the Universe is expanding.

The lines on the upper spectrum seen in Figure C5.13 are produced from an element on Earth. The 
lower spectrum is received from the same element in a distant galaxy. Although the continuous 
spectra are identical, the black lines, which are characteristic of a certain element(s), have all 
been ‘shifted’ towards the red end of the spectrum, although their overall pattern is unchanged. 
This change to lower frequencies (larger wavelengths) is called a redshift. A change to higher 
frequency is called a blueshift. (Blueshifts only occur for a few stars relatively close to the Earth 
for reasons that need not be understood.)

redshift

line spectrum from element on Earth

line spectrum from element in distant galaxy

	■ Figure C5.13 Redshift in line spectra

The equation:
Δf
f

 = 
Δλ
λ

 ≈ 
v
c

can be used to determine the speed with which a star or galaxy is moving away from the Earth.

A line in the hydrogen spectrum has 
a wavelength of 4.86 × 10–7 m. When 
detected on Earth from a distant galaxy, 
the same line has a wavelength of 5.21 × 
10–7 m. Determine the speed with which the 
galaxy is moving away from Earth. This is 
commonly called its recession speed.

Answer
∆λ = (5.21 × 10−7) – (4.86 × 10−7) = 3.5 × 10−8 m
Δλ 
λ  ≈ 

v 
 c

3.5 × 10–8 
4.86 × 10–7 = 

v 
3.00 × 108

v = 2.16 × 107 m s–1

WORKED EXAMPLE C5.3

Inquiry 3: Concluding and evaluating

Figure C5.14 shows a sketch graph which summarizes how 
the amount of redshift detected varies with the distance 
of the galaxies or stars from Earth. There are significant 
experimental uncertainties involved, which are not shown, 
so that many points are not close to the line of best fit.
1 What conclusion can be drawn from this graph (for 

positive values of redshift)?
2 There are a few points below the horizontal axis. They 

are not errors. Suggest a possible explanation.
Distance

Re
ds

hi
ft

0

 
	■ Figure C5.14 

Variation of redshift

 ◆ Star Massive sphere of 
plasma held together by the 
forces of gravity. Because 
of the high temperatures, 
thermonuclear fusion occurs 
and radiation is emitted.

 ◆ Galaxy A very large 
number of stars (and other 
matter) held together in 
a group by the forces 
of gravity.

 ◆ Expansion of the 
universe The redshift of 
light (similar to the Doppler 
effect) from distant galaxies 
provides evidence of an 
expanding universe.

 ◆ Redshift, (Doppler 
effect) Increase 
in wavelengths of 
electromagnetic radiation 
due to the fact that the 
distance between the 
observer and the source 
is increasing.

 ◆ Blueshift Decrease 
in wavelength of 
electromagnetic radiation 
(from a ‘nearby’ star) due 
to the fact that the observer 
and the source are moving 
closer together. 

 ◆ Recession speed The 
speed with which a galaxy 
(or star) is moving away 
from Earth.
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Measurements on a large number of galaxies confirm that those with the greatest speeds are those 
which are furthest away. There is an obvious conclusion: they are further away because they are 
travelling faster. Moving back in time, they all started at the same place and time. This is the 
central concept of the Big Bang model. The Universe was created about fourteen billion years ago 
and has been expanding ever since.

Astronomers believe that all space itself is expanding, rather than stars and galaxies moving apart 
from each other into pre-existing space. This means that the full explanation of the Doppler effect 
with light from distant galaxies is not the same as the Doppler effect used to describe wave effects 
confined to Earth.

TOK

Knowledge and the knower
l How do the tools that we use shape the 

knowledge that we produce?

Nearly everything that we know about 
the Universe has been deduced only from 
electromagnetic radiation arriving at the Earth 
from space. This radiation has been detected by 
various types of telescopes and analysed using the 
techniques of spectroscopy. Astronomy is based 
solely on observation; we can choose what to 
observe, but we cannot design and carry out the 
type of laboratory experiments that characterize 
much of the rest of science.

Our knowledge of the Universe is limited by the 
instruments that we design to collect and analyse 
the radiation reaching the Earth.

	■ Figure C5.15 The James Webb Telescope 
was launched in December 2021

 ◆ Spectroscopy The 
analysis of spectra 
using instruments 
called spectroscopes or 
spectrometers. 

8 A certain line on the helium spectrum has a well-known wavelength, but when observed 
from a distant galaxy it has a redshift of 1.85 × 10−8 m away from that value.

 If the galaxy is receding from Earth at a speed of 7.84 × 106 m s−1, determine the original 
wavelength of the wave.

9 a Calculate the size of the redshift in frequency of a wave of frequency 6.17 × 1016 Hz 
(from the hydrogen spectrum) received from a galaxy which has a recession speed of: 
i 2.20 × 106 m s–1 
ii 10% of the speed of light. 

b Determine the frequencies that will be detected on Earth.

10 Galaxies contain billions of stars all orbiting their common centre of mass (the centre of 
the galaxy).

 If we are able to observe the stars in a galaxy (‘side-on’) suggest how the Doppler effect can 
be used to determine their rotational speeds around the centre.

LINKING QUESTIONS
l How can the 

Doppler effect be 
utilized to measure 
the rotational speed 
of extended bodies?

l How can the use of 
the Doppler effect 
for light be used to 
calculate speed? 
(NOS)

These questions link 
to understandings in 
Topics A.4.

TOK

Knowledge and technology
l To what extent are technologies, such as the microscope and telescope, merely extensions to the 

human senses, or do they introduce radically new ways of seeing the world?

Doppler first identified the effect that bears his name about 180 years ago, but he could not have foreseen 
the many useful applications that his discovery would lead to. This is mainly because the relatively small 
changes of frequency involved require a high level of technology.

 ◆ Big Bang model 
Currently accepted model 
of the Universe, in which 
matter, space and time 
began at a point 13.7 billion 
years ago. The Universe 
has been expanding 
ever since. 
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Equations for use with the Doppler effect 
for sound (or other mechanical waves)

SYLLABUS CONTENT

 The observed frequency for sound and mechanical waves due to the Doppler effect as given by: 

 moving source, f' = f ( v
v ± us ), where us is the velocity of the source

 moving observer, f' = f (v ± uo

v ) where uo is the velocity of the observer.

Figure C5.16a shows waves of frequency f and wavelength λ travelling at a speed v 
between a stationary source S and a stationary observer O. In the time, t, that it takes the 
first wavefront emitted from the source to reach the observer, the wave has travelled a 

distance vt. The number of waves between the source and observer is 
t
T

 = ft.

The wavelength, λ, equals the total distance divided by the number of waves:

λ = 
vt
ft

 = 
v
f  

as we would expect from Topic C.2.

Figure C5.16b represents exactly the same waves emitted in the same time from a source 
moving towards a stationary observer with a speed us. In time, t, the source has moved 
from S1 to S2. The number of waves is the same as Figure C5.16a, but because the source 
has moved forwards a distance, ust, the waves between the source and the observer are 
now compressed within the length vt − ust.

This means that the observed (received) wavelength, λ′, equals the total distance divided 
by the number of waves:

λ' = 
vt – us t

ft
 = 

v – us

f
The observed (received) frequency, f ′, is given by:

f' = 
v
λ′

 = 
vf

v – us

If the source is moving away from the observer, the equation becomes:

f' = 
vf

v + us

In general, we can write:

f' = f ( v
(v ± us))

This is the equation for the Doppler effect from a moving source (speed us) detected by a 
stationary observer. 

us is added when the source is moving away from the observer, and subtracted when the motion is 
towards the observer.

The equation for the frequency detected by a moving observer from a stationary source is:

f' = f (v ± uo

v )

S

a b

O S1 OS2

vt
vt

ust

λ

(vt – ust)

us

	■ Figure C5.16 a Waves between 
a stationary source and a stationary 
observer b Waves between a moving 
source and stationary observer

S

a b

O S1 OS2

vt
vt

ust

λ

(vt – ust)

us

DB

DB
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uo is added when the observer is moving towards the source, and subtracted when the motion is 
away from the source.

These equations assume that the motion involved is in the same direction as a straight line joining 
the source and the observer.

Remember that these equations cannot be applied to electromagnetic waves (c >> v).

a A source of sound emitting a frequency of 480 Hz is moving directly towards a 
stationary observer at 50.0 m s−1.

 If it is a hot day and the speed of sound is 350 m s−1, calculate the frequency received.
b What frequency would be heard on a cold day when the speed of sound was 330 m s−1?
c Explain why the speed of sound is less on a colder day.

Answer

a f' = f ( v
v – us

) = 
(480 × 350)
(350 – 50)  = 560 Hz 

b f' = 
(480 × 350) 
(330 – 50)  = 566 Hz

c Sound is transferred though air by moving air molecules. On a colder day the 
molecules will have a lower average speed.

WORKED EXAMPLE C5.4

11 Calculate the frequency which will be received by an 
observer moving with a speed of 24.2 m s−1 directly away 
from a stationary source of sound waves of frequency 
980 Hz. (Assume the speed of sound to be 342 m s−1.)

12 In a Doppler ultrasound measurement, as shown in 
Figure C5.5, blood was flowing at a rate of 9.7 cm s−1 
along the artery. 
a If the angle θ = 75°, calculate the speed that the 

transducer should detect. 
b If the transducer emits waves of frequency 

5.87400 MHz, and the speed of the ultrasound waves 
is 1540 m s−1, determine the frequency received by the 
blood cells. 

13 A car is travelling along a straight road at a constant 
speed of 31 m s−1. The car emits a sound with a constant 
frequency of 224 Hz. A pedestrian on a footbridge over 
the motorway watches the car approach, travel directly 
under them, and then move away from the bridge. 
(Assume the speed of sound to be 342 m s–1.)
a Determine the frequencies heard by the pedestrian:

i before the car passes the footbridge

ii after the car passes the footbridge. 
b Another person watches and hears the same car but is 

many metres away from the side of the road.
 Describe and explain how the sound reaching this 

person is different from the sound heard by the 
pedestrian on the footbridge.

14 An ultrasound wave of frequency 30.0 kHz is directed at 
an approaching car. The wave reflects off the car and is 
received back at the stationary emitter with a frequency 
of 32.7 kHz. 
a Using an equation highlighted on page 409, calculate 

the velocity of the car. (Assume that the speed of 
sound is 335 m s−1.) 

b Compare your answer to the answer obtained by using:

 
Δf 
f 

 ≈ 
relative speed of source 

speed of waves 
15 A boat is travelling directly towards a jetty at a speed 

of 37 cm s−1 and creating waves on the water surface of 
original wavelength 59 cm.

 If the water waves travel at a speed of 94 cm s−1, 
determine the frequency and wavelength of the waves 
reaching the jetty.
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D.1 Gravitational fields

• How are the properties of a gravitational field quantified?
• How does an understanding of gravitational fields allow for humans to explore the Solar System?

Guiding questions

The fact that (most) objects tend to fall towards the ground is, of course, a common 
and unsurprising observation. But a satisfactory explanation was not achieved until 
the work of Isaac Newton in the seventeenth century. Until then, Aristotle’s ideas, 
from more than two thousand years earlier, were the accepted wisdom: falling 
objects were just returning to their ‘natural’ places.

A scientific understanding of gravity requires accurate observations of objects 
moving large distances where gravitational effects are variable and unaffected by 
air resistance: the planets and the Moon.

The Danish nobleman Tycho Brahe was renowned for his remarkably accurate 
astronomical measurements at a time before the invention of the telescope 
(late sixteenth century). But they were just that: empirical observations, 
without explanation.

Johannes Kepler (Figure D1.1) worked with Brahe's data and analysed his 
measurements mathematically, particularly those concerning the planet Mars. 
Kepler’s three laws of planetary motion were a key development in the history 
of astronomy.

Kepler’s laws of planetary motion

SYLLABUS CONTENT

 Kepler’s three laws of orbital motion.

Kepler’s laws were developed to describe the motions of the planets in the Solar System, but they 
can be applied to any group of bodies orbiting a common centre under the effects of gravity. (To 
orbit means to continuously move, revolving around another, larger, object.)

Kepler’s laws were empirical (based on observations) and it was not until 70 years later that 
Newton was able to provide the underlying explanation.

	■ Figure D1.1 Johannes Kepler
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Tool 3: Mathematics

Construct and use scale diagrams

An ellipse is the name that we give to the type of complete 
curve for which for all points: the sum of the distances from 
two fixed points is always the same. See Figure D1.2.

The two fixed points, shown as F1 and F2 in Figure D1.2, 
are each called a focus of the ellipse (plural: foci). If F1 
and F2 are at the same point, in the centre, the ellipse 
becomes a circle.

major axis
R

minor axis

F2F1

	■ Figure D1.2 An ellipse

 ◆ Ellipse Closed curve 
consisting of points whose 
distances from each of 
two fixed points (focuses, 
foci) always add up to the 
same value. 

	■ Kepler’s first law
Kepler showed that the planets of the 
Solar System move in elliptical paths. 
See Figure D1.3.

The planets orbit in elliptical paths, with the 
Sun at one of the two foci.

It should be noted that the orbits of most of the 
planets of our Solar System are nearly circular. 
Figures D1.2 and D1.3 have exaggerated the 
shape (eccentricity) of the ellipses.

Sun

planet

2nd focus

	■ Figure D1.3 Elliptical path of a planet.

	■ Kepler’s second law
Kepler’s second law expresses the fact that planets move faster when they are closer to the Sun.

A line joining a planet and the Sun sweeps out equal areas in equal times.

Planet

Sun

faster slower

equal areas covered

	■ Figure D1.4 Equal areas in equal times

	■ Kepler’s third law
In effect, the third law provides a mathematical relationship between half the length of the major 
axis (R in Figure D1.1) and the planet’s speed. In practice, because many orbits are close to being 
circular, we can usually assume that R is the average distance (orbital radius) to the Sun:
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The square of a planet’s orbital time period, T, is proportional to the cube of its average orbital 
radius, R:

T 2 ∝ R3

or
R3

T 2 = constant 

The Earth has an average distance from the Sun of 1.50 × 1011 m. (This is often called one 
astronomical unit, AU.) 

If the average distance between the Sun and the planet Venus is 1.08 × 1011 m, calculate the 
time period of Venus’s orbit.

Answer
T 2 
R3   = constant, the same for Venus as the Earth

If TV is the period of Venus’s orbit:
365.252 

(1.496 × 1011)3  = 
TV

2 
(1.08 × 1011)3 

TV = 224 (Earth) days

WORKED EXAMPLE D1.1

1 The Earth’s orbit around the Sun is not perfectly circular.
a Use the internet to determine their maximum and 

minimum separation, and when these events occur. 
b Discuss what effect this has on the climate at any 

particular location (if any).

2 Figure D1.5 shows the orbits of a planet and a comet 
around the Sun.

	■ Figure D1.5 The orbits of a planet and a comet around the Sun

a State how you know which is which. 
b At what positions will the comet be travelling:

i fastest ii slowest?

3 Determine the value of T2/R3 in SI units for the planets of 
the Solar system.

4 Calculate the period of the planet Mars, which has an 
average distance of 228 million kilometres from the Sun.

5 One of the planets of the Solar System has a period of 
approximately 84 years. 
a Determine its distance from the Sun. 
b Express your answer to part a in astronomical 

units, AU. 
c Find out which planet it is.

6 a Research how long it takes for the Moon to orbit 
the Earth. 

b The centre of the Moon is an average distance of 
384 000 km from the centre of the Earth. Calculate a 
value of T 2/R3 from this data. 

c Use Kepler’s third law to determine the orbital 
radius of an Earth satellite which takes exactly one 
day to compete its orbit. (A satellite with an orbit of 
this radius can appear to remain ‘stationary’ above 
the equator.)

LINKING QUESTION
l How is uniform 

circular motion like 
– and unlike – real-
life orbits?

This question links 
to understandings in 
Topic A.4.

DB
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Nature of science: Science as a shared endeavour

‘The shoulders of giants’

1450 17501475 1500 1525

Copernicus

(1473–1543)

Brahe

(1546–1601)

Bruno

(1548–1600)

Kepler

(1571–1630)

Galileo

(1564–1642)

Newton

(1643–1727)

1550 1575 1600 1625 1650 1675 1700 1725

	■ Figure D1.6 Time lines of some famous early astronomers

Isaac Newton’s law of gravitation is central to this topic and 
the name Newton appears prominently in physics text books. 
Famously, he is quoted as saying ‘If I have seen further, it is 
by standing on the shoulders of giants’. Figure D1.6 shows a 
time line of Newton’s most famous predecessors in the study of 
astronomy in the sixteenth and seventeenth centuries.

     	■ Figure D1.7 Isaac Newton

	■ Figure D1.8 Copernicus

Nicolas Copernicus, a Polish astronomer (Figure D1.8), is 
considered by many to be the founder of modern astronomy. In 
1530 he published a famous paper stating that the Sun was the 
centre of the universe and that the Earth, stars and planets orbited 
around it (a heliocentric model). At that time, and for many 
years afterwards, these views directly challenged ‘scientific’, 
philosophical and religious beliefs. It was then generally believed 
that the Earth was at the centre of everything (a geocentric 
model). That profound and widespread belief dated all the way 
back to Ptolemy, Aristotle and others nearly 2000 years earlier. 
It should be noted, however, that Aristarchus in Ancient Greece 
is generally credited with being the first well-known person to 
propose a heliocentric model.

In Italy, the astronomer Giordano Bruno took the heliocentric 
model further with revolutionary suggestions that the universe 
was infinite and that the Sun was not at the centre. The Sun was, 
Bruno suggested (correctly), similar in nature to the other stars. 
He was burned at the stake in 1600 for these beliefs – at the time, 
considered by some to be heresy. About 30 years later, one of the 
greatest scientific thinkers of all time, Galileo Galilei, was placed 
on trial by the Roman Catholic Church under similar charges. 
Many years earlier he had used the newly invented telescope to 
observe the moons of Jupiter and had reasoned that the Earth 
orbited the Sun in a similar way, as had been proposed by 
Copernicus. Under pressure, he publicly renounced these beliefs 
and was allowed to live the rest of his life under house arrest. All 
this has provided the subject of many books, plays and movies.

About 700 years before the time of Newton, during the 
Islamic Golden Age, Abd al-Rahman al-sufi and other Muslim 
astronomers identified stars and constellations with impressive 
accuracy (building on the work of Ptolemy, centuries earlier). Abd 
al-Rahman al-sufi's 'Book of fixed stars' has an important place in 
the history of astronomy.
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Newton’s universal law of gravitation

SYLLABUS CONTENT

 Conditions under which extended objects can be treated as point masses.

 Newton’s universal law of gravitation as given by: F = G 
m1m2

r2  for bodies treated as point masses.

Isaac Newton was the first to realize that if the force of gravity makes objects (like apples) fall to 
the Earth and also keeps the Moon in orbit around the Earth, then it is reasonable to assume that 
the force of gravity acts between all masses. This is why it is called universal gravitation. Newton 
believed (correctly) that the size of the gravitational force between two masses increased with the 
sizes of the masses, and decreased with increasing distance between them – following an inverse 
square relationship.

	■ Universal gravitation and the inverse square law
Newton knew that the distance between the Earth and the Moon was equal to 60 Earth radii, and 
he was able to prove that the centripetal acceleration of the Moon towards the Earth was equal to 
g/602 (using a = v2/r from Topic A.2). See Worked example D1.2 and Figure D1.9.

Earth

Moon’s orbit

2r

60r

g

r

(not to scale)

g

22

g

602

    

The average distance between the Earth and the Moon is 384 000 km and the Moon takes 
27.3 days to orbit the Earth. 
a Calculate the average orbital speed of the Moon. Assume that its orbit is circular. 
b Determine the centripetal acceleration of the Moon towards the Earth. 
c Compare your answer for b to g/602, with g = 9.81 m s−2. Comment on the difference.

Answer

a v = 
2πr
T  

= 
(2 × π × 3.84 × 108)
(27.3 × 24 × 3600)  = 1.02 × 103 m s–2 (1022.90... seen on calculator display)

b a = 
v2

r  
= 

(1.0229 × 103)2

3.84 × 108  = 2.725 × 10–3 m s–2

c 
9.81
602  = 2.725 × 10–3 m s–2

The two answers are the same. This is very good evidence that gravitational accelerations 
(and forces) are represented by inverse square laws.

WORKED EXAMPLE D1.2

	■ Figure D1.9 How 
the acceleration due 
to gravity varies with 
distance from the Earth
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 ◆ Newton’s universal law 
of gravitation There is a 
gravitational force between 
two point masses, m1 and 

m2, given by F = G 
m1m2

r2
,  

where r is the distance 
between them and G is 
the universal gravitation 
constant.

 ◆ Gravitational forces 
Fundamental attractive 
forces that act across 
space between all masses. 
Gravitational force  
reduces with an inverse 
square law with  
increasing distance 
between point masses.

 ◆ Universal gravitation 
constant, G The 
constant that occurs 
in Newton’s universal 
law of gravitation. 
G = 6.67 × 10−11 N m2 kg−2.

	■ Newton’s law
To simplify the situation, we will consider the forces acting on only two masses. The masses may 
be of any magnitude but, to begin with, we will assume that they are point masses. That is, all 
their mass is considered to be at a single point.

The forces acting between two point masses (m1 and m2) are proportional to the product of the 
masses and inversely proportional to their separation (r) squared.

F ∝ (m1 × m2) and F ∝ 
1
r2

Putting a constant of proportionality into the relationship, we get Newton’s universal law 
of gravitation:

gravitational force between two (point) masses, F = G 
m1m2

r2

G is known as the universal gravitation constant. It has a value of 6.67 × 10−11 N m2 kg−2. 

The small value of G reflects the fact that gravitational forces are small unless one (or both) of 
the masses is very large. G is a fundamental constant which, as far as we know, always has exactly 
the same value everywhere in the universe and for all time. It should not be confused with g, the 
acceleration due to gravity, which varies with location. The relationship between g and G is covered 
later in this topic.

The relationship between force and distance is illustrated in Figure D1.10. Note that exactly the 
same force always acts on both masses (but in opposite directions), even if one mass is larger than 
the other. This is an example of Newton’s third law of motion.

r

m1

F F
m2

2r

m1

F
4 m2

4r

m1 m2

F
4

F
16

F
16

Of course, the mass of an object is not all located at one point, but this does not mean that Newton’s 
equation cannot be used for real masses. The forces between two spherical masses of uniform 
density located a long way apart are the same as if the spheres had all of their masses concentrated at 
their centre points. The gravitational effects around a planet (assumed to be spherical) are effectively 
the same as would be produced by a similar mass concentrated at the centre of the planet.

Newton was also able to confirm his law of gravitation by showing that it was consistent with 
Kepler’s third law, as follows:

For circular gravitational orbits the necessary centripetal force (Topic A.2) is provided by gravity. 
For a relatively small mass, m, orbiting a much larger mass, M:

 m v2

r
 = 

GM m 
r2

 ⇒ v2 = 
GM

r

Then, since v = 
2πr
T

:

(2πr
T )2

 = 
GM

r
 ⇒ 

r3

T 2 = 
GM
4π2  (a constant)

DB

DB

	■ Figure D1.10 The 
gravitational force between 
point masses m1 and m2 
decreases with increasing 
separation (the vectors 
are not drawn to scale)
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This is Kepler’s third law (as introduced earlier in this topic), showing a value for the constant on 
the right-hand side of the equation.

Calculate the gravitational forces acting between the Earth and a 1.0 kg book on the Earth’s 
surface. (The Earth’s mass is 6.0 × 1024 kg and its radius is 6.4 × 106 m.)

Answer

F = G 
m1m2

r2  = 
(6.67 × 10–11) × 1.0 × (6.0 × 1024)

(6.4 × 106)2  
= 9.8 N

This is the weight of a 1.0 kg mass on the Earth’s surface. The book attracts the Earth up 
towards it with an equally sized force which has a negligible effect on the Earth. This is 
another example of Newton’s third law.

WORKED EXAMPLE D1.3

Nature of science: Measurement

Weighing the Earth

At the time Newton proposed his law of universal gravitation 
it was not possible to determine an accurate value for the 
gravitational constant, G. The only gravitational forces that could 
be measured were those of the weights of given masses on the 
Earth’s surface. The radius of the Earth was known, but that still 

left two unknowns in the equation F = Gm1m2/r
2: the gravitational 

constant and the mass of the Earth. If either of these could be 
found, then the other could be calculated using Newton’s law of 
gravitation. That is why the determination of an accurate value for 
G was known as ‘weighing the Earth’.

Certainly, it was possible in the seventeenth century to get an 
approximate value for the mass of the Earth from its volume and 
estimated average density (using m = ρV). But density estimates 
would have been little more than educated guesses. We know 
now that the Earth’s crust has a much lower average density 
(about 3000 kg m−3) than most of the rest of the Earth. However, 
it was possible to use an estimate of the Earth’s mass to calculate 
an approximate value for the gravitation constant. The first 
accurate measurement was made more than 100 years later by 
Henry Cavendish in an experiment that is famous for its precision 
and accuracy.

To calculate a value for G without needing to know the mass of 
the Earth (or the Moon, or another planet) required the direct 
measurement of the force between two known masses. Cavendish 
used lead spheres (see Figure D1.11) because of their high 
density (11.3 g cm−3). The forces involved are very difficult to 
measure because they are so small, but also because similar-sized 
forces can arise from various environmental factors. (In fact, 
Cavendish’s main aim was to get a value for the density of the 
Earth rather than to measure G.)

In an early attempt to estimate the gravitational constant and 
calculate a value for the mass of the Earth, pendulums were 
suspended near mountains (see an exaggerated representation in 
Figure D1.12).

	■ Figure D1.11 A modern version of Cavendish’s apparatus

 

	■ Figure D1.12 A 
pendulum and a mountain 
attract each other

LINKING QUESTION
l Physics utilizes a 

number of constants 
such as G. What is 
the purpose of these 
constants and how 
are they determined? 
(NOS)
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7 The gravitational force acting on a satellite orbiting 
50 km above the Moon’s surface was 840 N. Calculate a 
value for the force if the height above the surface was ten 
times greater. Radius of Moon = 1.74 × 106 m

8 Estimate the gravitational force between you and your 
pen when you are 1 m apart.

9 a Determine the gravitational force between two steel 
spheres each of radius 45 cm and separated by 10 cm.

 Density of steel = 7900 kg m−3

b Show that if solid steel spheres with twice the radius 
were used, with the same separation between their 
surfaces, the force would increase by a factor of 
about 20. 

10 Calculate the average gravitational force between the Earth 
and the Sun. (You will need to research the relevant data.)

11 A proton has a mass of 1.7 × 10−27 kg and the mass of an 
electron is 9.1 × 10−31 kg.
a Estimate the gravitational force between these two 

particles in a hydrogen atom, assuming that they are 
5.3 × 10−11 m apart. 

b Compare your answer to the magnitude of the electric 
force between the same two particles (8.2 × 10−8 N, 
which is explained in Topic D.2). 

c Comment on your answer.

12 Ganymede and Callisto are the two largest moons of 
Jupiter. Ganymede has an orbital radius of 1.07 × 106 km 
and orbits every 7.15 Earth days. Callisto has an orbital 
radius of 1.88 × 106 km and orbits every 16.7 Earth days. 
a Determine if this data is consistent with Kepler’s 

third law. 
b Calculate the mass of Jupiter.

Gravitational fields

SYLLABUS CONTENT

 Gravitational field strength, g, at a point is the force per unit mass experienced by a small point mass 

at that point as given by: g = 
F 
m  = 

GM
r2 . 

 Gravitational field lines.

A region (around a mass) in which another mass would experience a gravitational force is 
called a gravitational field.

Theoretically, all masses produce gravitational fields around themselves, but in practice we only use 
the term when discussing the space around very large masses like moons, planets and stars. We all 
live in the gravitational field of the Earth, while the Earth moves in the gravitational field of the Sun.

TOK

The natural sciences
l What kinds of explanations do natural scientists offer?

Fields

Understanding gravitational, electric and magnetic forces is fundamental knowledge about the universe 
in which we live. It seems that these forces can act instantaneously across space, even if there is nothing 
but vacuum (free space) in between. And, in the case of gravity, the forces can act across unbelievably 
large distances. All this is very difficult to comprehend!

Using the concept of fields (gravitational, electric and magnetic) to describe the intermediate spaces may 
seem to help understanding, but it does not explain the origin of the forces.

Scientists cannot say ‘that is just the way it is’ and leave it at that. They need a deeper, more fundamental 
understanding, but that is beyond the requirements of this course.

TH
E IB LEARNER PRO

FILE

 ◆ Field (gravitational, 
electric or magnetic) A 
region of space in which 
a mass (or a charge, or 
a current) experiences a 
force due to the presence of 
one or more other masses 
(charges, or currents – 
moving charges).
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D.1   Gravitational fields 419

We often want to represent a gravitational field on paper, or on a screen, and this can be done 
with gravitational field lines as shown in Figure D1.13. The arrows show the direction of the 
gravitational force that would be experienced by a mass placed at any particular place in the field. 
Figure D1.13a represents the spreading radial gravitational field lines around the Earth. The lines 
are closer together nearer to the Earth, which shows that the gravitational field is stronger. Field 
lines never cross each other; that would mean that gravitational force was acting in two different 
directions at the same place.

a b

	■ Figure D1.13 Field lines are used to represent gravitational fields on paper or on screen. a radial field b uniform field

The parallel lines in Figure D1.13b represent a uniform gravitational field, such as in a small 
region of the Earth’s surface where variations in the field are negligible. For example, the room 
where you are sitting.

	■ Gravitational field strength
We may want to ask the question ‘if a mass was put in a particular place, what would be the 
gravitational force on it?’ The answer, of course, depends on the magnitude of the mass, so it is 
more helpful to generalize and ask ‘what would the force be on a unit mass (1 kg)?’ If we know 
this, then we can easily calculate the gravitational force on any other mass.

Gravitational field strength, g, is defined as the force per unit mass that would be experienced 
by a small test mass placed at that point:

g = 
F
m

Reference is made to a ‘small test mass’ because a large mass (compared to the mass, or masses, 
creating the original field) could have a significant gravitational field of its own. Gravitational 
field strength is given the symbol g and has the SI unit N kg−1. Gravitational field strength is a 
vector quantity and its direction is shown by the arrows on field lines.

As explained in Topic A.2, in general, we know from Newton’s second law of motion, that 
a = F/m, so that gravitational field strength (g = F/m) in N kg−1 is numerically equal to the 
acceleration due to gravity in m s−2.

Imagine you were on an unknown planet and wanted to find experimentally the gravitational 
field strength. This can be done easily by hanging a small test mass of 1.0 kg on a force-meter, 
calibrated in newtons. The reading will be the strength of the gravitational field (in N kg−1) and 
the direction of the field will be the same as the direction of the string – ‘downwards’ towards the 
centre of the planet.

 ◆ Field lines and patterns 
Representation of fields in 
drawings by a pattern of 
lines. Each line shows the 
direction of force on a mass 
(in a gravitational field), of 
force on a positive charge 
(in an electric field), or on 
a north pole (in a magnetic 
field). In any particular 
drawing, the field is 
strongest where the lines 
are closest together. 

DB

 ◆ Test mass An object 
of insignificant mass 
used in the definition 
and measurement of 
gravitational fields. 
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A student measures the time it takes a stone to fall from rest to the ground from a height 
of 1.18 m to be 0.49 s. Determine the value this gives for the acceleration due to gravity at 
her location.

Answer

 s = ut + 
1
2at2

 1.18 = 0 + 
1
2 × a × 0.492

 a = 9.8 m s−2

This is numerically equal to the gravitational field strength, g = 9.8 N kg−1

WORKED EXAMPLE D1.4

Gravitational field strength around a planet

The gravitational field strength around a large mass (a planet for example) can be determined 

by combining g = 
F 
m 

 with the equation for gravitational force, F = G
m1m2 

r2 
 (m = m1 represents the 

small mass):

g = 
F
m

 = 
G m1 m2

m1 r
2

Representing the large mass by M, rather than m2:

g = G
M
r2

Determine the gravitational field strength on the surface of a planet which has a mass of 
4.87 × 1024 kg and a radius of 6.05 × 106 m.

Answer

g = G
M
r2 = 

(6.67 × 10–11) × (4.87 × 1024)
(6.05 × 106)2  = 8.87 N kg–1

(This planet is Venus.)

WORKED EXAMPLE D1.5

Similar to gravitational force, the gravitational field strength around a planet, or a moon, follows 
an inverse square law. This is represented graphically in Figure D1.14.

DB

Common 
mistake
r in the highlighted 
equation represents 
distances from the 
centre of the planet, 
or moon. It is not the 
radius (unless we 
are calculating g on 
the surface).
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The gravitational field strength beneath the surface of a planet cannot be 
determined from g = GM/r2 because the planet can no longer be considered 
to be a point mass. At any significant depth the mass above and to the side 
would also be pulling a ‘test mass’. At the centre of a planet the field strength 
will be assumed to be zero, because the surrounding masses will pull equally 
in all directions. Moving from the centre to the surface, the gravitational field 
strength will increase.

	■ Figure D1.14 Variation of gravitational field strength with 
distance from a planet (or moon) of radius R

Tool 3: Mathematics

Determine the effect of changes to variables on other variables in a relationship

For a planet of radius R, the gravitational field strength on 
its surface can be determined from:

g = G
M 
R2 

It is easy to assume, incorrectly, that g decreases for planets of 
greater radius. In fact, the opposite is true because the mass, 
M, of a planet also depends on its radius, as shown below.

To determine how the gravitational field strength on the 
surface of a planet depends on its radius, R, we need to use 
these facts:
l the volume of a sphere equals 

4 
3 πR3

l mass, M, is equal to density, ρ, multiplied by volume, V

So, we can write:

M = 
4
3ρπR3

The density of a planet is not uniform, so the value of ρ 
used here is an average.

Putting this equation for M back into the equation for g 
we get:

g = 
4
3Gρπ(R3 

R2 )
So that:

g = 
4
3GρπR

This equation (which students are not expected to 
remember) predicts that the gravitational field strength 
at the surface of a planet is proportional to its radius. 
From the equation we would expect bigger planets to have 
stronger fields, but that is only true if they have equal 
average densities. (The Earth is the densest planet in our 
Solar system, with an average density of 5510 kg m−3. 
Venus and Mercury have similar densities to Earth but the 
density of Mars is significantly lower. The outer planets 
are gaseous and have lower densities. Saturn has the 
lowest average density, at 687 kg m−3.)

Predict a value for the gravitational field strength on the ‘surface’ of Saturn  
(radius = 5.8 × 107 m).

Answer

g =  
4
3Gρπr = 

4
3 × (6.67 × 10–11) × 687 × π × (5.8 × 107) = 11 N kg–1

(Accepted value is 10.4 N kg−1)

WORKED EXAMPLE D1.6

G
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Distance from planet’s centre, r

0
0

g/42
g/32

g/22

g

R 2R 3R 4R
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Combining gravitational field strengths
It is possible that a mass may be in two or more separate and significant gravitational fields. 
For example, we are in the fields of both the Earth and the Moon. For most purposes the 
Moon’s gravitational field on the Earth’s surface can be considered to be negligible compared 
to the Earth’s field. But, if a spacecraft is travelling directly from the Earth to the Moon, the 
gravitational field due to the Earth will get weaker as the Moon’s field gets stronger. There will be 
a point at which the two fields will be equal in strength, but opposite in direction (shown as P in 
Figure D1.15).

Earth Moon

increasing resultant force
and field towards Earth

increasing resultant force
and field towards Moon

at point P
there would be

no resultant
force or field

P

(not to scale)

	■ Figure D1.15 Opposing fields cancel at a precise point P between the Earth and the Moon

At P, the total gravitational field strength is zero and there will be no resultant force on the 
spacecraft because the pulls of the Moon and the Earth are equal and opposite. As the spacecraft 
travels from the Earth to P there is a resultant force pulling it back to Earth but this is reducing in 
size. After the spacecraft passes P there will be an increasing resultant force pulling the spacecraft 
towards the Moon.

In general, if two or more masses are creating gravitational fields at a certain point, then 
the total field is determined by adding the individual fields, remembering that they are 
vector quantities.

In this chapter as we will only be concerned with locations somewhere on the line passing through 
the masses, then the vector addition of the two fields is straightforward, as shown in the following 
Worked example.

In Figure D1.16 (which is not drawn to scale), P is a point 
midway between the centres of the planets A and B. At P 
the gravitational field strength due to A is 4.0 N kg−1 and 
that due to B is 3.0 N kg−1.

P

Q

B

A

	■ Figure D1.16 Point P between the centres of the planets A and B

a Determine the resultant gravitational field strength 
at P.

b Calculate the combined gravitational field strength at 
point Q. P and Q are the same distance from A.

Answer
a Taking the field towards the bottom of the diagram to 

be positive,
 (−4.0) + (+3.0) = −1.0
 The gravitational field strength is 1.0 N kg−1 

towards A.
b The size of the field due to A is the same at Q as it is at 

P, although it is in the opposite direction. The strength of 
the field due to B at Q is 32 times less than at P because it 
is three times further away, but it is in the same direction.

 (+4.0) + (3.0/9) = 4.3 N kg−1 towards A and B.

WORKED EXAMPLE D1.7
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13 Make a sketch of the gravitational field in the room 
where you are sitting.

14 The weight of a 12 kg mass on the surface of Mercury 
would be 44 N.

 Calculate the gravitational field strength on the surface of 
the planet.

15 a Determine the gravitational field strength at a height 
of 300 km above the Earth’s surface. (The radius of 
the Earth is 6.37 × 106 m. The mass of the Earth is 
5.97 × 1024 kg.) Many satellites orbit at about this height. 

b Calculate the percentage this value is of the accepted 
value for the gravitational field strength on the 
Earth’s surface.

16 The gravitational field strength of a planet is 5.8 N kg−1 at 
a distance of 2.1 × 104 km from its centre. Determine the 
field strength at a distance 1.4 × 104 km further away.

17 Draw a sketch graph to show how the gravitational field 
strength varies from the centre of the Earth to a distance 
of 12.8 × 106 m. (radius of Earth = 6.4 × 106 m)

18 a Calculate the gravitational field strength on the 
surface of the Moon. The mass of the Moon is 
7.35 × 1022 kg and its Radius is 1740 km. 

b Calculate the gravitational field strength at a point on 
the Earth’s surface due to the Moon (not the Earth). 
The distance between the centre of the Moon and the 
Earth’s surface is 3.8 × 108 m. 

c State one effect that the Moon’s gravitational field has 
on Earth.

19 Titan is a moon of the planet Saturn. It has an average 
density of 1900 kg m−3. The gravitational field strength 
on its surface is approximately 14% of that on Earth. 
Estimate Titan’s radius using the equation given above.

20 Consider Figure D1.16 again, but with different data. If 
planet A has a gravitational field of 15 N kg−1 at Q, but the 
combined field at the same point is 16 N kg−1, calculate 
the combined field at point P.

21 The gravitational fields of the Sun and the Moon cause the 
tides on the world’s oceans. The highest tides occur when 
the resultant field is greatest (at times of a ‘new moon’).

 Draw a sketch to show the relative positions of the Earth, 
Sun and Moon when the resultant field on the Earth’s 
surface is:
a greatest
b weakest.

Tool 2: Technology

Use spreadsheets to manipulate data
1 Research the data that will allow you to set up a spreadsheet to calculate the combined 

gravitational field strengths due to the Earth and the Moon at points along a straight line 
joining their surfaces. 

2 Combine the fields to determine the resultant field and draw a graph of the results. 
3 Where does the resultant gravitational field equal zero?

Orbital motion
The gravitational forces between two masses are equal in size but opposite in direction. However, 
if one of the masses is very much bigger than the other, we often assume that the force on the 
larger mass has negligible effect, while the same force acting on the much smaller mass produces 
a significant acceleration. If the smaller mass is already moving in a suitable direction, then the 
gravitational force can provide the centripetal force to make it orbit the larger mass. It is then 
described as a satellite of the larger mass. The Earth and the other planets orbiting the Sun, 
and moons orbiting planets, are all examples of natural satellites. In the modern world we are 
becoming more and more dependent on the artificial satellites that orbit around the Earth.

 ◆ Satellite Object that 
orbits a much larger mass. 
Satellites can be natural 
(like the Earth or the 
Moon), or artificial (as 
used for communication, 
for example). 

 ◆ Altitude Height of an 
object above the surface of 
a planet. 
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Newton’s famous thought experiment was described in Topic A.1: a cannonball fired 
‘horizontally’ from the top of a mountain would move in a parabolic path if there were no air 
resistance, and hit the ground some distance away, as shown again by path A in Figure D1.17. If 
the cannonball was travelling fast enough, it could move as shown in path B, and ‘escape’ from 
the Earth. Path C shows the path of an object moving with exactly the right speed and direction so 
that it remains at the same altitude (distance above the Earth’s surface), that is, it remains in orbit 
around the Earth: a satellite. Remember that we are assuming that there is no air resistance.

Gravity is the only force acting on the satellite and it is acting continuously and 
perpendicularly to its instantaneous velocity along path C. As we described 
in Topic A.2, this is the necessary condition for circular motion. The force of 
gravity (weight of satellite) is providing the centripetal force.

An actual satellite needs to be at a height which is at least 200 km above the 
Earth’s surface to avoid the effects of air resistance and, at that height, the orbital 
speed needed is about 8 km s−1 (explained below). This was first achieved in 1957 
by the Soviet Union with their satellite Sputnik One. Its lowest orbital height was 
215 km and it took 96 minutes for each orbit. See Figure D1.18.

Figure D1.19 shows a satellite of mass m in orbit around a much larger mass, M (a planet, for 
example). In the mathematical treatment of satellites in this course, we will only consider perfectly 
circular orbits with constant radius r, as shown.

F
F

r

m

M

instantaneous velocity, v

	■ Figure D1.19 A satellite of mass m 
orbiting a planet of mass M.	■ Figure D1.18 Sputnik One

	■ Orbital speed and time period of a satellite
Remembering the equation for centripetal acceleration, we can write:

centripetal acceleration, g = 
v2

r
Or, considering forces:

centripetal force, mg = 
mv2

r

In order to maintain a satellite in a circular orbit around the Earth (or other planet), it needs to 
be given the correct speed, v, for its particular radius, r, as given by:

v2

r
 = g

This equation enables us to determine the theoretical speed for a satellite which orbits just above 
the Earth’s surface – as in the cannonball thought experiment (Earth’s radius = 6.4 × 106 m):

v2 = gr = 9.8 × (6.4 × 106)

v = 7.9 × 103 m s−1 (7.9 km s−1)

(not to scale)

A

C

B
Earth

	■ Figure D1.17 The path of objects projected 
at different speeds from a mountain top
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At a more realistic height of 200 km (for example), g = 9.23 N kg−1 calculated from g = 
GM 
r2 

, so 

that the necessary speed is reduced to 7.7 km s−1. Assuming there is no air resistance, a satellite 
moving with a speed of 7700 m s−1, 200 km above the surface, can orbit the Earth. Knowing the 
value of g at any particular height enables us to calculate the speed necessary for a circular orbit 
at that height. The speed does not depend on the mass. All satellites at the same height move with 
the same speed. If there is no air resistance, a satellite in a circular orbit will continue to orbit the 
Earth without the need for any engine. The force of gravity acts perpendicularly to motion, so that 
no work is done by that force.

v = 
2πr
T

(Topic A.2) can be used to calculate the time period, T, for an orbit.

If the speed of a satellite is greater than the speed necessary for a circular orbit, but less than the 
escape speed (explained later) it will move in an elliptical path. However, for calculations in this 
course, we will assume that the orbits of planets, moons and satellites are circular.

Determine the orbital speed and time 
period of a satellite that orbits the 
Earth at a distance which is as far 
above the surface as the centre of 
the Earth is below.  
(Radius of Earth = 6.4 × 106 m)

Answer
At twice the distance from the centre of the Earth the gravitational field 
strength is reduced to:

 
9.8 
22  = 2.45 N kg–1

Then:

 g = 
v2

r  

 2.45 = 
v2

(2 × 6.4 × 106) 

 v = 5.6 × 103 m s−1

 T = 
2πr
v  = 

2 × π × (6.4 × 106)
5.6 × 103  

 = 7.2 × 103 s (two hours)

WORKED EXAMPLE D1.8

22 a Calculate values for the gravitational field strengths 
at heights above the Earth's surface of 1000 km, 
10 000 km and 40 000 km. 

b Calculate the necessary speeds for circular orbits at 
these heights. 

c Use a compass to draw a scale diagram of the Earth 
with these orbits around it. 

d Determine the times for complete orbits (time 
periods), T, at these heights and mark them on 
your diagram.

23 Two satellites of equal mass orbit the same planet as shown 
in Figure D1.20. Satellite B is twice as far away from 
the centre of the planet as satellite A. Copy the table and 
complete it to show the properties of the orbit of satellite B.

Satellite A Satellite B

Distance from planet’s centre r 2r

Gravitational field strength g

Gravitational force F

Circumference of orbit c

Speed v

Time period T

r

2r

A

B

    
	■ Figure D1.20 Two satellites of 

equal mass orbiting the same planet

DB
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24 The Earth is an average distance of 1.5 × 1011 m from the 
Sun. Assuming that the orbit is circular,
a calculate the average orbital speed of the Earth 

around the Sun
b determine the centripetal acceleration of the Earth 

towards the Sun. 
c Use your answers to calculate a value for the mass of 

the Sun.

25 The gravitational field strength on the surface of Mars 
is 3.72 N kg−1.

 The radius of Mars is 3.4 × 106 m. 
a What is the gravitational field strength at a distance 

of 3.4 × 106 m above the surface? 
b Calculate the orbital speed necessary for a satellite 

orbiting Mars at this height. 
c What would be the time period of this satellite?

Nature of science: Observations

Uses of satellites

The use of artificial satellites has extended the range and nature of observations that we can make of 
phenomena both on the Earth and in space. Satellites can be put into orbit at any desired height above the 
Earth’s surface, assuming that they are given the right velocity and are high enough to avoid air resistance. 
The lower orbits have obvious advantages, especially if the Earth’s surface is being monitored for some 
reason. But, as previously explained, the higher a satellite, the longer its orbital time period. The orientation 
of the orbit compared with the Earth’s axis and whether it is circular or elliptical are also important.

Polar orbits

Many satellites have orbits that pass approximately over both poles of the Earth 
at heights of up to about 2000 km (Figure D1.21). The Polar orbits remain in the 
same plane as the Earth rotates, so that the satellite passes over different parts of 
the planet on each orbit. These satellites make many orbits every day.

Geostationary orbits

A geostationary satellite is one that appears to remain in the same position as seen by an observer on the 
Earth’s surface. This is only possible if the period of the satellite is the same as the period of rotation of 
the Earth (23 h 56 min). As we have seen, this requires that a geostationary satellite is at exactly the right 
height: 4.2 × 107 m.

Any satellite at this height will have the same period as the rotation of the Earth and they are described as 
geosynchronous. However, to be geostationary the satellites must be made to orbit in the same plane as the 
equator. Both orbits shown in Figure D1.22 are geosynchronous, but only the orbit in a is geostationary.

Earth’s axis of rotation

a

satellite

Earth’s axis of rotation

b satellite

 

	■ Figure D1.22 Geostationary orbits must be in the plane of the equator

satellite

	■ Figure D1.21 
Polar-orbiting satellite

LINKING QUESTION
l How can the motion 

of electrons in the 
atom be modelled 
on planetary motion 
and in what ways 
does this model fail? 
(NOS)

This question links 
to understandings in 
Topics E.1 and E.2.

 ◆ Polar satellite orbit 
Descriptive of the path of 
a low-orbit satellite that 
passes over the poles of the 
Earth and completes many 
orbits every day.

 ◆ Geosynchronized orbit 
Any satellite orbit that 
has the same period as the 
Earth spinning on its axis. 
The orbit must have exactly 
the correct radius.

 ◆ Geostationary orbit A 
satellite which appears to 
remain ‘above’ the same 
location on the Earth’s 
surface.
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Gravitational potential energy

SYLLABUS CONTENT

 Gravitational potential energy, Ep, of a system is the work done to assemble the system from infinite 
separation of the components of the system.

 Gravitational potential energy for a two-body system as given by: Ep  = –G 
m1m2

r  where r is the 
separation between the centres of mass of the two bodies.

We introduced the concept of gravitational potential energy, Ep, in Topic A.2. The equation 
ΔEp = mgΔh was used to calculate changes in gravitational potential energy close to the Earth’s 
surface, where the gravitational field strength, g, can be considered constant (9.8 N kg−1).

However, a general understanding of gravitational potential energy, which applies anywhere, must 
answer these two questions:
l Is there a true zero of gravitational potential energy and, if so, where is it?
l How can varying values of gravitational field strength be including in gravitational 

energy calculations?

The zero of gravitational potential energy is chosen to be where the masses are separated by an 
infinite distance.

TOK

Mathematics and the arts
l Why is mathematics so important in some areas of knowledge, particularly the natural sciences?
l How do mathematicians reconcile the fact that some conclusions seem to conflict with our intuitions?

Infinity

Infinity is not an actual place, but an abstract concept that appears regularly in physics and mathematics.

The idea of an infinite quantity (gravitational field, distance, time, number, and so on) is used in physics 
to suggest a quantity that is limitless (without end). It is greater than any real, measurable quantity. 
The opposite of infinite is finite, which means within limits. The idea of an infinite series of numbers, 
an infinite time, or even a field that extends for ever (but becomes vanishingly small) may all seem 
somehow acceptable to the human mind. However, the concept of an infinite universe gives most of 
us problems.

TH
E IB LEARNER PRO

FILE
 ◆ Infinite Without limits.
 ◆ Finite Limited.

We usually refer to the gravitational potential energy of a single mass, a book on a table for example 
but, more exactly, the gravitational potential energy is a property of the whole system of the book, 
the table, the rest of the Earth (and the rest of the Universe!). In practice, it is acceptable to talk 
about the gravitational potential energy of a single object that is very much less massive than the 
mass creating the gravitational field in which it is situated (a person on the Earth, for example).

Gravitational potential energy is stored between two or more masses because of the gravitational 
forces between them. In theory, the forces never reduce to zero (consider Newton’s law of 
gravitation), no matter how large the distances. 

A 1 kg book placed on a table top which is 0.80 m above the floor has about 8 J (mgΔh) more 
gravitational potential energy than if it were placed on the floor. We may consider that the same 
book on the same table has about 40 J of gravitational potential energy if the room where they 
are located was on the first floor. If the location was 200 m above sea level, we might say that the 

 ◆ Gravitational potential 
energy, Ep, is the work 
done when bringing all 
the masses of a system to 
their present positions from 
infinity.
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book has 2000 J of gravitational potential energy. Defining a zero of gravitational energy which is 
agreed by everyone (infinity) avoids all these differences and possible misunderstandings.

The total gravitational potential energy of a system, Ep, is defined as the work done when 
bringing all the masses of the system to their present positions, assuming that they were 
originally at infinity.

The gravitational potential energy of the book (and the Earth) is the work done in bringing 
them together from an infinite distance apart. Of course, this is a theoretical exercise, but the 
determination is straightforward, as follows.

We know (from Topic A.3), work done = force × distance moved in the 
direction of the force.

The gravitational force between the 1 kg book varies with distance from the 
Earth, but we know that the work done can be determined from the area under 
a force–distance graph. See Figure D1.23, in which R represents the radius of 
the Earth (6.4 × 106 m).

Of course, a separation of 8R is a long way from infinity (!), but we can see 
from the graph that the force is becoming very small and the gravitational 
potential energy (= shaded area) is tending to a limit. An accurate 
determination of the complete area (or the use of calculus) shows that the 
gravitational potential energy of 1 kg on the Earth’s surface is 6.26 × 107 J. 
However, as explained below, gravitational potential energy is always given a 
negative sign, so that Ep = –6.26 × 107 J.

If a mass of 1 kg on the Earth’s surface was given +6.26 × 107 J of energy, 
then it would have just the right amount of energy to reach infinity, where 
it would then have (–6.26 × 107 J) + (6.26 × 107 J) = 0 J of gravitational 
potential energy.

Top tip!
In this course we show gravitational forces as positive, but it may be considered that gravitational forces 
between two masses should be shown with negative signs because they are vectors with directions 
opposite to that of increasing separation. That would then be consistent with gravitational potential 
energy always being negative.

However, because gravitational forces are always attractive (unlike the electric forces discussed in 
Topic D.2), we are using only positive signs.

2

4

6

8

10

0
0 R 2R 3R 4R 5R 6R 7R 8R

Distance

R = 6.4 × 106 m

Fo
re

/N

	■ Figure D1.23 Variation of the force on a 
1 kg mass with distance from the Earth.

	■ Figure D1.24 Work done when moving in a 
gravitational field is independent of the path

M

m

m
(originally at infinity)

the work done does not
depend on the path taken

Gravitational potential energies are always given negative values 
because (positive) energy would have to be supplied to separate the 
masses to infinity, where a system then has zero gravitational potential 
energy.

The total work done when moving to, or from, the same locations in a 
gravitational field does not depend on the path taken. See Figure D1.24.

A ball thrown upwards has been given kinetic energy. As it rises its kinetic 
energy is transferred to gravitational potential energy. As it falls, the process 
is reversed. This physics principle is exactly the same for a mass moving 
large distances, even (in theory) to infinity and back. See Figure D1.25.
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Earth
(or another planet)

maximum KE
minimum GPE

(largest negative
value)

loses KE
gains GPE

zero GPE infinity

loses GPE
gains KE

	■ Figure D1.25 Changes of energy when a projectile moves between a planet and infinity

a Use an area under the graph shown in Figure D1.23 to estimate the change in 
gravitational potential energy if a mass of 1 kg moved ‘up’ from the Earth’s surface 
(distance = R) to a height of 2R above the surface.

b Determine the change in gravitational potential energy if a 5.0 kg mass moved the same 
distance ‘down’ towards the Earth’s surface.

c Compare your answer to part a to the value obtained using ΔEp= mgΔh, with g = 9.8 N kg−1.

Answer
a Area ≈ 4.0 × (2R – R) = 4.0 × (6.4 × 106) = +2.6 × 107 J
 This is a rough estimate of the amount of energy needed to be given to the mass to 

increase its height above the Earth’s surface, and its gravitational potential energy.
b 5.0 × (−2.6 × 107) = −1.3 × 108 J
 The negative sign arises because it represents the fact that the mass has lost 

gravitational potential energy as it moved closer to the Earth.
c ΔEp= mgΔh = 1 × 9.8 × (6.4 × 106) = 6.3 × 107 J
 It should be clear that this is a very different, and incorrect, answer.

WORKED EXAMPLE D1.9

Equation for gravitational potential energy
r

Ep

Ep × r = constant

R

	■ Figure D1.26 Variation of the gravitational potential 
energy of a mass, Ep, with distance, r, from the surface of a 
planet or moon of radius R

Clearly it would be inconvenient to have to use graphs to determine 
every gravitational potential energy. We need a direct equation. However, 
because the gravitational force is not constant, this is not obtained by a 
straightforward calculation. It requires calculus, which is not needed for 
this course. The relationship can be stated as:

gravitational potential energy between two masses, Ep = –G 
m1m2

r

See Figure D1.26 for a graphical representation of this relationship.

This equation is consistent with work done  = force × distance  

= 
Gm1m2

r2  × r

DB
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Use the equation above to confirm that the 
gravitational potential energy of 1.0 kg on 
the Earth’s surface is −6.3 × 107 J (as stated 
previously).
Mass of Earth = 6.0 × 1024 kg. 
Radius of Earth is 6.4 × 106 m.

Answer

 Ep = –Gm1m2

r
 

 = – 
(6.67 × 10–11) × (6.0 × 1024) × 1.0

6.4 × 106

 = 6.3 × 107 J

WORKED EXAMPLE D1.10

26 Explain how it is possible for a body to have negative 
potential energy.

27 A satellite of mass 200 kg was raised from the Earth’s 
surface to a height of 320 km. 
a Determine the change in its gravitational 

potential energy.
 Mass of Earth = 6.0 × 1024 kg
 Radius of Earth = 6.4 × 106 m
b What value would the (incorrect) use of using 

ΔEp = mgΔh produce?

28 a Determine a value for the gravitational potential 
energy associated with the Earth–Moon system (only).

 Mass of Moon = 7.3 × 1022 kg
 Separation of centres averages at 3.8 × 108 m

b Discuss whether it is acceptable to ignore the effect of 
the Sun in this calculation

29 a Use the graph shown in Figure D1.23 to estimate 
the change in gravitational potential energy when 
1 kg moves from a distance 4R to a distance 5R from 
the centre of the Earth. 

b Compare your answer to a value determined by using 
the equation:

 Ep= –G
m1m2 

r

30 Calculate the gravitational potential energy of a 200 kg 
satellite orbiting at a height of 150 km above the surface 
of the planet Mars.

 (The mass of Mars = 6.0 × 1023 kg,  
radius of Mars = 3.4 × 106 m)

Top tip!
The energies of electrons in atoms (and nucleons in nuclei) are also given negative values for the same 
reason: an attractive force results in a confined system. A negatively charged electron needs to be given 
energy to free it from the attractive force between it and the positively charged nucleus. After removal, 
an electron is then considered to have zero electrical potential energy. This is similar to saying that a 
mass has zero gravitational potential energy when it is a great distance from a planet.

Gravitational potential

SYLLABUS CONTENT

 Gravitational potential, Vg, at a point, is the work done per unit mass in bringing a mass from infinity 

to that point as given by: Vg = –G
M
r .

 Equipotential surfaces for gravitational fields.
 The relationship between equipotential surfaces and gravitational field lines.

When calculating gravitational potential energies, we refer to a particular mass in a particular 
place. But, if we want to answer questions such as: ‘how much energy would be needed to put a 
mass in a specified location?’, it is better to use the more generalized concept of gravitational 
potential, Vg. The concept of gravitational potential is used to describe the space around massive 
objects such as planets, stars, and so on.

 ◆ Gravitational potential, 
Vg Work done in moving 
a test mass of 1 kg to a 
specified point from infinity. 
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Gravitational potential can be considered as gravitational potential energy per unit mass.

For a relatively small mass, m, in the gravitational field of a very much larger mass, M, (such as a 
planet), we can make that clear by rewriting:

Ep = – 
Gm1m2

r

as Ep = –G
Mm

r
Then, diving by the small mass, m, gives:

gravitational potential, Vg (= 
Ep

m ) = –G
M
r

Figure D1.27 may help to explain the usefulness of the 
concept of potential. It shows three satellites, all at the same 
height in orbit around the Earth.

Because the satellites have different masses, they have 
different gravitational potential energies. If we divide their 
gravitational potential energies by their masses, we get the 
same result: −5.8 × 107 J kg−1 (the gravitational potential in 
that particular orbit).

Calculations with any satellite in the same orbit will produce the same result, and we can label that 
orbit as having a gravitational potential of −5.8 × 107 J kg−1.

A more formal definition of gravitational potential:

The gravitational potential at a point is defined as the work done per unit mass (1 kg) in 
bringing a small test mass from infinity to that point.

Gravitational potential is a scalar quantity; it has no direction. Like gravitational potential energy, 
the zero of gravitational potential is defined to be at infinity and all values of gravitational 
potential energy are negative. The SI unit for gravitational potential is J kg−1.

Consider Figure D1.27. 
a If a satellite of mass 4250 kg was 

placed in the same orbit, calculate its 
gravitational potential energy. 

b Determine the height of the orbit above 
the Earth's surface.

 (Mass of Earth = 6.0 × 1024 kg. 
Radius of Earth = 6.4 × 106 m.)

Answer
a gravitational potential energy = 

potential × mass
 = −(5.8 × 107) × 4250 
 = −2.5 × 1011 J

b Vg = –G
M
r

 –5.8 × 107 = – 
(6.67 × 10–11) × (6.0 × 1024) 

r  

 r = 6.9 × 106 m
 height = (6.9 × 106) − (6.4 × 106)  

= 5 × 105 m (500 km)

WORKED EXAMPLE D1.11

Common 
mistake
Students frequently 
get confused between 
potential energy and 
potential. Perhaps 
because of the similarity 
in their names. It may be 
helpful to use a shopping 
analogy. A shop may 
have a wide selection of 
different sized packets 
of rice (for example), 
all at different prices. 
When faced with such 
a selection, the most 
useful information to 
the shopper is not the 
prices of each packet, 
but the prices per unit 
mass (kg). Similarly, 
energy per unit mass 
(gravitational potential) 
is usually more useful 
information than 
individual energies.

2000 kg
−1.16 × 1011 J

5000 kg
−2.90 × 1011 J

3700 kg
−2.15 × 1011 J

Vg = −5.8 × 107 J kg−1

	■ Figure D1.27 Three satellites in orbit

DB
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31 Determine the gravitational potential on the Earth’s surface.

32 If the gravitational potential on the surface of a planet is −4.8 MJ kg−1,
 determine the gravitational potential energy of an 86 kg mass on the planet.

33 a Calculate the gravitational potential at a height of 1000 km above the surface of Mars.
 (Mass = 6.4 × 1023 kg, radius = 3.4 × 106 m) 
b Determine the change in gravitational potential energy for a mass of 1200 kg moving from 

the surface of Mars to a height of 1000 km. 
c State whether the change in gravitational potential energy is positive or negative.

34 The gravitational potential at a distance of 1.4 × 107 m from a planet is –1.9 × 107 J kg−1.
 Calculate the gravitational potential at a distance of 3.7 × 108 m.

	■ Equipotential surfaces
Drawings of equipotential lines provide useful visualizations of gravitational fields.

An equipotential surface (or line) connects places which have the same potential.

Figure D1.28 shows typical equipotential lines around a spherical or point mass, 
M. The circular lines are drawn with equal numerical intervals of potential, 
which means that they must get further and further apart. In other words, 
increasing separation of equipotential lines indicates a weakening gravitational 
field. A three-dimensional representation would have spherical surfaces.

As the distance from the mass increases, the potential increases, but we know 
that the potential on the surface of the mass M is negative. This means that the 
increasing potential is indicated by a negative value decreasing in magnitude.

All equipotential lines form closed loops. A satellite of mass m, placed 
anywhere on any particular equipotential (the red line, for example), will 
have the same gravitational potential energy. Moving from any one location 
to any other on the same equipotential line, by any path, requires zero net 
energy input.

Contour lines on a geographical map (see Figure D1.29) are similar to equipotential lines. The 
lines join places of equal vertical heights (above sea level), which in effect are equipotential lines. 
Where the lines are closest, the ground is steepest and anything that is free to move, such as water 
in a river for example, will move perpendicular to the contours.

Equipotential lines and gravitational field lines (as seen in Figure D1.13) can both be used to 
provide visualizations of the same gravitational field. Figure D1.30 shows their simple relationship:

Field lines are always perpendicular to equipotential lines. They point from higher potential to 
lower potential.

 ◆ Equipotential line (or 
surface) Line (or surface) 
joining points of equal 
potential. Equipotential 
lines are always 
perpendicular to field lines.

increasing
potential

M

	■ Figure D1.28 Equipotential lines 
around a spherical mass

 ◆ Contour lines Lines on 
a map joining places of the 
same altitude.
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	■ Figure D1.30 Equipotential lines and field lines are perpendicular to each other. a radial field; b uniform field

Gravitational potential is a scalar quantity, unlike gravitational field strength. This means that, if 
there are two (or more) large masses creating significant fields, we can determine the potential at 
any point by simple addition. Figure D1.31 shows an example: the potentials in the Earth–Moon 
system. The blue line represents the combined potential of the system.

	■ Figure D1.29 Contour 
map of Stowe, Vermont, USA
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Figure D1.32 shows the equipotential lines (black) and field lines (blue) in the same system.
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	■ Figure D1.31 The potentials in the  
Earth–Moon system

P

	■ Figure D1.32 Equipotential and field 
lines around the Earth and Moon.

35 Calculate suitable values of the gravitational potential around the Earth that will enable you 
to draw a scale diagram showing at least three equipotential lines.

36 Discuss the significance of point P seen in Figures D1.31 and D1.32.

37 Explain why contour lines on a geographic map can be considered to be equipotential lines.

Tool 2: Technology

Use spreadsheets to manipulate data

Set up a spreadsheet which will enable you to calculate the combined potentials along a 
straight line joining the Earth and the Sun. Use the spreadsheet to draw a graph similar to 
that seen in Figure D1.31.

	■ Gravitational potential difference

SYLLABUS CONTENT

 Work done in moving a mass, m, in a gravitational field as given by: W = m∆Vg.
 Gravitational field strength, g, as the gravitational potential gradient as given by: g = – 

ΔVg

Δr .

The central theme of this topic is the movement of masses between different places in 
gravitational fields, for example, the field around the Earth. This means that the difference in 
potential – the potential difference – between two locations is of particular importance.

Gravitational potential difference, ΔVg, is the work, W, done on unit mass (1 kg) when it 
moves between two points in a gravitational field.

ΔVg = 
W 
m 

 or

W = mΔVg

Work has to be done on a mass to increase its gravitational potential energy; that is to move it to 
a greater potential. (For example, away from a planet to a location where the potential has a lesser 
negative value.) Then W will have a positive value. The mass does the work when it moves to a 
lesser potential, and W will have a negative value. For example, when a mass falls towards the 
Earth, gravitational potential energy will be transferred from the mass to kinetic energy.

 ◆ Gravitational potential 
difference Difference in 
gravitational potential 
between two points, which 
equals the work done when 
1 kg is moved between the 
points.

DB
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A satellite of mass 850 kg is in an orbit 7.9 × 106 m from the centre of the Earth. 
a Calculate the gravitational potential in this orbit. 
b The satellite is to be moved to an orbit where the gravitational potential is −5.40 × 107 J kg−1.
 State whether this is a higher, or lower orbit. 
c Calculate the work done in this change of orbit.

Answer

a Vg = –G
M
r  = – 

(6.67 × 10–11) × (6.0 × 1024) 
7.9 × 106  

  = –5.1 × 107 J kg–1

 (5.0658.... × 107 seen on calculator display)
b The potential is lower in the new orbit (greater negative value), so it must be a lower 

orbit. See Figure D1.33. 
c W = mΔVg = (850 × ((–5.40 × 107) – (–5.07 × 107)) = –2.8 × 109 J

 The satellite will have to ‘lose’ this amount of gravitational potential energy to be in 
the lower orbit.

Note that the answer to c is not dependent on the path taken between the two orbits.

WORKED EXAMPLE D1.12Top tip!
For comparison, you 
should remember, 
from Topic B.5, that 
in electric circuits, 
the electric potential 
difference was the 
defined as the work 
done per unit charge as 
given by:

V = 
W
q

This concept will be 
developed further in 
discussion of electric 
fields in Topic D.2.

work has to be
done on the satellite

m

m

work is done
by the satellite

increasing potential
(decreasing negative value)

planet or
moon

Vg equipotential
lines

Gravitational potential–distance graphs

Figure D1.34 shows the variation of gravitational potential around a spherical 
planet. We can use the gradient of the graph at any point (ΔVg/Δr) to determine 
the strength of the gravitational field, g, which can be explained as follows.

We know that the work done, W, when moving a mass, m, through a potential 
difference ΔVg is given by W = mΔVg.

We also know that the work can be calculated from force × distance = mg × Δr, 
where Δr is a small enough distance that the value of g does not change 
significantly. (This assumption would need further explanation or justification 
at a higher level.)

Hence:

W = m ΔVg = m gΔr

So that the magnitude of the gravitational field strength g = 
ΔVg 
Δr 

, called the 
gravitational potential gradient.

Gravitational field strength equals potential gradient: g = – 
ΔVg

Δr

	■ Figure D1.33 
work done when a 
satellite changes orbit
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	■ Figure D1.34 Graph showing variation 
of gravitational potential around a planet

 ◆ Gravitational potential gradient Rate of 
change of potential with distance, equal in 
magnitude to field strength. 

DB
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The negative sign has been added to the equation to show that the direction of the vector quantity 
g is opposite to the direction of increasing potential.

Determine the magnitude of the gravitational 
field strength at a distance r from the centre 
of the planet represented in Figure D1.34.

Answer

 g = 
ΔVg

Δr  
= 

(3.8 × 108) – 0
(4.2 × 107) – 0 = 9.0 N kg–1

WORKED EXAMPLE D1.13

38 Calculate the gravitational potential difference when 
moving up from a 100 m contour line to a 200 m 
contour line.

39 Figure D1.35 shows equipotential lines around two equal 
masses. Draw a sketch to represent the gravitational field 
lines around the same masses.

M M

     

	■ Figure D1.35 
Equipotential lines 
around two equal masses

40 Figure D1.36 shows equipotential lines around a planet.
 Determine the gravitational potential differences 

associated with the following movements from:
a 1 to 5 b 5 to 1 c 3 to 4 d 2 to 5.

41 a Draw a graph of the potential around the Earth from 
its surface to a radius of 2.6 × 107 m. 

b Use your graph to determine a value of the 
gravitational field strength at a radius of 1.7 × 107 m.
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	■ Figure D1.36 Equipotential lines around a planet

 ATL D1A: Communication skills 

Clearly communicating 
complex ideas in response to 
open-ended questions
A useful way to deepen your 
understanding is to present concepts 
visually, using charts or other visual 
organizers to show relationships between 
concepts. Here are two examples of 
how the concepts in this topic could be 
presented in this way:

Describing
particular
arrangements

Force, F
Potential

energy, Ep 

Field strength, g Potential, Vg

Describing
points in
space

potential
energy = area

under F–r graph

force = gradient
of Ep–r graph

potential = area
under g–r graph

field strength =
gradient of Vg–r graph

potential = potential energy
mass

force
mass

field strength = 

	■ Figure D1.37 Connections between the magnitudes of the four key concepts

TH
E IB LEARNER PRO

FILE
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Field

g = G M
r2

Potential energy

Ep = –G
 m1m2

r

Potential

Vg = –G M
r

Force

m1m2

r2
F = G

	■ Figure D1.38 Equations for 
radial gravitational fields

Can you think of other ways in which these concepts – and the relationships 
between them – could be represented?

Speeds and energies of satellites

SYLLABUS CONTENT

 The escape speed vesc at any point in a gravitational field as given by:

 vesc =   
2GM

r .

 The orbital speed vorbital of a body orbiting a large mass as given by:

 vorbital =   
GM

r .

 The qualitative effect of a small viscous drag due to the atmosphere on the height and speed of an 
orbiting body.

In all of this section, for the sake of simplicity, we will assume that the planet from which a 
satellite is launched is not rotating.

	■ Escape speed
In theory, an object can be projected (not powered) upwards in such a way that it could continue to 
move away from the Earth forever. For this to be possible the object would need to be given a very 
high speed. To calculate that speed, we need to consider energies.

In general, the initial kinetic energy given to an object will be transferred to gravitational energy, 
but also dissipated due to air resistance in the Earth’s atmosphere. But if we assume that the effects 
of air resistance are negligible, we can calculate the minimum theoretical speed that a projectile of 
mass m needs in order to ‘escape’ from a planet of mass M. This is called its escape speed, vesc. It 
can be calculated as follows:

kinetic energy needed = change in gravitational potential energy between location and infinity
1
2 

mv 2
esc = 0 – (–GMm 

r )
which leads to:

speed needed to ‘escape’ from a planet without air resistance (drag), vesc =  
2GM 

r

 ◆ Escape speed Minimum 
theoretical speed that an 
object must be given in 
order to move to an infinite 
distance away from a 
planet (or moon, or star): 

vesc =   
2GM

r . 

DB
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Note that:
l This speed is the same, regardless of direction of travel (assuming no air resistance).
l We have assumed that there are no other significant gravitational fields, as might be provided 

by, for example, a moon.

a Calculate the escape speed from the Earth’s surface. 
b Outline why all masses have the same escape speed.

Answer

a vesc =   
2GM 

r  =   
(2 × (6.67 × 10–11) × (6.0 × 1024)) 

6.4 × 106  = 1.1 × 104 m s–1

 (about 11 km s−1)
b Double the mass, for example, will need to gain double the gravitational potential 

energy. So, it needs double the kinetic energy, which it will have with double the mass 
at the same speed.

WORKED EXAMPLE D1.14

Although the equation above can be used for any radius, it assumes that the mass starts with zero 
kinetic energy. If, for example, we wanted to know the escape speed needed for a satellite already 
in a steady orbit, we need to take into consideration the initial kinetic energy of the satellite. 
See below.

	■ Orbital speed
We have already seen that a satellite needs to have the correct orbital speed to maintain a circular 
orbit. From Kepler’s third law, we showed that:

r3

T 2 = 
GM
4π2

Replacing using T with 
2πr 
v 

 gives us:

r3 v2

4π2r2
 = 

GM
4π2

which simplifies to (using vorbital instead of v):

speed required to maintain a circular orbit, vorbital =  
GM

r

What speed is required for a satellite to 
maintain a circular orbit 100 km above 
the Moon’s surface? (mass of Moon = 
7.35 × 1022 kg, radius of Moon = 1737 km)

Answer

vorbital =  
GM

r  

 =  
(6.67 × 10–11) × (7.35 × 1022)

1.837 × 106

 = 1.63 × 103 m s–1

WORKED EXAMPLE D1.15

LIINKING QUESTION
l How is the amount 

of fuel required to 
launch rockets into 
space determined by 
considering energy?

DB

 ◆ Orbital speed For a 
satellite in a circular orbit, 
its speed must have the 
correct value for the chosen 

radius: vorbit =   
GM

r . 
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The average distance between the centre of the Moon and the centre of the Earth is 
3.84 × 108 m. The Earth has a mass of 6.0 × 1024 kg. Determine a value for the time for each 
orbit of the Moon around the Earth (assuming that its path is circular).

Answer
r3

T 2 = 
GM
4π2  ⇒ 

(3.84 × 108)3

T 2  = 
(6.67 × 10–11) × (6.0 × 1024)

4π2

 T = 2.4 × 106 s (27 days)

WORKED EXAMPLE D1.16

	■ Artificial satellites
To put a satellite into orbit we need to provide enough energy to:
l increase the gravitational potential energy of the satellite
l increase the gravitational potential energy of the launch vehicle fuel, etc.
l give the satellite the required kinetic energy for the required orbit
l overcome fictional forces
l allow for thermal energy dissipation.

The gravitational and kinetic energy given to the orbiting satellite will only be a small percentage 
of the total energy transferred. This is not a very efficient process!

Once a satellite is in orbit, the energy relationships are less complicated. As we have seen:

gravitational potential energy of a satellite of mass m orbiting a planet, or moon, of mass M at a 
distance r from the planet's (or moon's) centre is given by:

Ep = –G
Mm 

r 

For a satellite already in orbit:

Total energy, ET = Ek + Ep = 
1
2
 mvorbital

2 + (–G
Mm

r )
But we know that:

vorbital
2 = 

GM
r

so that:

kinetic energy of a satellite in a circular orbit, Ek = 
1
2
 
GMm 

r 
 

Then, total energy, ET = 
1
2
 
GMm

r
 + (– 

–GMm
r )

so that:

total energy of a satellite in a circular orbit, ET = – 
1
2
 
GMm

r
 

Note that:

ET = 
1
2
Ep = –Ek
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A satellite in a circular orbit does not have enough energy to escape the 
gravitational field, so that both its potential energy and its total energy are 
negative. Figure D1.39 shows these relationships graphically.

A 500 kg satellite is orbiting at a height of 300 km above the surface of 
the planet Mars.
Mass of Mars = 6.4 × 1023 kg. Radius of Mars = 3.4 × 106 m.
Determine the satellite’s:
a gravitational potential energy
b kinetic energy
c total energy.

Answer

a Ep = –G 
Mm 

r  = – 
(6.67 × 10–11) × (6.4 × 1023) × 500 

3.4 × 106  = –6.3 × 109 J

b Ek = 
1 
2 G 

Mm 
r  = +3.1 × 109 J

c ET = – 
1 
2  

GMm 
r  

= –3.1 × 109 J

WORKED EXAMPLE D1.17

Changing orbits
l Continuing Worked example D1.17, suppose that it was required that a satellite was to be 

re-directed to an orbit 200 km higher. Then the new values are:
 Ep = −5.93 × 109 J. This is an increase  0.35 × 109 J.
 Ek = +2.96 × 109 J. This is a decrease  0.17 × 109 J.
 ET = −2.96 × 109 J. This is an increase  0.17 × 109 J.
 The satellite will have less kinetic energy because its necessary orbital speed is less, but there 

is a greater gain of gravitational potential energy due to the increased height. Overall, energy 
must be supplied for the change.

l If it required that a satellite already in orbit (radius r) is to ‘escape’ the Earth’s gravity, we 
can calculate the extra energy needed from: required gain in gravitational potential energy = 
existing orbital kinetic energy + extra kinetic energy needed

 extra kinetic energy needed = 
GMm

r
 – 

1
2
 
GMm

r
 = 

1
2
 
GMm

r
 

 This is the same as its existing orbital kinetic energy.
l If a satellite is to be re-directed to a lower orbit, energy must be removed. It has to travel faster 

in its new orbit and gain kinetic energy, but there is an even greater reduction in gravitational 
potential energy.

l Satellites in low orbits may experience some very slight air resistance (viscous drag). This 
results in a dissipation of kinetic energy to thermal energy. It would travel more slowly, but as 
it moves to a lower height it gains an even greater amount of kinetic energy. Overall, its speed 
increases and the effects of increasing air resistance result in even greater dissipation of 
thermal energy. An uncontrolled satellite will spiral towards Earth, burn up and disintegrate.

LINKING QUESTION
l How can air 

resistance be 
used to alter the 
motion of a satellite 
orbiting Earth?

This question links 
to understandings in 
Topic A.2.

En
er

gy

Distance
0

kinetic energy

potential energy

total energy

	■ Figure D1.39 Energies of a satellite
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42 a Explain what you think ‘burn up’ means in the 
paragraph above. 

b Research into an occasion when a satellite actually 
crashed on the Earth’s surface and find out 
what happened.

43 A typical air molecule travels at 450 m s−1 at room 
temperature. Explain why the Earth’s atmosphere does 
not spread out into space away from the planet.

44 A satellite of mass 820 kg is orbiting at a height of 320 km 
above the Earth’s surface. Calculate: 
a its gravitational potential energy
b its kinetic energy
c its total energy (Earth’s radius = 6.4 × 106 m, 

Earth’s mass = 6.0 × 1024 kg) 
d the speed it would need to have in order to escape 

from the Earth.

45 a A 300 kg satellite is in orbit around the Moon at an 
altitude of 60 [thin#]       km. Calculate how much extra energy 
it needs to escape from the Moon. (Mass of Moon = 
7.3 × 1022 kg, radius of Moon = 1.7 × 106 m)

b  State any assumptions you made in answering a.

46 a Determine a value for the escape velocity from 
the surface of the planet Mars. (Mass of Mars = 
6.4 × 1023 kg, radius of Mars = 3.4 × 106 m)  

b Outline why this escape speed is less than the escape 
speed from Earth.

47 A satellite in a geosynchronized orbit has a time period 
of 24 hours. 
a Determine the radius of this orbit. 
b Calculate the orbital speed of the satellite.

48 What happens to the total energy of a satellite in a 
circular orbit if it encounters some air resistance, moves 
to a lower orbit, but gains speed? Explain your answer.

49 a Suggest what effect the spin of the Earth will have on 
the escape speed. 

b Suggest why satellite launch sites are often close to 
the equator.

50 Draw a Sankey diagram to represent the energy flows as 
a satellite is launched from the surface of the Earth and 
then enters an orbit. Assume that the whole process is 
very inefficient.

51 Titania is a moon of the planet Uranus. It orbits at an 
average distance of 4 × 108 m from the centre of Uranus. 
The planet has a mass of 8.7 × 1025 kg. 
a Determine the time period (Earth days) of 

Titania’s orbit. 
b Calculate its average orbital speed. 
c Calculate the strength of the gravitational field of 

Uranus at the height of Titania.

 ATL D1B : Research skills 

Using search engines and libraries effectively
Use the internet to find out the latest progress on space launch systems that intend to propel spinning 
rockets upwards from the Earth’s surface by giving them a large amount of kinetic energy. After the 
rocket has significantly slowed down and reached an altitude of about 60 km, then the engines are 
ignited for the rest of the trip into orbit.
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D.2 Electric and magnetic fields

• Which experiments provided evidence to determine the nature of the electron?
• How can the properties of fields be understood using both an algebraic approach and a 

visual representation?
• What are the consequences of interactions between electric and magnetic fields?

Guiding questions

Electric charge

SYLLABUS CONTENT

 The direction of forces between the two types of electric charge.
 The conservation of electric charge.

 ATL D2A: Communication skills 

Clearly communicating complex ideas in response to open-ended questions
The concept of electric charge was introduced in Topic B.5, in which the electric charges of electrons, 
protons and ions were briefly described. Before beginning this topic, review the beginning of Topic B.5: 
Electric charge and its conservation.

Make notes on the important concepts you find there. Use a visual organizer and/or diagrams to 
connect the key concepts.

Charge is measured in coulombs, C. One coulomb is a relatively large amount of charge and we 
often use microcoulombs (1 μC = 10−6 C) and nanocoulombs (1 nC = 10−9 C).

All protons have a positive charge of +1.60 × 10−19 C and all electrons have a negative charge of 
−1.60 × 10−19 C.

Any quantity of charge consists of a whole number of these charged particles, each ± 1.6 × 10−19 C. 
Charge is quantized.

1.6 × 10–19 C is called the elementary charge and it is given the symbol e.

(Note: nuclear particles – protons and neutrons – are themselves composed of smaller particles 
called quarks. Quarks also have quantized charge, but the charge is quantized into multiples 
of ±e/3. However, quarks cannot be observed as isolated particles. Knowledge of quarks is not 
required in this course.)

Later in this topic, we will describe Millikan’s famous experiment to determine the charge of 
an electron.

DB

LINKING QUESTION
l Charge is quantized. 

Which other 
physical quantities 
are quantized? 
(NOS)

This question links 
to understandings in 
Topic E.2.
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Electrostatic charging and discharging

SYLLABUS CONTENT

 Electric charge can be transferred between bodies using friction, electrostatic induction and by 
contact, including the role of grounding (earthing).

Everyday objects contain an enormous number of charged particles and they usually have equal 
numbers of positive charges (protons) and negative (electrons) charges, so that they have no overall 
charge and are therefore described as being neutral.

Negatively charged electrons are the outermost particles in atoms and some of them are not 
tightly bound to atoms. If electrons can be added to, or removed from, a neutral object, it will 
then have an overall charge and we describe the object as being charged, which can then result in 
electrostatic effects. Protons, unlike electrons, are located in the nuclei of atoms and cannot be 
separated or moved from their positions, so they are not involved in producing electrostatic effects.

If a neutral object is given excess electrons, it becomes negatively charged. If the number of 
electrons is reduced, the object becomes positively charged.

	■ Charging by friction
One common example is seen in Figure D2.1: when brushing dry hair with 
a plastic brush, electrons can be transferred in the process, one object (the 
hair brush) gains electrons, becoming negatively charged, while removing 
electrons from the other object (the hair), leaving it with a positive charge. 
The two objects will then attract each other. In this example, individual 
hairs with similar charge can also be seen to be repelled from each other.

In school experiments, in order to produce electrostatics effects, insulating 
rods are often rubbed with cloths. Depending on the materials, one will 
become positively charged and the other negatively charged, as electrons 
are transferred between the rod and the cloth. These insulating materials 
have much fewer mobile charge carriers (free electrons) than metals, but if 
metals were used, the charges would not stay in the same place.

When friction occurs between substances, electrons are often transferred between their surfaces.

Charging by friction is not limited to solids. For example, electrostatic effects can be produced 
when liquids flow through pipes, or when air flows past fans.

Very high electrostatic voltages can be produced using friction with specially designed (and safe) 
apparatus. Figure D2.2 shows an example.

 ◆ Charge (to) Add or 
remove electrons, so 
that an object acquires 
an overall net charge, 
for example, by friction. 
(To ‘charge’ a battery has a 
different meaning.)

 ◆ Electrostatics The 
study of the effects of 
charges at rest (that is, not 
electric currents).

	■ Figure D2.1 When you brush your hair, 
individual hairs may move apart because of 
the repulsion between similar charges

+ –
+ –

+ –
+ –

+ –
+ –

electrons
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	■ Figure D2.2 Classroom electrostatic generator

	■ Figure D2.3 The world’s largest Van de Graaff frictional 
electrostatic generator is in the Boston Museum of Science (USA). 
It has two 4.5 m diameter spheres mounted on 7.6 m insulating poles. 
It can generate a potential difference of up to seven million volts.

	■ Charging and discharging by contact
If a charged object comes into actual physical contact with another object, it is possible 
for charges (electrons) to flow between them. Figure D2.4 shows a laboratory example: an 
isolated metal-coated sphere is touched by a charged plastic rod and some of the excess 
electrons flow off the rod onto the sphere. When the rod is removed, the excess negative 
charge will remain on the sphere. If the rod was positively charged, electrons would flow 
in the opposite direction.

In effect, the charge has been shared, but the amount of charge that flows off the original 
object (a plastic rod in this example) depends on many factors (sizes, shapes, ability to 
conduct and so on).

If a charged object is touched by a non-insulator which is connected to the ground, electrons 
will be easily attracted onto, or off, the object, so that it quickly loses its overall charge, 
although the effect on the ground is insignificant. This is called discharging. Charged 
objects usually tend to become discharged easily because charges can flow through the air, 
especially if the air is humid (high water content), as in wet weather conditions.

When objects come in contact with each other, excess electrons, or a deficit of electrons may be 
shared between them.

If we wish to make sure that an object is not charged, a good conducting path (of low resistance) is 
made with the earth / ground. This is called earthing (or grounding). In domestic wiring this is 
done by connecting a thick copper wire to a metal plate in the ground, or by connecting to a metal 
water pipe. In this way, the frames of metal devices can be kept safe at 0 V – the same as the Earth. 
In some experiments it may be necessary to keep one point in a circuit at 0 V and this is also done 
with a connection to earth (ground). The symbol for ground connection is shown in Figure D2.5.

Charged objects will become discharged if they are connected to the ground. If this is done 
deliberately, it will happen very quickly and is called grounding. The object will then be at 0 V.

	■ Charging by electrostatic induction
If a charged object is brought close to an uncharged object, but without touching, forces will 
be exerted on electrons in the uncharged object. Some electrons in the surface near the charged 
object will be either repelled or attracted, and this results in some charge separation.  
See Figure D2.6, in which a positively charged rod is attracting some electrons towards it, leaving 
the other side of the sphere positively charged.

– – –
–

–
– –

–

–– –

–
electrons

plastic rod

insulating
stand

	■ Figure D2.4 Charging a conducting 
sphere negatively by contact

 ◆ Discharge Flow of 
electrons to or from an 
object that reduces the 
overall charge on it.

 ◆ Earth (ground) 
connection A good 
conductor connected 
between a point on a piece 
of apparatus and the ground. 
This may be part of a safety 
measure, or to ensure that 
the point is kept at 0 V.

	■ Figure D2.5 Symbol 
for a ground connection
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If the rod was negatively charged, some electrons would be repelled to the far side of the sphere, 
leaving the side closest to the rod with an excess of positive charge.

Charge separation caused, without contact, by a nearby charge is known as 
electrostatic induction.

(In this sense of the word, induction is being used to describe something being made to happen 
without physical contact)

When the charged rod is removed the electrons will redistribute evenly.

Electrostatic induction is needed to explain most of the electrostatic effects we may see in 
everyday life. For example, Figure D2.7 shows how a comb (which has been previously charged by 
friction) can attract uncharged small pieces of paper (without contact).

The excess electrons on the charged comb repel some electrons on the pieces of paper. The comb 
then attracts the paper because the paper nearest the comb now has a positive charge.

Electrostatic induction can be the best way to charge an object for an experiment, because it does 
not involve sharing charge. Figure D2.8 shows how. When the sphere is grounded, electrons flow 
onto the sphere and they will remain there when the connection is removed. Using a negatively 
charged rod can result in a positively charged sphere.

+
+

+
–
–

–

–
– –

–

––

a separation of charge

–+–
–

–

b sphere is connected to ground

c sphere is disconnected
    from ground

d Charged rod has been removed
    and sphere has an induced charge
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electrons

 

	■ Dangers of static electricity
Large-scale electrostatic effects can be unwanted and even dangerous. Lightning is an obvious 
example (see the activity later in this topic). Cars and planes can become charged as they move 
through the air or along the ground, and this could be a problem when they stop for refuelling − 
any sparks from a charged vehicle might cause an explosion of the fuel and air. This risk can be 
prevented by making sure that the vehicle and the fuel supply are well grounded (see question 5).

	■ Figure D2.6 Charge separation 
induced without contact

 ◆ Electrostatic induction 
Movement of charged 
particles (electrons) caused 
by the influence of a 
nearby charged object, but 
without physical contact. 

+

+

–

+
–

+
–––

– –
– –

–
–

	■ Figure D2.7 An example 
of electrostatic induction

Common 
mistake
Do not confuse 
electrostatic induction 
(described here) with 
electromagnetic 
induction (Topic D.4).

	■ Figure D2.8 Charging 
by induction
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1 Describe the movement of electrons that causes a plastic 
rod to become positively charged when it is rubbed with 
a dry cloth.

2 Describe and explain an electrostatic effect that you have 
seen in your home.

3 Two conducting spheres have charges of −20.0 µC and 
+6.0 µC. If the spheres are identical and come briefly into 
contact, determine the charge on each sphere when they 
are separated.

4 If you were given two conducting spheres on insulating 
stands (similar to those seen in the previous figures), 
explain how you could make one positively charged 
and the other negatively charged by using a negatively 
charged plastic rod.

5 Explain:
a how an electrostatic effect could be dangerous when 

refuelling an aircraft (Figure D2.9)
b how grounding can prevent the problem arising
c  how sparks could occur at a petrol (gas) station. Use 

the internet to learn about how dangerous this may be.

refuelling hose bonding cable aircraft grounding
(earthing) point     	■ Figure D2.9 Refuelling an aircraft

Electric forces: Coulomb’s law

SYLLABUS CONTENT

 Coulomb’s law as given by: F = k 
q1q2

r2

 for charged bodies treated as point charges where k = 
1

4πε0

Inquiry 2: Collecting and processing data

Collecting data

Identify issues that might arise when 
attempting to collect accurate data

Figure D2.10 shows the apparatus that 
a student plans to use to determine how 
the force between charges depends on 
the magnitudes of the charges and their 
separation. Identify the issues that might 
arise when the student attempts to collect 
accurate data.

insulating rod

insulating 
support

top-pan
balance

+

+

	■ Figure D2.10 Possible investigation of electric forces
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TOK

The natural sciences
l Why are many of the laws in the natural sciences stated using the language of mathematics?

Another useful analogy

Electric forces and fields can be unfamiliar and difficult to visualize. Gravitational fields (Topic D.1) are 
generally considered easier to understand because they are more familiar. Fortunately, there is a close 
mathematical analogy between these two types of field. A thorough understanding of gravitational fields 
will be of great help in studying this topic.

The forces between point charges can be represented by an inverse square law: F ∝ 1/r2, where r 
is the distance between the charges (q1 and q2). See Figure D2.11, which shows the forces between 
similar charges (both positive, or both negative). If the charges were opposite (one positive, the 
other negative) the forces would be attractive.

r
F F

q1 q2

separation   
force 4F

separation r
force F

separation 2r
force  

q1 q2

q1 q2

r
2

F
4

	■ Figure D2.11 The repulsive force varies with distance between similar charges

Coulomb’s law represents the relationship between the forces, F, between two point charges and 
their separation, r. It has a similar form to Newton’s law of gravitation:

The forces between two point charges (q1 and q2) separated by a distance r:

F = k
q1q2

r2

 ◆ Coulomb’s law There is 
an electric force between 
two point charges, q1 and 

q2 given by F = k 
q1q2

r2
,  

where r is the distance 
between them and k is the 
Coulomb constant. 

 ◆ Coulomb constant, k  
The constant that occurs in 
the Coulomb’s law equation. 
k = 8.99 × 109 N m2 C−2.  

k = 
1

4πε0

, where ε0 is the 

electrical permittivity of 
free space.

DB

Charged bodies which are spherical can be considered to act as point charges 
(at the centres of the spheres), so that they also obey Coulomb’s law.

The law was first published by Charles Augustin de Coulomb (Figure D2.12) 
in 1783.

If the two charges are of the same type (positive and positive, or negative and 
negative), the forces will have positive signs, representing repulsive forces. 
If the two charges are opposite (positive and negative), the forces will have 
negative signs, meaning that the forces are attractive.

The constant k is known as the Coulomb constant. It has the value 
8.99 × 109 N m2 C−2.

k is not a fundamental constant (unlike G), because it can be further 
simplified:

Coulomb constant, k = 
1

4πε0 

	■ Figure D2.12 French physicist Charles 
Augustin de Coulomb (1736-1806)

DB

DB
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	■ Permittivity

The 1/4π in the expression for k represents the radial nature of the force and ε0 represents the 

electric properties of free space (vacuum). 

ε0 is called the electrical permittivity of free space and it has a value of 8.85 × 10−12 C2 N−1 m−2.

The electrical permittivity of free space, ε0, is a fundamental constant which represents  
the ability of free space to transfer an electric force and field.

The permittivities of other substances are all greater than ε0, although dry air has similar electrical 
properties to free space. This means that the force between two charges in air would be reduced if 
the air was replaced by another medium.

The permittivity of a particular medium, ε, is divided by the permittivity of free space to give 
the relative permittivity, εr, of the medium. Some examples are shown in Table D2.1. (Relative 
permittivity is sometimes known as the dielectric constant of the medium.)

relative permittivity = 
permittivity of medium

permittivity of free space
 

εr = 
ε
ε0

 

Because it is a ratio, relative permittivity does not have a unit. For example, if the permittivity of a 
certain kind of rubber was 4.83 × 10−11 C2 N−1 m−2, its relative permittivity would be:
4.83 × 10–11 
8.85 × 10–12 

 = 5.46

A point charge of 4.5 × 10−8 C is situated in air 3.2 cm from another charge of –1.3 × 10−7 C. 
a Determine the electrical force between them. 
b If they were separated by polythene, calculate the approximate force between 

the charges.

Answer

a F = k
q1q2

r2  = 
(8.99 × 109) × (4.5 × 10–8) × (–1.3 × 10–7) 

(3.2 × 10–2)2  = –5.1 × 10–2 N

 The negative sign represents an attractive force.
b Polythene has a relative permittivity of about 2, so the force would be divided by 2 

(approximately), F ≈ −3 × 10−2 N.

WORKED EXAMPLE D2.1

6 Given that the electrical permittivity of free space is 
8.85 × 10−12 C2 N−1 m−2, show that the Coulomb constant 
has a value of 8.99 × 109 N m2 C−2.

7 The force between two identical point charges was 5.0 N 
when they were separated by 7.6 cm.

 What were the magnitudes of the charges?

8 The surfaces of two insulated conducting spheres were 
separated by 14.0 cm. One sphere had a radius of 2.7 cm 

and had a charge of 3.6 × 10−7 C. The other had a radius 
of 3.9 cm and had a charge of −4.8 × 10−7 C.
a Determine the force between the spheres in 

magnitude and direction.
b  State any assumption you made when answering a.

9 Calculate the force between two point charges of 
7.4 C and 2.2 C which are separated by 1.2 m in a non-
conducting liquid of relative permittivity 3.1.

 ◆ Permittivity of free 
space, ε0 Fundamental 
constant that represents 
the ability of a vacuum 
to transfer an electric 
force and field,  
ε0 = 8.85 × 10−12 C2 N−1 m−2.

 ◆ Permittivity (electric) 
of a medium, ε Constant 
that represents the ability 
of a particular medium to 
transfer an electric force 
and field. Often expressed 
as relative permittivity: 

εr = 
ε
ε0

 (no units), which 

is also sometimes called 
dielectric constant.

DB

	■ Table D2.1 The 
approximate relative 
permittivities of some 
common insulators.

Free space 
(a vacuum)

1 (by 
definition)

dry air 1.0005

polythene 2

paper 4

concrete 4

rubber 6

water 80
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10 The force between two point charges was 2.7 × 10−6 N 
when they were separated by 29 cm.

 Predict the force between the same two charges if the 
separation was increased to 40 cm.

11 Calculate the value of the force between a proton and an 
electron in a hydrogen atom (separation = 5.3 × 10−11 m).

Nature of science: Patterns and trends

Electric and gravitational forces compared

Two or more charged particles experience both electric and gravitational forces between them and it 
informative to compare the magnitudes of these forces. The forces between an electron and a proton 
gives perhaps the obvious example.

The electric force between a proton and an electron is about 1039 × greater than the gravitational force. 
This is truly an unimaginably large number! Immediately, we can see that gravitational forces are totally 
insignificant when discussing atomic particles.

Both types of force follow a similar inverse square law, so why are electrical forces apparently insignificant 
on the very large scale? For example, gravitation seems to dominate an understanding of the formation and 
motions of planets and stars. This is because gravitational forces are only attractive and increase with the 
size of the masses involved, but electric forces are both attractive and repulsive. On the small scale, separate 
charges result in significant electric forces, but on the very large scale the enormous numbers of positive 
and negative charges are usually approximately balanced, so that electrostatic effects are insignificant.

Electric fields

SYLLABUS CONTENT

 Electric field lines.
 The relationship between field line density and field strength.

 The electric field strength as given by: E = 
F
q.

 The electric field strength between parallel plates as given by: E = 
V
d.

A region in which a charge would experience an electric force is called an electric field.

Electric fields are represented on paper, or on a screen, with electric field lines. The direction of 
electric forces depends on the nature of the charges but, by convention we choose that:

electric field lines always point in the directions of the forces on positive charges.

Figure D2.13 shows the two most basic electric fields: radial fields around an isolated point 
positive charge and around an isolated point negative charge

The field lines can never cross each other and the field is strongest (in a particular diagram) 
where the field lines are closest together (densest).

Figure D2.14 shows the combined electric field of two equal point charges. If the charges were 
both positive the field lines would point in the opposite directions. Figure D2.15 shows the field 
around opposite charges of equal magnitude.

LINKING QUESTION
l What are the relative 

strengths of the 
four fundamental 
forces?

This question links 
to understandings in 
Topics D.1, D2, E.1 
and E.3.

 ◆ Fundamental forces 
(interactions) Strong 
nuclear, electromagnetic 
and gravitational forces 
(and the weak nuclear 
force) are the four 
fundamental forces.

 ◆ Radial field Field 
(electric or gravitational) 
that spreads out from a point 
equally in all directions.

+ –

	■ Figure D2.13 Radial 
electric fields around 
point charges

+ –
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Figure D2.16 shows the electric field around a charged solid conducting sphere (in this example 
the excess charge is negative). The mobile charges (electrons) repel each other, so that they are 
evenly distributed on the outer surface of the sphere. The resulting electric field is perpendicular 
to the surface, but there is no field inside the sphere. The field is identical to that around a point 
charge at the centre of the sphere which had the same charge as all the excess electrons combined. 
The same is true for a hollow conducting sphere.

–q –q

+q –q – 

– 

– – 

– – 

– – 

	■ Figure D2.14 Field around 
two similar point charges

	■ Figure D2.15 Field around 
two opposite point charges

	■ Figure D2.16 
Electric field around a 
charged solid sphere

Electric field lines must be perpendicular to any conducting surface.

If this was not true, there would be a component of the electric force acting on the electrons, so 
that they would rearrange until the field was perpendicular.

If a surface is flat, the forces between adjacent mobile charges will be parallel to the surface and 
this results in an even distribution of charges, as seen in Figure D2.17a. But if the surface has a 
variable curvature, the forces between adjacent charges will not be parallel to the surface and will 
vary with the amount of curvature. (Figure D2.17b). This results in charge becoming concentrated 
where the curvature changes most suddenly, that is, near points. See Figure D2.18.

Figure D2.19 shows an important arrangement: the uniform electric field that can be created 
between parallel metal plates. The positive terminal on the battery attracts electrons, so that 
the top plate becomes positively charged. The lower plate becomes negatively charged because 
electrons have been repelled away from the negative terminal of the battery. The field is weaker 
and non-uniform beyond the edges of the plates. At the points midway between the edges of the 
two plates, the strength of the field is half of its maximum value.

V d

+ +++++++++++++++++++

– – –– – – – – – – – – – – – – – – –
−

	■ Figure D2.19 Creating a uniform electric field

The arrangement seen in Figure D2.19 can be used with high voltages if strong, uniform fields are 
needed in experiments.

––

––

–––––––– –

– –

– –

	■ Figure D2.18 
Concentration of charge and 
electric field near points

–

a b

– – –
– –

––

––

–

a b

– – –
– –

––

––

–

a b

– – –
– –

––

––

	■ Figure D2.17 Forces 
between charges near the 
surface of a conductor
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12 By considering components of forces, discuss 
why field lines must always be perpendicular to 
conducting surfaces.

13 Suggest why pointed conductors (see Figure D2.20) are a 
good way of discharging static electricity.

	■ Figure D2.20 Static dischargers on the wing of an aircraft

14 Consider Figure D2.19. Draw electric field lines to 
represent the electric field if the battery was reversed and 
the p.d. halved.

15 An uncharged metal sphere is between two charged metal 
plates as shown in Figure D2.21. Copy the figure, show 
where charges are induced and add lines to represent the 
electric field.

− − − − − −

+ + + + + + + +

− − − −

	■ Figure D2.21 An uncharged metal sphere 
between two charged metal plates

	■ Electric field strength
Electric field strength is defined in a similar way to gravitational field strength:

Electric field strength, E, is defined as the force per unit charge that would be experienced by 
a small positive test charge placed at that point:

E = 
F
q

SI unit: N C−1

TOK

The natural sciences
l What is the role of imagination and intuition in the creation of hypotheses in the natural sciences?
l Are gravitational and electric fields real?

The effects of gravitational and electric forces are easily observable, but we have defined these fields in 
term of such forces, so do the fields really exist if there are no forces acting? For example, is there really 
an electric field around a stationary charge if there is no other charge present? Or, is the concept of ‘field’ 
just an imaginary device constructed to help us understand that forces can act without contact?

If there is a force of 3.4 × 10−6 N acting on a point charge of 6.7 nC, calculate the magnitude 
of the electric field strength at that location. (1 nC = 1 × 10−9 C)

Answer

E = 
F
q = 

3.4 × 10–6

6.7 × 10–9 = 5.1 × 102 N C–1

There is not enough information in this question to know the direction of the field.

WORKED EXAMPLE D2.2

 ◆ Electric field strength, 
E The electric force per 
unit charge.

DB
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An expression for the strength of the constant electric field between parallel plates (Figure D2.19) 
can be obtained by considering the work done as a charge, q, moves from one plate to the other:

work done = force × distance = potential difference × charge (from Topics A.3 and  B.5)

W = Fd = Vq

Rearranging, and remembering that E = 
F 
q 

, gives:

electric field strength between parallel metal plates, E = 
V 
d 

Expressed in this way we can see that V m−1 is an alternative to N C−1 as the units for electric 
field strength.

(As we shall see later, this is an example of electric field strength equalling the potential gradient.)

Tool 3: Mathematics

Using units, symbols and numerical values

Consider again the situation shown in Figure D2.19. The space between the plates has a 
vacuum, and a charge, q, is next to the negative plate. The charge will accelerate towards the 
positive plate and gain kinetic energy. In this process, the work done on the charge is  
Fd = Vq, as explained above.

Consider a numerical example:

An electron (mass 9.110 × 10−31 kg and charge –1.60 × 10−19 C) is accelerated across a 
distance of 5.0 cm by a potential difference of 3000 V.

Assuming that the electron starts with zero kinetic energy, its final kinetic energy equals 
the work done on it by the uniform electric field, W = 3000 × (1.60 × 10−19) = 4.80 × 10−16 J. 
(If we want to determine the speed of the electron, we can equate this to ½mv2, which gives 
an answer of 3.25 × 107 m s−1.)

In situations similar to this, rather than using joules as the unit of energy, it is more common 
and easier to use the electronvolt.

One electronvolt is an amount of energy equal to 1.60 × 10−19 J. This the amount of energy 
gained by a charge of 1.60 × 10−19 C when accelerated by a potential difference of 1.00 V. 
(work done, W = qV).

In the previous example, the work done on the electron by the electric field (= kinetic energy 
it gains) can be stated as 3000 eV, without the immediate need for any further calculations.

Common 
mistake
Although it is called an 
electronvolt, this unit 
is widely used for the 
atomic-scale energies 
of any particles, 
or radiation. Some 
examples: a proton 
accelerated by 5 kV will 
gain 5 keV of energy; 
A doubly charged ion 
accelerated by 2000 V 
will gain 4 keV of 
energy; a gamma ray 
(Topic E.1) may transfer 
5 MeV of energy.

 ◆ Electronvolt, eV 
An amount of energy 
equivalent to that which 
is transferred when an 
electron is accelerated by a 
potential difference of 1 V. 
1 eV = 1.60 × 10–19 J.

Parallel metal plates are separated by 
a distance of 0.50 cm. Determine the 
potential difference needed to create an 
electric field of one million V m−1.

Answer

E = 
V
d 

1.0 × 106 = 
V

0.0050 

V = 5.0 × 103 V

WORKED EXAMPLE D2.3

DB
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16 Calculate the value of electric field strength that would 
exert a force of 6.3 × 10−14 N on a proton.

17 a Calculate the electric field strength along a straight 
wire of length 38 cm if there is a potential difference 
of 0.0010 V between its ends. 

b What force would this field exert on a free electron in 
the wire? 

c Determine the acceleration of the electron. 
d Explain why the electron is not accelerated to an 

extreme speed.

18 a Calculate the electric field strength between parallel 
metal plates separated by 8.0 cm when a p.d. of 15 kV 
is connected across them. 

b How much energy is gained by an electron 
accelerated between the plates in:
i eV ii joules?

19 If the electric field strength exceeds about 3 kV mm−1, 
air can begin to conduct electricity. Predict the potential 
difference needed across 20 cm for this to happen.

Electric field strength around a point charge

The strength of an electric field around a point charge decreases with the square of the distance 
(an inverse square law relationship):

E = 
F
q 

 = 
kq
r2

Determine the electric field strength 
at a distance of 1.0 m from a charge of 
+2.9 × 10−8 C.

Answer

E = 
kq
r2  = 

(8.99 × 109) × (+2.9 × 10–8)
1.02  

 = 260 N C–1

WORKED EXAMPLE D2.4

Figure D2.22 shows the variation of electric field strength around a point positive charge. The 
field strength would be negative if the charge was negative.

	■ Combining electric fields

Electric fields can be combined to determine a resultant by using vector addition.

This is straightforward for places on the line that joins charges, for 
example: if a field of 420 N C−1 to the left and a field of 550 N C−1 to the 
right act at a point; the combined field is 130 N C−1 to the right.

More generally, we can use a parallelogram and scale drawing (or 
trigonometry) as seen in Figure D2.23.

E

r

	■ Figure D2.22 Electric 
field strength around 
a positive charge

B

P

resultant field

A

EA

EB

+ 

–

	■ Figure D2.23 Determining a resultant electric field
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Figure D2.24 shows two separate electric fields acting at a point, P. Determine the 
resultant field.

P

resultant field ER

E1 = 1000 NC–1

E2 = 700 NC–1

θ

 
	■ Figure D2.24 Two separate electric 

fields acting at a point P

Answer
Using Pythagoras, ER

2 = E1
2 + E2

2
 = 10002 + 7002

ER= 1220 N C−1

Electric field is a vector quantity, so the answer must include a direction:

tan θ (as shown) = 
700
1000 = 0.700

θ = 35°

WORKED EXAMPLE D2.5

20 Sketch a graph to represent the variation of electric field strength with distance around a 
negatively charged conducting sphere.

21 Calculate the electric field strength 15 cm from a charge of −8.4 μC when it is in:
a air
b a material of relative permittivity 1.6.

22 The electric field strength 150 cm from a point charge is 2.0 × 105 N C−1. 
 Determine at what distance the field strength would be one million N C−1.

23 A nucleus of a carbon atom has a charge of +6e. 
 Determine the distance from its centre where the electric field strength has a value of 

3.0 × 1010 N C−1. 

24 a Calculate the electric field strength midway between point charges of 26 nC and −10 nC 
when they are separated by a distance of 50 cm. 

b Determine the field strength at a point which is 35 cm from the negative charge and 15 cm 
from the positive charge.

25 A point charge Q is 8.3 cm from a charge of +56 μC.  The electric field strength is zero at a 
point which is 4.7 cm from Q on a line joining the two charges. Determine the charge of Q.

26 The average electric field strength just above the surface of the Earth is about 150 N C−1, 
directed downwards.

 Estimate the total resultant charge carried by the Earth. (The radius of Earth is 6.4 × 106 m.)

27 Sketch the approximate shape of the electric field lines around two charged spheres of equal 
radius, R, and separated by 4R: one with a charge of +Q, the other with a charge of −4Q.
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	■ Millikan’s experiment

SYLLABUS CONTENT

 Millikan’s experiment as evidence for quantization of electric charge.

A strong, uniform electric field was an essential component of the famous 1909 experiment to 
determine the charge of an electron. See Figure D2.25.

uniform electric field

several
thousand

volts (+)

microscope

cover

d

oil spray

 

Robert Millikan and Harvey Fletcher used this apparatus to determine the small quantities of charge 
on oil drops. Details are provided below. The drops can be electrostatically charged because of 
friction when they are sprayed into the upper compartment. (Additionally, the charge on the drops 
can be changed using X-rays or a radioactive source, but the details are not needed here.)

The importance of this famous experiment lies in the fact that

the charges of all drops were multiples of the same number (−1.60 × 10−19 C).

So, for example, the following oil drop charges (× 10−19 C) could have been determined: −9.62, 
−11.20, −4.84, −17.58, −6.43, −8.00. Allowing for experimental uncertainty, statistical analysis 
informs us that it is highly probable that all these numbers are multiples of −1.60.

A simple analogy may help. Suppose you were given six sealed bags each containing an unknown 
number of the same coins. The masses of the coins (excluding the bags) were 84 g, 63 g, 98 g, 35 g, 
56 g and 42 g. What was the probable mass of one coin? (Answer: 7 g)

When enough measurements reach the same conclusion, it effectively becomes a certainty.

Electric charge is not a continuous quantity. It can only have certain discrete values (multiples of e). 
We say that it is quantized.

Millikan’s experiment confirms that electric charge is a quantized quantity.

Experimental details – understanding Millikan’s experiment
If the potential difference, V, between the plates is varied, then the electric force, F, on a charged 
drop changes. With the correct potential difference, it is possible for the electrical force and 
gravitational force to become equal and opposite. The resultant force will then be zero and the 
drop will be stationary. See Figure D2.26.

F  = mg = Eq = 
Vq
d

If V, d and m are known, q can be calculated.

	■ Figure D2.25 Millikan’s 
oil drop experiment

F = Eq

Fg = mg

d oil drop

+ + + +

– – – –

	■ Figure D2.26 Balanced 
forces on a stationary oil drop
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What potential difference across parallel 
metal plates separated by 2.1 cm is 
necessary to keep an oil drop of mass 
2.7 × 10−14 kg stationary if it has five 
excess electrons?

Answer

mg = 
Vq
d

2.7 × 10–14 × 9.8 = 
(V × 5 × (1.60 × 10–19))

2.1 × 10–2  

V = 6.9 × 103 V

WORKED EXAMPLE D2.6

Note that there is also a buoyancy force (see 
Topic A.2) acting upward on the oil drop. This 
force is much less than the weight of the oil drop 
and has been ignored for the sake of simplicity. For 
very accurate work it would need to be included in 
the calculation.

The mass of a spherical oil drop can be determined 
from its dimensions and the density of the oil. 
More accurately (the drop will not be perfectly 
spherical), the terminal speed of a drop can be 
used to determine its mass using Stokes’s law 
(Topic A.2).

Nature of science: Models

Lightning

	■ Figure D2.27 Lightning over Kuala Lumpur

Water and ice droplets of different sizes in clouds are variously 
affected by convection currents. As they move past each other, 
friction causes the transfer of electrons (as described earlier in 
this topic). This typically results in the upper and lower surfaces 
of the cloud becoming charged differently and charge separation 
induced on the ground. The result can be a strong electric field 
between the cloud and the ground.

This can be a complex situation. Scientific explanations often 
require that reasonable assumptions are made so that a simplified 
model can be suggested that allows us to understand complicated 
natural phenomena. In the case of lightning, we could use a 
simplified model such as that shown in Figure D2.28.

−−− − − − − − − − − − − − − − − −
−

+
+

+ + + ++ + + +
+ +

+

+ + + + + + + + + + + + + + + + + + + + + + + + + +

cloud

	■ Figure D2.28 Electric field under a storm cloud

When the potential difference between the ground become large 
enough the (wet) air can dramatically conduct electricity: a 
lightning strike.

Some approximate numerical values:

p.d., V = 2.0 × 106 V

separation of ground and cloud, d = 0.5 km

E = 
V 
d  = 4000 V m–1

Charge transferred in lightning strike of Δt = 0.2 s

Δq = 3000 C

so that current:

I = 
Δq
Δt  = 15 000 A

Power = IV = 2.0 × 106 × 15 000 = 3.0 × 1010 W

Total energy transferred = PΔt = 3.0 × 1010 × 0.2 = 6.0 × 109 J

28 An oil droplet has a weight of 7.68 × 10–15 N. 
a If it is stationary between two horizontal metal plates 

which are 1.0 cm apart with a voltage of 120 V across them, 
determine the charge on the oil droplet. 

b How many excess electrons are on the droplet?

29 Show, with an approximate calculation, why it may be reasonable 
to ignore the buoyancy force in the previous calculation.

30 Explain why it is reasonable to assume that the masses of the coin 
bags described above (84 g, 63 g, 98 g, 35 g, 56 g and 42 g) lead to 
the conclusion that the mass of each coin is 7 g.
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Magnetic fields around permanent magnets

SYLLABUS CONTENT

 Magnetic field lines.

Magnetic forces can act across space in a similar way to gravitational and electrical forces, but 
the equations for magnetic forces and fields are different in form from the other two. Magnetic 
effects are very closely connected to electrical effects.

A magnetic field exists anywhere that a magnetic force occurs.

Magnetic fields are produced around all moving charges (currents).

Any ‘stationary’ charge has an electric field around it but, if a charge moves, there is also a 
magnetic field around it, which is perpendicular to the electric field. We frequently refer to the 
combinations as electromagnetic fields.

Before considering the important subject of the production of temporary magnetic fields when 
currents flow in circuits, we will consider the permanent magnets with which we are all familiar, 
similar to that seen in Figure D2.29.

The motion of electrons within atoms creates tiny magnetic 
fields, but in most elements these effects cancel each other, so 
that they have no significant magnetic properties. Iron is a notable 
exception because it can be magnetized. Iron alloys, nickel, 
cobalt and some rare Earth metals can also be magnetized. They 
are known as ferromagnetic materials. After a ferromagnetic 
material has been magnetized, it may lose its magnetism quickly, 
it is then described as being ‘soft’ (magnetically). Pure iron is 
an important example. However, many other ferromagnetic 
materials, steel for example, are magnetically ‘hard’ and can 
retain their magnetism for a long time.

The simplest permanent magnets are made in the shape of a 
straight bar. See Figure D2.30. The shape of the magnetic field 
around the bar magnet has been shown by sprinkling tiny pieces 
of iron (iron filings) around the magnet. This is explained later.

The magnetism is effectively concentrated at the ends of the bar 
and these are called magnetic poles. We have seen that there 
is only one type of mass, but two types of charge (positive and 
negative) which can be isolated from each other. Magnetism is 
different: there are only two types of magnetic pole, but they 
always occur in pairs. Magnetic poles are called magnetic north 
poles and magnetic south poles. Confusingly, these names have 
no direct link with geography. An explanation is included later.

One end of the bar magnet seen in Figure D2.30 is a magnetic north pole (N), the other is a 
magnetic south pole (S). This simple arrangement is called a magnetic dipole.

 ◆ Magnetic forces 
Fundamental forces that act 
across space between all 
moving charges, currents 
and/or permanent magnets. 

 ◆ Permanent magnet 
Magnetized material that 
creates a significant and 
persistent magnetic field 
around itself. 

 ◆ Ferromagnetic 
materials Materials from 
which permanent magnets 
are made. 

 ◆ Magnetic poles (north 
and south) Regions in a 
magnetic material where 
the field is strongest 

	■ Figure D2.29 Magnet on a refrigerator door

	■ Figure D2.30 Iron filings show the shape of 
the magnetic field around a bar magnet

 ◆ Dipole Two close 
electric charges (or 
magnetic poles) of equal 
magnitude but of opposite 
sign (or polarity).
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If the magnet was cut in half, we would not have separate poles. The result would be two smaller, 
weaker magnets, but they would still have a magnetic north pole at one end and a magnetic south 
pole at the other end. See Figure D2.31.

	■ Magnetic field lines
Magnetic field lines are used to represent magnetic fields on paper or screen. As with gravitational 
and electric fields, we give a direction to magnetic field lines.

Magnetic field lines always form closed loops. The direction of field lines (around a magnet) is 
from a magnetic north pole to a magnetic south pole.

Usually we do not show the field lines inside magnets but, when we do, their direction is from the 
south magnetic pole to the north magnetic pole. See Figure D2.32.

As with other field lines, magnetic field lines can never cross each other and the field is strongest 
where the lines are closest together (in a specific diagram). Figure D2.32 shows clearly that the 
field outside the magnet is strongest close to the poles.

Magnets are often made into U-shapes, as seen in Figure D2.33. This strengthens the field near to 
the poles.

A strong uniform magnetic field is often needed for experiments. Figure D2.34 show how this can 
be achieved with parallel permanent magnets.

S N

	■ Figure D2.32 Field lines 
in and around a bar magnet

SN

	■ Figure D2.34 Creating a strong, 
uniform magnetic field

SN

	■ Figure D2.33 The field lines 
near a U-shaped magnet

	■ Forces between permanent magnets

Similar magnetic poles repel each other, opposite poles attract.

If two bar magnets are brought close to each 
other, the forces between them will cause them 
to align (if at least one of them is free to move), 
as shown in Figure D2.35.

Many compasses use this effect. N
F

F
N fixed

magnet
axis of rotation

magnet
free to rotate

S

S

	■ Figure D2.35 Magnetic forces 
forming a couple (see Topic A.4)

S

S S NN

N

	■ Figure D2.31 Cutting 
a bar magnet in half

 ◆ Compass A device for 
determining direction. 
Small plotting compasses 
are used to investigate the 
shapes of magnetic fields 
in the laboratory.
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	■ Induced magnetism

When ferromagnetic materials are located in magnetic fields, they tend to become 
magnetized to some extent.

This is called induced magnetism. These effects may reduce, or disappear, if the material 
is removed from the field.

This effect explains why, for example, a permanent magnet can attract unmagnetized nails, 
as shown in Figure D2.36. Each nail becomes magnetized and can then induce magnetism 
in other nearby nails.

In a similar way, all the tiny iron filings seen in Figure D2.30 each get magnetically 
induced and then line up with the field of the magnet.

	■ The Earth’s magnetic field
The Earth behaves as a very large, weak bar magnet with a magnetic south pole near the 
geographic North Pole. See Figure D2.37.

Many compasses detect the Earth’s magnetic field in order to indicate direction. The 
compass needle is a small permanent magnet which is able to rotate freely. It aligns with 
the Earth’s magnetic field, so that the north pole of the compass magnet points towards the 
south pole of the Earth’s magnetic field, which is close to the geographic North Pole.

The magnetic north pole of a magnet is so called because that end of a freely suspended 
magnet points towards geographic North (where there is a south magnetic pole).

	■ Detecting magnetic fields
As explained above, a compass effectively detects the Earth’s magnetic field, and small 
‘plotting compasses’ are widely used to detect magnetic fields around magnets in school 
laboratories. They point along the magnetic field lines, effectively from magnetic north to 
magnetic south. See Figure D2.38.

The plotting compasses are also in the Earth’s magnetic field, but the Earth’s field is weak 
in comparison to the field close to the bar magnet. Iron filings are also widely used to show 
the shape of a magnetic field, as seen in Figure D2.30. In recent years tiny magnetometers 
for measuring magnetic fields have become common. They are to be found in most 
mobile phones.

 ◆ Induced magnetism When a 
ferromagnetic material becomes 
magnetized because it is in an 
external magnetic field. 

	■ Figure D2.36 Example 
of induced magnetism

Earth

S

N

	■ Figure D2.37 The 
Earth’s magnetic field

N S

	■ Figure D2.38 Plotting compasses 
indicating a magnetic field line

Magnetic fields around currents in wires
As was stated at the beginning of this topic, magnetic fields are produced by currents, so 
the best place to start when understanding magnetism is with the simplest situation.
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	■ Magnetic field around a steady current in a long straight wire

The magnetic field lines around a current in a long straight wire are circular.

The increasing separation of the field lines indicates that the field strength decreases with increasing 
distance from the current (see Figure D2.39). This basic magnetic field can be demonstrated using 
iron filings or compasses, but the field is not strong unless a large current is used. The direction of 
the field can be predicted by using the right-hand grip rule, as seen in Figure D2.40.

	■ Magnetic fields around steady currents in coils and solenoids
As we would expect, to produce a stronger field requires a greater current in the wire, but there is 
an easier way: wind insulated wire into a coil or solenoid, then each extra turn of wire increases 
the field strength (with the same current). A solenoid is a coil of insulated wire wrapped regularly 
so that the turns do not overlap and it is significantly longer than it is wide.

coil with many
turns of wirel

 

current in

S

current out

N

    

Figure D2.42 shows the magnetic field in and around a solenoid. (The number of turns shown has 
been reduced for clarity.) Of especial importance is the strong, uniform field inside the solenoid. 
Comparing Figure D2.42 with Figure D2.32, it is clear that the magnetic field produced by a 
current in a solenoid is similar in shape to the magnetic field of a bar magnet.

The polarity of the magnetic field (which end is a north pole, and which end is a south pole), depends 
on the direction of the current. It can be predicted using the right-hand grip rule. (Alternatively, when 
viewed from an end, that end is acting as a south pole if the current is clockwise.)

	■ Electromagnets
Strong electromagnets can be made by winding a coil or solenoid on soft iron. A simple example 
is shown in Figure D2.43. 

The strength of the magnetic field can be controlled by changing the magnitude of the current and 
using a soft iron core greatly increases the strength of the field. Importantly, the electromagnet 
loses its magnetism as soon as the current is turned off. If the core was made of steel, it would 
retain much of its magnetism when the current was disconnected.

Electromagnets have a very wide range of uses.

l

	■ Figure D2.39 Field 
around a constant current 
in a long straight wire

	■ Figure D2.40 Right-
hand grip rule

 ◆ Right-hand grip rule 
Rule for determining the 
direction of the magnetic 
field around a current.

 ◆ Solenoid Long coil of 
wire with turns that do not 
overlap (helical). 

 ◆ Polarity Separation of 
opposite electric charges or 
opposite magnetic poles, 
which produces uneven 
effects in a system. 

 ◆ Electromagnet Magnet 
which needs the flow of an 
electric current in a coil to 
produce magnetic effects.

 ◆ Soft iron Form of iron 
(pure or nearly pure) that 
is easily magnetized and 
demagnetized. 

	■ Figure D2.41 Magnetic field around a 
steady direct current in a circular coil

	■ Figure D2.42 Magnetic field due 
to the current in a solenoid

NS

+ −

soft iron core

	■ Figure D2.43 
Electromagnet
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	■ Magnetic field strength
We have seen that gravitational field strength g = 

F 
m 

 and electric field strength E = 
F 
q 

 but magnetic 

field strength is less easily defined. We will describe the strength of a magnetic field in terms of 
the magnetic force experienced by a current flowing across the field.

We will see in Topic D.3 that moving charges experience magnetic forces when they move across 
a magnetic field. The simplest example would be the electrons in a current in a straight wire which 
is perpendicular to a magnetic field, as seen in Figure D2.44.

The magnitude of the magnetic force, F, is proportional to three things: the magnitude of the 
current, I, the length of conductor in the field, L, and magnetic field strength, which is given the 
symbol B.

F = BIL or, rearranging:

magnetic field strength, B = 
F 
IL

The SI units of B are newtons per amp metre. 1 N A−1 m−1 is known as 1 tesla, T. 1 T corresponds to 
a very strong magnetic field, so, milliteslas (mT) and microteslas (μT) are in common use.

Calculate the magnetic field strength that 
produces a force of 5.0 × 10−4 N on each 
metre length of a long straight conductor 
carrying a constant current of 2.0 A. (The 
field and the current are perpendicular to 
each other.)

Answer

B = 
F
IL 

= 
5.0 × 10–4

1.0 × 2.0  

 = 2.5 × 10–4 T

WORKED EXAMPLE D2.7

	■ Magnetic field strength around a current in a long straight wire
We have previously described the shape of the magnetic field around a current in a long, straight 
wire, now we will consider how we can calculate values for the field strength.

The magnetic field is created by the charges moving in the current and it spreads around the 
wire. The magnetic permeability of a medium, or free space, represents its ability to transfer a 
magnetic field and force. It may be considered analogous to electric permittivity, which describes 
electric properties. The magnetic properties of air are almost identical to the magnetic properties 
of free space.

The magnetic permeability of free space is given the symbol μ0 and has the value 
4π × 10−7 T mA−1.

The magnetic field strength around a straight current depends on the:
l magnitude of the current, I
l perpendicular distance from the wire, r
l magnetic permeability of the air surrounding the wire (≈ permeability of free space).

Magnetic field strength at a distance r from a current I in a long straight wire in air, B = 
μ0I 
2πr 

F

current, I

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

× × ×

L

	■ Figure D2.44 Force on 
current in a magnetic field. 
(The crosses represent a 
magnetic field directed 
perpendicularly into the page.)

 ◆ Magnetic field 
strength, B Defined 
in terms of the force 
on a current: The field 
which produces a force 
of 1 N on each 1 m 
length of a conductor 
carrying a current of 1 A 
perpendicularly across 
the field.

 ◆ Tesla, T Unit of 
magnetic field strength. 
1 T = 1 N A−1 m−1 

 ◆ Permeability 
(magnetic) Constant that 
represents the ability of 
a particular medium to 
transfer a magnetic force 
and field.

 ◆ Permeability of free 
space, µo Fundamental 
constant that represents 
the ability of a vacuum 
to transfer a magnetic 
force and field, 
µo = 4π × 10−7 T mA−1.

DB

369917_17_IB_Physics 3rd_Edn_SEC_D_2.indd   461369917_17_IB_Physics 3rd_Edn_SEC_D_2.indd   461 04/01/2023   21:2304/01/2023   21:23



H
L O

N
LY

Theme D: Fields462

Determine at what distance from a long straight wire carrying a current of 5.0 A, the 
resulting magnetic field has a strength of 100 μT.

Answer

B = 
μ0I
2πr 

100 × 10–6 = 
((4π × 10–7) × 5.0)

(2πr)  

r = 0.01 m (1 cm)
For comparison, the Earth’s magnetic field strength averages about 50 μT, which 
is comparable to the field within one or two centimetres of the current in this 
Worked example.

WORKED EXAMPLE D2.8

31 a Sketch the magnetic field pattern around two bar 
magnets as seen in Figure D2.45.

b Sketch the magnetic field pattern around the two 
bar magnets if the polarity of one of the magnets 
was reversed.

S N S N   	■ Figure D2.45 Two bar magnets

32 Explain in detail how it is possible for a bar magnet to 
attract an unmagnetized steel pin.

33 Describe where you would expect the magnetic field 
of the Earth to be strongest, and in what direction does 
it act?

34 Consider Figure D2.43. 
a Describe how the polarity of the electromagnet can 

be determined. 
b Sketch the magnetic field that this electromagnet 

would produce.

35 State three applications of electromagnets.

36 The electromagnet seen in Figure D2.43 has been wound 
on a ‘soft’ iron core. What difference would it make if 
the core was made of steel?

37 Draw a graph to represent how the magnetic field strength 
due to a 2.0 A current in a long straight wire varies with 
perpendicular distances up to 10 cm from the wire.

38 Show that the SI units of permeability are T m A−1.

Electric potential energy

SYLLABUS CONTENT

 The electric potential energy, Ep, in terms of work done to assemble the system from infinite separation.

 The electric potential energy for a system of two charged bodies as given by: Ep = k
q1q2

r .

Electric potential energy is stored in any system of charges because of the forces between them. 
As with gravitational potential energy, for the same reasons, we chose infinity to be the zero of 
electric potential energy:

The zero of electric potential energy is chosen to be when the charges are separated by an 
infinite distance.

The total electric potential energy of a system, Ep, is defined as the work done when bringing all 
the charges of the system to their present positions, assuming that they were originally at infinity.

LINKING QUESTION
l How can moving 

charges in magnetic 
fields help probe the 
fundamental nature 
of matter?

This question links 
to understandings in 
Topics D.3, E.1 and E.2.

 ◆ Electric potential energy 
Ep, is the work done when 
bringing all the charges of 
a system to their present 
positions from infinity. 
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We saw in Topic D.1 that gravitational potential energy can only ever be negative because the 
forces are always attractive, meaning that energy has to be supplied to increase their separation.

However, electric potential energies can be negative (if the forces are attractive between opposite 
charges), or positive (if the forces are repulsive between similar charges). In other words, we need 
to supply energy to separate charges which are attracted to each other, but energy is released (to 
kinetic energy) as opposite charges are repelled apart from each other.

	■ Calculating electrical potential energies
Electrical potential energy can be determined from the area under a 
force–distance graph, as shown in Figure D2.46 for similar charges.

However, for point charges, using the following equation is easier 
(analogous to the gravitational potential energy equation seen in 
Topic D.1).

electric potential energy of two point charges, Ep = k
q1q2 

r

This equation can be used for two point charges, q1 and q2, separated 
by a distance r. It can also be used with isolated spherical conductors, 
when r is then the distance between their centres. The sign of the 
electric potential energy will be dependent on the signs of q1 and q2.

Figure D2.47 represents this inverse relationship graphically, for 
oppositely charged point charges. If the charges both had the same sign, 
the potential energy would be positive.

Calculate the electric potential energy that was stored between two isolated spherical 
conductors: one had a radius of 2.5 cm and charge −4.7 × 10−8 C, the other had a radius of 
1.5 cm and charge −6.3 × 10−8 C. Their surfaces were separated by 1.7 cm.

Answer
Separation of centres, r = 2.5 + 1.5 + 1.7 = 5.7 cm

Ep = k
q1q2

r  = 
(8.99 × 109) × (–4.7 × 10–8) × (–6.3 × 10–8)

5.7 × 10–2

 = +4.7 × 10–4 J
The energy is positive because the charges are repelled from each other and they would 
gain kinetic energy if they were free to move.

WORKED EXAMPLE D2.9

39 There was a force of −4.7 × 10−7 N between two point 
charges when they were separated by 40 cm. 
a Draw a force–separation graph to show how the force 

varies over distances of 10 to 100 cm. 
b Use your graph to determine the change in electrical 

potential energy in the system if the separation was 
increased from 40 cm to 90 cm.

40 The surfaces of two identically charged spheres are 
separated by 12 cm. If the radius of each sphere is 2.8 cm 
and the electrical potential energy in the arrangement is 
3.6 × 10−4 J, determine the charge on each sphere.

41 Determine how much electrical potential energy is 
associated with the proton–electron arrangement in a 
hydrogen atom. (separation = 5.3 × 10−11 m)

area = electrical potential
energy for separation R

q1 q2

R

Separation, r0

Fo
rc

e

0
R

1
r2F ∝

	■ Figure D2.46 Area under graph 
represents electric potential energy
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	■ Figure D2.47 
Electric potential energy 
variation with separation 
between oppositely 
charged point charges.

Top tip!
Do not confuse the 
symbols for electric 
potential energy, Ep, and 
electric field strength, E.
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	■ Electric potential

SYLLABUS CONTENT

 The electric potential is a scalar quantity with zero defined at infinity.
 The electric potential Ve at a point is the work done per unit charge to bring a test charge from infinity 

to that point as given by: Ve = 
kQ
r .

 The electric field strength E as the electric potential gradient as given by: E = – 
ΔVe

Δr .
 The work done in moving a charge q in an electric field as given by: W = q∆Ve.
 Equipotential surfaces for electric fields.
 The relationship between equipotential surfaces and electric field lines.

The concept of electric potential, Ve, is used to describe points in the space around charges 
(Compare with gravitational potential.)

Electric potential can be considered as electric potential energy per unit charge.

More precisely, it is defined as follows:

The electric potential at a point is defined as the work done per unit charge (1 C) in bringing a 
small positive test charge from infinity to that point.

The SI unit for electric potential is J C−1. This should be familiar from discussing potential 
difference in Topic B.5: 1 J C−1 is called 1 volt (V).

For a relatively small charge in the electric field of a larger charge, we can make that clear by rewriting

Ep = k
q1q2

r
 as Ep = k

Qq
r

Then, dividing by the small charge, q, gives

Electric potential around a point charge Q:

Ve = 
kQ 
r 

 

The potential around a negative charge will be negative (as shown by the equation). Increasing 
the distance, r, from the charge, −Q, reduces the magnitude of the negative potential, which is 
equivalent to an increase in potential. This is similar to gravitational fields.

The potential around a positive charge will be positive (as shown by the equation). Increasing 
the distance, r, from the charge, +Q, reduces the magnitude of the positive potential, which is 
equivalent to a decrease in potential.

Calculate the electric potential due to a point charge of −1.00 ×10−8 C at a distance of:
a 1.00 m b 2.00 m.

Answer

a Ve = 
kQ
r  

= 
(8.99 × 109) × (–1.00 × 10–8) 

1.00  = –89.9 V

b Ve = 
kQ
r  

= 
(8.99 × 109) × (–1.00 × 10–8) 

2.00  = –45.0 V

 The potential increases by 45.0 V when moving from 1.00 m to 2.00 m from the charge.

WORKED EXAMPLE D2.10

 ◆ Electric potential 
Work done in moving a test 
charge of +1 C to a specified 
point from infinity. 

DB
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	■ Electric equipotential surfaces and lines
Drawings of equipotential lines provide useful visualizations of electric fields.

An equipotential surface (or line) connects places which have the same electric potential.

Equipotential lines are always perpendicular to electric field lines.

No overall work is done if a charge moves between different positions on the same 
equipotential line (surface).

Figure D2.48 shows electric equipotential lines and electric field lines around a spherical 
negative charge, −Q. The circular lines are drawn with equal numerical intervals of potential, 
which means that they must get further and further apart because the field is weakening. 
A three-dimensional representation would 
have spherical surfaces.

A test positive charge placed at P would be 
attracted to −Q, as shown by the arrows on 
the field lines. Moving a test charge further 
away from −Q requires work to be done, 
so that the electric potential energy and 
potential must increase.

In Figure D2.49 the central charge is 
positive, +Q. A test positive charge placed 
at P would be repelled from +Q. so that the 
electric potential energy and potential must 
decrease if it is able to move.

Figure D2.50 represents the field and 
potential inside and outside of a positively 
charged conducting sphere (solid or hollow).

 ATL D2B: Thinking skills 

Applying key ideas and facts in 
new contexts

Mapping electric fields

Figure D2.51 shows a way in which potential and 
potential difference can be mapped experimentally 
using conducting paper.

Two or more metal electrodes are placed in 
good electrical contact with a special type 
of paper which has been coated with carbon 
so that it conducts electricity, but still has 
significant resistance. The shape and location 
of the electrodes can be varied. A p.d. is 
connected across the electrodes and, typically, 
one electrode is kept at 0 V. A movable probe is 
connected between 0 V and a point of interest 
in the electric field between the electrodes. 
Lines of equipotential are easily identified. 

The voltmeter will display the potential at that 
point. Alternatively, the voltmeter can be used 
to determine the p.d. between any two points in 
the field.

probe

0 V10 V

conducting
paper

electrodes

voltage supply

V

	■ Figure D2.51 mapping potential

 ◆ Electrode Conductor 
used to make an electrical 
connection to a non-
metallic part of a circuit.

Q

E = 0
r

rR

field

+ +
++

+ +
++

+

+

E =
Q

4pe0r2

V =
Q

4pe0r

potential

V =
Q

4pe0R

	■ Figure D2.50 Electric field and 
potential of a conducting sphere

decreasing potential

P

+Q

	■ Figure D2.49 Equipotential and 
field lines around a positive charge

increasing potential

P

–Q

	■ Figure D2.48 Equipotential and 
field lines around a negative charge
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Faraday’s cage

If a constant electric field is applied to a metal conductor 
surrounding a space, free electrons will very quickly redistribute 
themselves on the outer surface depending on the strength and 
direction of the field, and the shape of the conductor. For a 
spherical conductor the charge distribution would be the same 
everywhere on the surface.

The safest place to be in a lightning storm is inside a conductor, 
like a car or a building (that has a lightning conductor if it is in an 
exposed location).

Figure D2.52 shows a dramatic example of a ‘Faraday’ cage.

Electronic equipment can be protected by putting it inside a 
Faraday cage.

Effective electromagnetic shielding is used widely to protect 
important equipment from external electromagnetic waves, or to 
stop the emission of electromagnetic signals.

In pairs, research Faraday cages and other forms of electromagnetic shielding. Using what you know 
about electric fields and conductors, explain how they shield objects placed inside from electric fields.

	■ Figure D2.52 A Faraday cage, 
showing sparks on the outside, 
but with someone safe inside

	■ Combining electric potentials

Electric potential is a scalar quantity and potentials can be combined by simple addition.

Determine the combined potential at a point which is 34 cm from a point charge A of 
−1.9 × 10−7 C and 45 cm from a point charge B of +2.3 × 10−7 C.

Answer

Ve = (kQ
r )

A

 + (kQ
r )

B

 = 
(8.99 × 109) × (–1.9 × 10–7)

(34 × 10–2)  + 
(8.99 × 109) × (+2.3 × 10–7)

(45 × 10–2)  
= –4.3 × 102 V

WORKED EXAMPLE D2.11

Figure D2.53 shows an example of 
potential mapping around three charged 
spheres. Remember that, if required, field 
lines can be drawn perpendicular to the 
equipotential lines.

10 V

–10 V
–20 V

–20 V

–30 V

0 V

0 V

40 V

30 V

50 V

20 V

–40 V

–50 V

–30 V
–40 V

–50 V

	■ Figure D2.53 Equipotential lines around three 
charged spheres
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42 If 4.95 × 10−5 J of energy were transferred when a charge 
of 5.1 μC was moved from a certain point to earth 
(ground), determine the magnitude of the potential at 
the point.

43 At what distance from an isolated point charge of 
4.6 × 10−8 C would the electric potential have a value 
of −3000 V? 

44 Sketch the equipotential and field lines around two point 
charges of different magnitudes if 
a they have similar signs 
b they have opposite signs.

45 Figure D2.54 shows the electric field lines around an 
isolated charged conductor. Make a copy of Figure D2.54 
and add lines of equipotential.

–
– – –

– ––
––

–

field lines

	■ Figure D2.54 Electric field lines around an isolated charged conductor

46 Figure D2.55 shows a kind of coaxial cable that is widely 
used for transferring data, such as signals to televisions. 
The outer copper mesh is maintained at 0 V and the signal 
is sent as an electromagnetic wave in the insulator between 
the central copper wire and the surrounding mesh. 
This design, with its earthed outer mesh, helps reduce 
interference to and from other electromagnetic waves.  

Make a sketch of a cross-section of the cable and add 
electric field lines and equipotential lines.

	■ Figure D2.55 Coaxial cable

47 Figure D2.56 represents the variation of potential 
between two conductors. Sketch the electric field pattern 
of this arrangement.

48 A hollow conducting sphere has a radius of 6.3 cm. If it 
is charged with −4.3 nC, determine values for the electric 
field strength and the electric potential at a distance of:
a 20.0 cm from the centre of the sphere
b 3.0 cm from the centre of the sphere.

49 A point charge of –1.9 × 10−7 C is placed 56 cm from 
another point charge of 5.6 × 10−8 C. Identify the location 
of one place where the electric potential is zero.

–30 V

–20 V

–10 V
0

+40 V

P

Q

–40 V

+10 V

+30 V
+20 V

	■ Figure D2.56 The variation of potential between two conductors

	■ Electric potential difference
The central theme of this topic is the movement of charges between different places in electric 
fields. This means that the difference in potential – the potential difference – between two 
locations is of particular importance.

Electric potential difference, ΔVe, is the work, W, done on unit charge (1 C) when it moves 
between two points in an electric field.

ΔVe = 
W 
q 

 or W = qΔVe

 ◆ Potential difference, 
p.d. ΔVe Difference in 
electric potential between 
two points, which equals 
the work done when  a 
charge of 1 C is moved 
between the points.

DB
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The unit for electric potential difference is the same as for potential: the volt (joule per coulomb).

The same concept (electric potential difference) was used frequently in Topic B.5, where it was 
abbreviated to p.d. or referred to as voltage. In this topic we are applying the term more generally 
in two and three dimensions, whereas in Topic B.5 our focus was just on electric potential 
differences across components in electrical circuits.

Consider Figure D2.57 which 
shows equipotential lines around a 
conducting sphere.

100 V
80 V
60 V

40 V

20 V

B C

D

A

	■ Figure D2.57 Equipotential lines 
around a conducting sphere

a State whether the sphere is positively or 
negatively charged. 

b Calculate the potential difference when 
moving from:
i C to A
ii C to D. 

c Determine how much work is done when 
a charge of +2.0 C moves from B to C.

Answer
a Positively charged (potentials are positive)
b i (+60) – (+20) = + 40 V

ii (+20) – (+20) = + 0 V
c W = qΔVe = 2.0 × [(+20) – (+40)] = −40 J
 The negative sign shows that electric 

potential energy falls. (A freely moving 
positive charge will be repelled from the 
positive sphere and gain kinetic energy.)

WORKED EXAMPLE D2.12

Electric potential–distance graphs

We know that the work done, W, when moving a charge, q, through a potential difference ΔVe is 
given by W = qΔVe.

We also know that the work can be calculated from force × distance = Eq × Δr, where Δr is a 
small enough distance that the value of E does not change significantly.

Hence W = q ΔVe = E q Δr, so that:

electric field strength, E = – 
ΔVe 

Δr 

where 
ΔVe

Δr  is called the electric potential gradient.

The negative sign has been added to the equation to show that the direction of the vector quantity 
E is opposite to the direction of increasing potential.

In other words, electric fields exist where electric potential is changing. If potential is constant, 
then the electric field strength is zero.

Figure D2.58 shows how the value of potential varies around a negative point charge. The tangent 
to the curve can be used to determine the gradient at any required distance (the example is for 
r = 4.0 cm).

DB

369917_17_IB_Physics 3rd_Edn_SEC_D_2.indd   468369917_17_IB_Physics 3rd_Edn_SEC_D_2.indd   468 04/01/2023   21:2304/01/2023   21:23



H
L O

N
LY

D.2   Electric and magnetic fields 469

–25

–20

–15

–10

–5

0
0 2

r/cm
4

V
/1

00
0 

V

6 8 10 12

 
	■ Figure D2.58 Variation of 

potential around a point charge

Determine:
a the electric field strength at a distance 

of 4.0 cm from the point charge 
represented in Figure D2.58

b the value of the point charge involved.

Answer

a E = – 
ΔVe

Δr  = – 
0 – (–26 × 103)  

(8.0 × 10–2)  

  = –3.3 × 105 N C–1

b Ve = 
kQ
r

 –15 × 103 = 
(8.99 × 109) × Q 

3.5 × 10–2  

 Q = –5.8 × 10–8 C

WORKED EXAMPLE D2.13

50 Two points in an electric field have potentials of 12.7 V 
and 15.3 V. Determine how much energy will be 
transferred when an electron moves between these points: 
a in eV b in J.

51 Calculate how much energy is gained by a charge of 
2.0 C when it passes through a battery that has a terminal 
p.d. of 12 V.

52 A charge of +4.5 C is moved from point P to point Q in 
Figure D2.56. 
a Determine how much energy is transferred. 
b State whether work is done on the charge, or by 

the charge.

53 Figure D2.59 shows how the electrical potential varies 
with distance, r, from a certain point, P. 
a State where the electric field strength is a minimum. 
b Determine the magnitude of the electric field strength: 

i 12 cm from P ii 32 cm from P. 

c Suggest what arrangement of charges might produce 
this variation in potential.

–10

0

10

r/cm
8 16 24 32

20

30

40

50

–20

–30

–40

–50

V
e
/V

     	■ Figure D2.59
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 ATL D2C: Communication skills 

Clearly communicating complex ideas in response to open-ended questions
As you may have seen in Topic D.1, we can summarize key concepts and their connections using a 
visual organizer. Here are two visual organizers for the key concepts in this topic.

Describing
particular
arrangements

Force, F
Potential

energy, Ep 

Field strength, E Potential, Ve

Describing
points in
space

potential
energy = area

under F–r graph

force = gradient
of Ep–r graph

potential = area
under E–r graph

field strength =
gradient of Ve–r graph

potential = potential energy
charge

force
charge

field strength = 

	■ Figure D2.60 Connections between the four key concepts

Force

F = k
q1q2

r2

q1q2

r2

Potential energy

Ep = k

Q
r2

Field

E = k
Q
r

Potential

Ve = k

	■ Figure D2.61 Equations for radial electric fields

Can you think of other ways in which you might represent the concepts from this topic and 
their connections?

TH
E IB LEARNER PRO

FILE

LINKING QUESTION
l How are electric and 

magnetic fields like 
gravitational fields?

This question links 
to understandings in 
Topic D.1.
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D.3 Motion in electromagnetic fields

• How do charged particles move in magnetic fields?
• What can be deduced about the nature of a charged particle from observations of it moving in 

electric and magnetic fields?

Guiding questions

The motion of charged particles 
in uniform electric fields

SYLLABUS CONTENT

 The motion of a charged particle in a uniform electric field.
 The motion of a charged particle in a perpendicularly orientated uniform electric field.

In this section we will discuss the motion of charged particles (electrons, 
protons and ions) that are free to move in uniform electric fields. We 
will assume that the particles are in a vacuum (unless otherwise stated), 
so that their movements do not involve collisions with other particles 
(air molecules).

In Topic D.2 we explained that the easiest way of producing a uniform electric 
field was by connecting a potential difference across parallel metal plates, as 
shown again in Figure D3.1.

	■ Stationary charged particles
From an understanding of the kinetic theory of matter, it should be appreciated that particles are 
never truly ‘stationary’. However, even a small p.d. can accelerate charged particles to speeds very 
much greater than their random velocities without the p.d. So, assuming that a particle is 
stationary to begin with will not result in any significant error when determining its final speed 
and kinetic energy.

A particle with charge q situated in an electric field will experience a force F = Eq towards the 
oppositely charged plate (Topic D.2). Figure D3.2 shows two opposite charges in an electric field.

Since E = 
V 
d 

, F = 
Vq
d

.

The forces will cause the charges to accelerate perpendicularly towards 
the plates. The equations of motion (Topic A.1) can then be used to 
determine how the charge moves.

‘Stationary’ mobile charges will accelerate along a field line in a 
uniform electric field.

+++++++++++++++++++

– – –– – – – – – – – – – – – – – – –

high voltage
supply, V

+

–

	■ Figure D3.1 Producing a uniform electric field

high voltage
supply, V

+

+q d

F, a–

–q
F, a

+++++++++++++++++++

– – –– – – – – – – – – – – – – – – –

	■ Figure D3.2 Forces and accelerations of 
opposite charges in a uniform electric field
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An electron is very close to the 
negatively charged plate seen in 
Figure D3.2. 
a Determine its speed when it 

reached the positive plate if there 
was a p.d. of 2000 V across the 
metal plates which were separated 
by 8.0 cm. 

b State any assumptions you made 
when answering part a.

Answer

a  F = 
Vq
d  

= 
2000 × (1.60 × 10–19) 

0.080  = 4.0 × 10–15 N

 Then, acceleration can be determined using Newton’s second law (F = ma):

 a = 
F
m 

= 
4.0 × 10–15 

9.110 × 10–31 = 4.4 × 1015 m s–2

 Finally, the final speed can be determined from v2 = u2 +2as:
 v2 = 02 + (2 × 4.4 × 1015 × 0.080)
 v = 2.7 × 107 m s−1

b The calculation has assumed that:
l the electron started with speed u = 0
l there were no gas molecules between the plates (that would collide with 

the electrons).

WORKED EXAMPLE D3.1

	■ Charged particles moving across a uniform electric field
This situation is analogous to the motion of 
masses projected in uniform gravitational fields. 
Both situations involve motion which can be 
analysed as a constant speed in one direction 
and an acceleration in a perpendicular direction. 
See Figure D3.3.

Freely moving charged particles travelling 
across electric fields will move in 
parabolic paths.

An electron travelling horizontally at a constant speed of 
5.5 × 107 m s−1 is directed into a uniform electric field of 
2.8 × 105 N C−1 acting vertically downwards. 
a Determine the force and acceleration of the electron in 

the field (magnitude and direction). 
b If the field extends for a horizontal distance of 

10 cm, determine the time that the electron spends in 
the field. 

c Determine the vertical displacement of the electron 
from its original path as it leaves the field. (Charge 
on electron is −1.6 × 10−19 C, mass of electron is 
9.110 × 10−31 kg.)

Answer
a F = Eq = (2.8 × 105)(1.60 × 10−19) = 4.5 × 10−14 N upwards

 a = 
F
m = 

4.48 × 10–14 
9.110 × 10–31 = 4.9 × 1016 m s–2 upwards  

(4.48 × 10–14 seen on calculator display)
 (4.9177... × 1016 seen on calculator display)
b Horizontal speed is constant:

 v = 
s
t

 5.5 × 107 = 
0.10 

t  

 t = 1.8 × 10−9 s
 (1.81818... × 10−9 s seen on calculator display)
c Using the equation of motion (Topic A.1):

 s = ut + 
1
2at2 = 0 + (12 × (4.918 × 1016) × (1.818 × 10–9)2)

 = 0.081 m (8.1 cm)

WORKED EXAMPLE D3.2

parabolic path of a
mass in a uniform
gravitational field

g

parabolic path of a
positive charge in
a uniform electric field

E

mass charge

negative
charge

neutral
particle

	■ Figure D3.3 Comparing motion in gravitational and electric fields
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Tool 3: Mathematics

Express measurements and processed uncertainties to an appropriate 
number of significant figures or level of precision

Worked example D3.2 shows the effect of ‘rounding off’ too early in a multi-step 
calculation. All three answers are correctly given to 2 significant figures (the same as the 
data given in the question). However, if those answers were used in part c, a different answer 
(0.079 m) would be obtained.

	■ Particle beams
So far, we have been discussing the motion of individual charged particles but, in practice,

experiments with charged particles will involve large numbers moving together with the same 
velocity as a particle beam.

Experiments with particle beams have had great historic importance (for example, the discovery 
of the electron), and they continue to be an essential part of the latest research into nuclear physics 
(at CERN, for example, see Figure D3.12).

We will use the production of an electron beam as an example. Figure D3.4 shows a type of 
electron beam deflection tube that is commonly used to demonstrate to students the production 
and properties of electron beams.

The heating current is used to heat the metal cathode (the terminal 
connected to 0 V) and the thermal energy supplied increases 
the kinetic energy of the free electrons in the metal. Some of the 
electrons have energy to be released (emitted) from the metal’s 
surface. This process is called thermionic emission. A large 
positive voltage is applied to the other terminal (called the anode) 
and this accelerates the electrons into a beam travelling with very 
high speeds to the right (as shown). The tube contains a vacuum. 
This arrangement is commonly called an ‘electron gun’. When the 
beam of electrons strikes the fluorescent screen at the end of the 
tube, some of their kinetic energy is transferred to visible light in 
the form of a spot that can be easily observed.

If a p.d. is connected across the ‘X-plates’ the beam (and the spot) is deflected to the left or to the 
right. If a p.d. is connected across the ‘Y-plates’ the beam is deflected up or down.

1 a Calculate the force exerted on a singly charged 
positive ion in an electric field of 1200 N C−1 acting 
vertically downwards.

b  Determine the mass of the ion if it started to 
accelerate at 7.4 × 109 m s–2.

c State in which direction the ion will accelerate.

2 A proton is accelerated by a p.d. of 3.7 × 104 V connected 
between two parallel metal plates which are 2.8 cm apart. 
a Calculate the strength of the electric field. 

b Assuming that the electric field is uniform, determine 
what force the proton will experience. 

c Determine the maximum amount of energy that the 
proton can gain when it has been accelerated in 
i eV ii J. 

3 Show that the final speed of an electron accelerated from 
rest over a distance of 5.0 cm in a vacuum by a uniform 
electric field of 9.2 ×104 N C−1 is about forty million 
metres per second.

 ◆ Particle beams 
Streams (flows) of very 
fast-moving particles, 
most commonly charged 
particles (electrons, protons 
or ions), moving across 
a vacuum. Properties of 
the individual particles 
can be investigated by 
observing the behaviour of 
the beams in electric and/or 
magnetic fields.

 ◆ CERN European 
organization for nuclear 
research. 

 ◆ Cathode An electrode 
out of which (conventional) 
current flows. 

 ◆ Thermionic emission 
Release of electrons from a 
very hot metal surface.

 ◆ Anode An electrode 
into which (conventional) 
current flows. 

heating
current

X-plates 

Y-plates 

 anode, +V 

electron
beam

 fluorescent
screen

spot of light
seen on screen

electron gun

cathode, 0V

	■ Figure D3.4 Electron deflection tube
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4 An electron beam consisting of electrons travelling 
at speeds of 1.3 × 107 m s−1 is directed horizontally 
into a uniform electric field of 7.4 × 104 N C−1 acting 
vertically upwards. 
a Determine the force and acceleration of the electrons 

in the field (magnitude and direction). 
b If the field extends for a horizontal distance of 8.5 cm, 

calculate how much time the electrons spend in 
the field. 

c Determine the vertical displacement of the electron 
from its original path as it leaves the field. 

d  State the name given to the shape of the electron 
beam's path.

5 An alpha particle is emitted from the nucleus of a radium 
atom (Topic E.1) with kinetic energy of 4.8 MeV. 
a Show that the initial speed of the alpha particle is 

between ten million and twenty million metres per 
second. (Mass of alpha particle = 6.64 × 10−27 kg)

b An alpha particle has a charge of 3.2 × 10−19 C.
 Determine the force acting on the particle when it 

is moving perpendicularly across a uniform electric 
field of strength 4.9 × 104 N C−1. 

c Explain, by considering your answers to Question 4, 
but without a detailed calculation, why the particle 
will not be significantly deflected in the field.

The motion of charged particles 
in uniform magnetic fields

SYLLABUS CONTENT

 The motion of a charged particle in a uniform magnetic field.
 The motion of a charged particle in a perpendicularly orientated uniform magnetic field.
 The magnitude and direction of the force on a charge moving in a magnetic field as given by:
 F = qvB sin θ

A ‘stationary’ charge in a magnetic field will not experience any magnetic force.

Any charge moving in a magnetic field will experience a magnetic force unless its motion is 
parallel to the magnetic field (that is, if it is moving along a magnetic field line). The magnitude of 
the force increases with the speed of the particle.

Consider Figure D3.5 which shows a charge q entering a magnetic field of strength B. The 
constant velocity, v, of the charge makes an angle θ with the direction of the magnetic field.

A moving charge will experience a force which is perpendicular to both the directions of its 
velocity and the magnetic field.

Since in Figure D3.5 the velocity and the field 
are both in the plane of the paper, we know that 
the force on the charge will act perpendicularly 
into, or out of, the paper. The direction can be 
predicted using Fleming’s left-hand rule, as 
shown in Figure D3.6.

If the moving charge shown in Figure D3.5 was 
positive, using Fleming’s left-hand rule predicts 
that the force on the particle acts perpendicularly 
downwards, into the paper. If the particle was 
negatively charged, the same rule predicts that 
the force on the particle acts perpendicularly 
upwards, out of the paper.

Nature 
of science: 
Observations
Once we have 
understood that a 
charged particle needs 
to be moving across a 
magnetic field in order 
to experience a force, 
we probably should not 
be surprised that the 
magnitude of that force 
increases with the speed 
of the particle. However, 
this is an example in 
which fundamental 
physics seems to 
contradict our ‘common 
sense’. An explanation 
requires a relativistic 
treatment.

 ◆ Left-hand rule 
(Fleming’s) Rule for 
predicting the direction 
of the magnetic force 
on moving charges, or a 
current in a wire.

B

θ

q
v

	■ Figure D3.5 An individual charge 
entering a magnetic field
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thuMb
Motion
or force

First finger
Field

force

field

current

seCond finger
Current

	■ Figure D3.6 Fleming’s left-hand rule predicts the direction of the force

Because of the magnetic force, the charged particle will not continue to move in a straight line. 
Because the force is perpendicular to the velocity, this is the necessary condition for circular 
motion (Topic B.2) if the particle is moving perpendicularly across the field.

A charged particle moving perpendicularly across a uniform magnetic field will follow a 
circular path.

The charged particle will move along an arc of a circular path as long as it remains in the magnetic 
field. Figure D3.7 shows the four different possibilities, each for particles travelling with different 
speeds. Crosses represent fields into the paper/screen and dots represent fields out of the paper/screen.

magnetic field out of paper

slower

faster

positive
charges

(e.g. protons)

magnetic field into paper

slower

faster

positive
charges

slower

faster

negative
charges

(e.g. electrons)

slower

faster

negative
charges

During its circular motion in a perpendicular magnetic field, the speed and the kinetic energy of 
the charged particle will remain constant.

	■ Figure D3.7 Circular 
paths of charges 
moving perpendicular 
to magnetic fields

Top tip!
Any moving charge 
can be considered to 
be an electric current. 
Remember that, 
by convention, the 
direction of current is 
always shown to be 
the direction in which 
positive charges are 
moving (Topic B.5). If 
the charges are negative, 
the conventional current 
will be shown to be in 
the opposite direction to 
their velocity.
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TOK

Knowledge and the knower
l How do we acquire knowledge?

Mapping

‘Mapping’ is the process of representing information in the form of a diagram, map, or picture. For 
example, you may choose to map the basic ideas in the physics course in order to show the inter-
connections between them.

The purpose of mapping is to simplify and make something easier to understand.

The use of lines and patterns to represent fields is accepted by the scientific community as possibly the 
only way of presenting these difficult ideas simply to the human mind. No one thinks that the lines are 
‘real’ and it might be argued that such a simplification in some ways restricts our understanding, or 
imagination, about the subject because it channels our thoughts in certain prescribed directions. The 
mapping of any knowledge is a simplification to aid understanding and one which has obvious appeal 
but, like all simplifications, has its limitations.

Make a list of the key concepts introduced in Theme D (so far), then display them on a full page 
annotating the connections between them.

 ◆ Mapping Representing 
the interrelationships 
between ideas, knowledge 
or data by drawing.

LINKING QUESTION
l How are the 

properties of electric 
and magnetic fields 
represented? (NOS)

	■ Equation for the force on a charged particle moving across 
a magnetic field

The magnitude of the force, F, on a charged particle moving across a uniform magnetic field 
depends on the:
l charge of the particle, q
l velocity of the particle, v
l strength of the magnetic field, B
l angle between the field and the velocity, θ.

The force is proportional to q, v, B and sin θ, so that: 

the magnitude of the magnetic force on a charge moving in a magnetic field is given by:

F = qvB sin θ

Determine the force experienced by an electron moving with a speed of 4.7 × 106 m s−1 at an 
angle of 50° across a magnetic field of strength 0.56 T. 

Answer
F = qvB sin θ = (1.60 × 10−19) × (4.7 × 106) × 0.56 × sin 50° = 3.2 × 10−13 N

WORKED EXAMPLE D3.3

If a particle is moving perpendicularly to a uniform magnetic field, sin θ = 1 so that the equation 
for the force reduces to F = qvB. This magnetic force can be considered as the centripetal force 
causing circular motion:

we know from Topic A.2, centripetal force F = 
mv2

r
So that:

qvB = 
mv2

r

DB
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which can be rearranged to show that:

the radius of the circular path of a charged particle moving in a perpendicular magnetic field 
can be determined from:

r = 
mv 
qB 

Determine the radius of the path followed 
by a proton moving with a speed of 
1.9 × 107 m s−1 perpendicularly across a 
magnetic field of strength 0.30 T. (Charge 
on proton is +1.60 × 10−19 C, mass of proton is 
1.673 ×10−27 kg.)

Answer

r = 
mv
qB = 

(1.673 × 10–27) × (1.9 × 107)
(1.60 × 10–19) × 0.30  = 0.66 m

WORKED EXAMPLE D3.4

Figure D3.8 shows a school laboratory experiment to demonstrate the circular path of electrons 
moving perpendicular to a uniform magnetic field.

An electron beam is produced by an electron gun arrangement, as described previously (in 
Figure D3.4 but not visible in D3.8). The electrons are fired into a perpendicular uniform magnetic 
field, which is produced by steady currents in the coils which can be seen in Figure D3.8, which 
also shows the resultant circular path of the electron beam. The path of the electrons can be seen 
because the tube contains a very small amount of an inert gas at very low pressure. The gas 
molecules gain energy from collisions with the electrons and then emit light.

B

+

y

z
x

	■ Figure D3.9 Helical path	■ Figure D3.8 Electrons moving in circular paths

The electrons moving in the circular path seen in 
Figure D3.8 had been accelerated from rest by a voltage 
of 5000 V. 
a Determine their maximum energy in:

i electronvolts ii joules. 
b Calculate their maximum speed. 
c If the strength of the magnetic field was 0.0033 T, 

what was the radius of the electrons’ path? 

Answer
a i 5000 eV

ii qV = (1.60 × 10−19) × 5000 = 8.00 × 10−16 J

b qV = 
1
2mv2

 8.00 × 10–16 = 
1
2 × (9.110 × 10–31) × v2

 v = 4.19 × 107 m s−1

c r = 
mv
qB = 

((9.110 × 10–31) × (4.19 × 107)) 
((1.60 × 10–19) × 0.0033)  = 0.072 m (7.2 cm)

WORKED EXAMPLE D3.5

 ◆ Electron gun 
Component that fires a 
beam of electrons across 
a vacuum. 
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If a charged particle is moving across a magnetic field but not moving perpendicularly or 
parallel to the field, its path will be helical (like a spiral), as shown in Figure D3.9 for positively 
charged particles.

6 Determine the magnetic force acting on a proton moving 
at an angle of 32° across a magnetic field of 5.3 × 10−3 T 
at a speed of 3.4 × 105 m s−1.

7 An electron is moving at a speed of 1.6 × 107 m s−1 

perpendicularly to a magnetic field of 1.4 × 10−4 T.
 Calculate the radius of its path.

8 a Outline how it is possible for a charged particle to 
move through a magnetic field without experiencing 
a force. 

b Discuss whether it is possible for the same particle to 
move through electric and gravitational fields without 
experiencing forces.

9 An alpha particle (Topic E.1) has a charge of 
+3.2 × 10−19 C and a mass of 6.7 × 10−27 kg. . It moves 
perpendicularly across a magnetic field in a vacuum with 
a speed of 1.4 × 107 m s−1 
a  If it experiences a magnetic force of 4.1 × 10–14 N, 

determine the strength of the field. 
b  Describe the path of the alpha particle. 
c  When a similar alpha particle moved at an angle 

across the same magnetic field, the force it 
experienced was 3.3 × 10–14 N. Determine the angle 
between the field and the particle’s velocity.   

d  Describe the shape of the particle’s trajectory.

10 a A beam of singly charged ions (q = 1.6 × 10−19 C) is 
projected perpendicularly across a magnetic field 
of strength 0.87 T. Determine the speed of each 

ion if they each experience a magnetic force of 
1.1 × 10–12 N.  

b The ions move in the arcs of circular paths of radius 
2.78 m. Determine their mass. 

c If the beam was replaced with doubly charged ions 
of the same mass, but moving with half the speed, 
predict the radius of their path.

11 a Electrons are accelerated into a beam by a p.d. of 
7450 V in a vacuum. Determine the kinetic energy of 
the electrons in: 
i electronvolts ii joules. 

b Calculate the final speed of the electrons. 
c Determine the strength of magnetic field needed 

to make these electrons move in a circle of 
radius 14.8 cm. 

d If the accelerating voltage is halved, predict by what 
factor the radius of the electrons’ path will change (in 
the same field). 

12 A charge of +4.8 × 10−19 C moving perpendicularly across 
a magnetic field of 1.9 × 10−2 T experiences a force of 
9.5 × 10−14 N. 
a Determine the speed of the particle.
b What electric field would be needed to produce the 

same force on this charge? 
c Draw the path of the particle moving across the fields 

in a direction such that these two forces could be 
equal and opposite to each other (so that the resultant 
force on the particle was zero).

 ATL D3A: Communication skills 

Being curious about 
the natural world
Find out how the Aurora 
Borealis is formed (see 
Figure D3.10)

	■ Figure D3.10 The Aurora Borealis

 ◆ Helical In the shape of 
a spiral.
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Motion of charged particles in both an 
electric field and a magnetic field

SYLLABUS CONTENT

 The motion of a charged particle in perpendicularly orientated uniform electric and magnetic fields.

Any charged particle which is moving across both an electric and a magnetic field will 
experience two forces, one force parallel to the electric field and one force perpendicular to 
the magnetic field.

Consider the specific situation in which a charged particle is moving with a velocity v 
perpendicularly across an electric field, E, and both vectors are perpendicular to a magnetic 
field, B. That is, the three vectors are perpendicular to each other as shown in Figure D3.11. 
The directions of the two forces depend on the nature of the charge. In the example shown (for 
a negative charge), the forces are in opposite directions because of the relative directions of the 
fields. This is also true for a positively charged particle moving in this arrangement of fields.

This perpendicular arrangement of fields is of particular importance because, by adjusting 
the strengths of the two fields, it is possible for the forces on the charged particles to be made 
equal and opposite. That is, the forces cancel each other out, so that the particle continues its 
original motion in a straight line with a constant speed.

If the electric force, FE = magnetic force, FB: Eq = Bqv, so that:

if the motion of a charged particle is unaffected by perpendicular electric and magnetic fields, 
then, its velocity:

v =  
E 
B 

Tool 3: Mathematics

Check an expression using dimensional analysis of units

The units of both sides of the equation v = 
E
B can be checked to confirm that they are 

equivalent to each other.

Units of E divided by units of B are:
N C–1 

N A–1m–1  = 
 N A–1 s–1

 N A–1 m–1 = m s–1

(the same units as v.)

FE

v

uniform magnetic
field into paperelectric field

FB

	■ Figure D3.11 Three vectors 
perpendicular to each other
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An electron with a velocity of 5.9 × 106 m s−1 is passing between parallel metal plates which 
are separated by 10 cm. A uniform magnetic field of 42 mT is acting perpendicular to both 
the plates and the velocity of the electrons. 
a Determine what p.d. across the plates will keep the electrons travelling in a 

straight line.
b If the direction of the electric field is downwards and the electrons are moving to the 

right, calculate the necessary direction of the magnetic field.

Answer

a v = 
E
B

 5.9 × 106 = 
E 

42 × 10–3 

 E = 2.5 × 105 N C−1 (or V m−1)
 Then, since for a parallel plate arrangement E = 

V
d

 V = Ed = 2.5 × 105 × 0.10 = 2.5 × 104 V
b The conventional current is to the left and electric force on a negatively charged 

electron is in the opposite direction to the electric field: upwards. The magnetic force 
must be downwards. Using the left-hand rule, the magnetic field must be directed 
towards the observer.

WORKED EXAMPLE D3.6

	■ Charge to mass ratio of particles, q/m
If the exact nature of a particle is unknown, that is, neither the mass nor the charge of a particle 
is known, then the charge / mass ratio, q/m, becomes all-important. All particles with the same 
velocity, v and charge / mass ratio will follow paths of the same radius, r, when they pass into the 

same magnetic field, B, as shown by r = 
mv
Bq

, as seen before:

In other words:

We cannot determine the charge on an unknown particle if we do not know its mass, or we 
cannot determine the mass of an unknown particle if we do not know its charge.

The charge to mass ratio of electrons was determined by J.J. Thomson (in 1897) before their mass 
and charge were confirmed separately.

Rearranging the previous equation, we get:
q
m

 = 
v

Br
Experiments such as that shown in Figure D3.8 can determine the radius of the particle beam’s 
path in a known magnetic field. But to determine a mass to charge ratio, the speed of the particles 
must also be determined. This can be done as explained previously: perpendicular electric and 

magnetic fields are adjusted until the particles’ motions are unaffected. Then v = 
E
B

:

For example, if the charges moved with constant velocity when they were moving perpendicular to 
an electric field of 4.7 × 106 N C−1 and a magnetic field of 190 mT, then :

speed, v = 
E
B

 = 
4.7 × 106

190 × 10–3 = 2.5 × 107 m s–1

 ◆ Charge to mass ratio 
(of a particle) The ratio 
q/m affects the motion 
of charged particles in 
electric and magnetic fields 
(important when charge 
and mass are not known 
separately).
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If the same particle beam was directed perpendicularly across a separate magnetic field of 
strength 1.8 mT and the result was movement in the arc of a circle of radius 7.8 cm (similar to that 
seen in Figure D3.8), then:

q
m

 = 
v

Br
 = 

2.5 × 107

(0.0018 × 0.078)
 = 1.8 × 1011 C kg–1

These values are consistent with a beam of electrons:

charge = 1.60 × 10−19 C, mass = 9.110 × 10−31 kg, 
charge
mass

 = 1.8 × 1011 C kg–1

LINKING QUESTION
l How can conservation of energy be applied to motion in electromagnetic fields?

This question links to understandings in Topic A.3.

TOK

Knowledge and technology, and 
The natural sciences
l Why might some people regard science as the supreme form of 

all knowledge?
l To what extent are technologies merely extensions to the 

human senses, or do they introduce radically new ways of 
seeing the world?

CERN

The letters of CERN represent the Conseil Européen pour la 
Recherche Nucléaire. It has an informative website.

The main activity at CERN is the use of particle accelerators to 
produce the extremely high particle energies needed to investigate 
the fundamental forces and particles of nature. This is achieved 
by the use of extremely large and strong magnetic fields to force 
charged particles to keep moving faster and faster in circular 
paths. Then, subatomic particles are made to collide together at 
speeds close to the speed of light.

	■ Figure D3.12 The Large Hadron Collider at CERN 
is underground and has a radius of about 4 km

The Large Hadron Collider, shown in Figure D3.12, is the world’s 
largest particle accelerator. Hadrons are a class of subatomic 
particles which includes protons and neutrons. The accelerator has 
a radius of 4.3 km and a circumference of 27 km with numerous 
superconducting magnets.

Figure D3.13 shows an example of the types of paths that can be 
produced by subatomic particles (produced following collisions) 
as they then move through a strong perpendicular magnetic field 
(in a bubble chamber). Measurements made from such images 
can lead to a determination of particle properties.

The following is a quote from the CERN website: ‘The process 
(of colliding subatomic particles) gives us clues about how the 
particles interact, and provides insights into the fundamental 
laws of nature. We want to advance the boundaries of human 
knowledge by delving into the smallest building blocks of 
our universe’.

Would you agree that CERN are aiming to improve the most 
fundamental form of knowledge?

	■ Figure D3.13 Curved paths of individual particles 
in a nuclear physics bubble chamber

 ◆ Particle accelerator 
Apparatus designed to 
produce particle beams.

 ◆ Superconducting 
Without significant 
electrical resistance; only 
occurring at very low 
temperatures.
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13 We have stated that a particle will move in a circular path 
in a vacuum in a magnetic field which is perpendicular to 
its velocity. Figure D3.14 shows the path of a negatively 
charged particle in a container which contains some gas 
at low pressure.

–q

	■ Figure D3.14 The path of a negatively charged particle 

a State the direction of the magnetic field. 
b Describe how the following quantities are changing: 

i radius ii velocity iii kinetic energy.

c Explain why these changes are occurring.

14 A charged particle is travelling parallel to, and mid-way 
between, two parallel metal plates which are separated by 
15 cm and have a p.d. of 12.5 kV across them. 
a If the particle has a speed of 5.7 × 106 m s−1, what 

strength of magnetic field can be used to keep the 
particle moving with the same velocity? 

b State the direction in which the magnetic field 
must act. 

c Explain why you do not need to know the particle’s 
charge to answer part a.

15 Use the internet to learn what a mass spectrometer is 
used for, and how they use electric and magnetic fields.

LINKING QUESTIONS
l What causes circular motion of charged particles in a field?
l How can the orbital radius of a charged particle moving in a field be used to determine the nature of 

the particle?
l How are the concepts of energy, forces and fields used to determine the size of an atom?

These questions link to understandings in Topics E.1 and E.2.

Forces on current-carrying conductors

SYLLABUS CONTENT

 The magnitude and direction of the force on a current-carrying conductor in a magnetic field as given 
by: F = BIL sin θ

 The force per unit length between parallel wires as given by: 
F
L = μ0

I1I2

2πr where r is the separation 
between the two wires.

In Topic B.5 we described the motion of free electrons constituting 
electric currents through conductors. Such electrons moving across a 
magnetic field in a current-carrying conductor will experience the same 
forces as if they were in an electron beam travelling across a vacuum.

Figure D3.15 shows a wire carrying a current I (= q/t) through a wire 
which is at an angle θ to a uniform magnetic field, B.

The electrons have an average (drift) speed of v through the wire, so 
that in time t they travel an average distance L = vt.

We can rewrite the equation (F = qvB sin θ) for the force as:

F = (qt )(vt)B sin θ
L = vt

I

q
tcurrent I =

B

θ

θ

	■ Figure D3.15 A wire carrying a current
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to show that: 

the force on a current I, passing through a conductor of length L across a uniform 
magnetic field B at an angle θ is given by:

F = BIL sin θ

We briefly saw this equation in Topic D.2, where it was used to represent magnetic 
field strength as:

B = 
F
IL

(when sin θ = 1)

Figure D3.16 illustrates how the magnetic force per metre depends on the angle of 
the wire to the magnetic field.

Note that the total force on the current in wire C would be the same as for wire B 
because there is a longer length in the field.

In Figure D3.17, a measured current is flowing in a wire across a small, uniform 
magnetic field.

A

inflexible
wire

top-pan
balance

N

S

     
	■ Figure D3.17 Current flowing in a wire 

across a small, uniform magnetic field

a State the direction in which the magnetic 
force is acting on the wire.

b In which direction is the force acting on 
the balance?

c When the current is flowing, the balance 
indicates that there is an extra mass of 
4.20 × 10−2 g on the balance. Calculate 
the extra downwards force.

d If the current is 1.64 A and the length 
of the field is 8.13 cm, determine the 
strength of the magnetic field. 

Answer
a Using the left-hand rule, the force is 

upwards.
b Using Newton’s third law, the force is 

downwards.
c Fg = mg = (4.20 × 10−2 × 10−3) × 9.81 = 

4.12 × 10−4 N
d Using F = BIL sin θ, with sin θ = 1, gives:
 4.12 × 10−4 = B × 1.64 × 0.0813
 B = 3.09 × 10−3 T

WORKED EXAMPLE D3.7

magnetic field
wire B wire C

wire A

θ

	■ Figure D3.16 How force varies with the 
angle of the current to the magnetic field: there 
will be no force on wire A and the biggest force 
per unit length will be on wire B. Wire C will 
experience a force, but the force per unit length 
of wire C will be smaller than for wire B.

DB
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Figure D3.18 shows an alternative approach to understanding the magnetic force 
on a current in a magnetic field.

Figure D3.18a shows a wire carrying an electric current across a magnetic field. 
The current is perpendicular to the magnetic field from the permanent magnets. 
In Figure D3.18b the same situation is drawn in two-dimensional cross-section, 
with the wire represented by the point P and the magnetic fields from the magnets 
(shown in green) and from the current (shown in blue) included.

The two fields are in the same plane, so it is easy to consider the combined field 
that they produce. Above the wire, the fields act in opposite directions and they 
combine to produce a weaker field. Below the wire, the fields combine to give 
a stronger field. This difference in magnetic field strength on either side of the 
wire produces an upwards force on the wire, which can make the wire move (if 
it is not fixed in position).

	■ Simple dc motor
The force acting on a wire crossing a magnetic field is commonly called 
the motor effect because it can be used to rotate a loop of wire, as shown in 
Figure D3.19.

At the moment shown in Figure D3.19, the current on the right-hand side of the 
loop will experience a force downwards, while the current on the left-hand side 
will experience an upwards force because the current is flowing in the opposite 
direction. (Use Fleming’s left-hand rule.)

It is not possible for a rotating loop to have fixed, permanent connections to an 
external power supply. The connection in Figure D3.19 is called a commutator 
and brushes. With this arrangement, the current will always enter the side of 
the loop on the right-hand side seen in the picture. In this way, the loop will 
experience the same forces every half rotation, which will keep it moving.

Increasing the current, strength of the magnetic field, or the number of turns in 
a coil will all make the motor spin faster. Winding the coil on an iron coil will 
also increase the rate of rotation.

	■ Parallel current-carrying wires
Consider the two parallel wires carrying currents as shown in Figure D3.20.

In Topic D.2 we explained that the direction of the magnetic field created by a 
current in a single long straight wire can be determined using the right-hand 
grip rule.

If both wires are carrying a current, then each wire is in the magnetic field 
created by the current in the other. Both wires will experience a force and, 
using the left-hand rule, the forces will be attractive between the wires if 
the currents are in the same direction. The forces are equal and opposite 
(Newton’s third law).

If the currents are in opposite directions, the wires will repel each other.

Figure D3.21 shows the combined magnetic fields produced in the two situations, 
looking down from above.

N

current

a

S

forceb

N P S

	■ Figure D3.18 Comparing the 
directions of current, field and force

N

current

a

S

forceb

N P S

N

current

a

S

forceb

N P S

 ◆ Motor effect Magnetic force on a current in a 
magnetic field, as used in electric motors.

metal brush contact

coil rotates clockwise

force

N

S

force

split ring commutator

	■ Figure D3.19 Essential parts of a dc motor

conductor 1 conductor 2

force
on I1

magnetic
field due
to current in 2

magnetic
field due
to current in 1

force
on I2

I1

I1 I2

I2

	■ Figure D3. 20 Forces between parallel currents
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F F F F

a b

	■ Figure D3.21 Magnetic fields around parallel currents in long wires :  
a currents in the same direction, and b currents in opposite directions.

The force on current I1 can be determined from F = B2Ι1L sin θ, but in this case the field is 
perpendicular to the wire, so that sin θ = 1, which leads to:

force on unit length of conductor carrying current, I1 = 
F
L

 = B2I1

We saw in Topic D.2 that the field round a wire at a distance r can be determined from:

B = 
μ0I
2πr

and in this case:

B2 = 
μ0I2

2πr

so that the force per unit length between parallel currents:
F 
L 

 = μ0

I1I2 
2πr 

The same force acts on both currents.

This arrangement was, until recently, used to define the SI unit of current, the ampere. One ampere, 
1 A, was defined as the current flowing in two infinitely long, straight, parallel wires that produced a 
force of exactly 2 × 10−7 N m−1 between the wires if they were exactly 1 m apart in a vacuum.

Two very long straight wires are 12 cm 
apart. One carries a current of 3.7 A, the 
other carries a current of 1.6 A in the 
opposite direction.
a Calculate the force exerted on 1.0 m 

of the 3.7 A current (magnitude and 
direction). 

b State the force per metre acting on the 
other current.

Answer

a 
F
L = μ0

I1I2

2πr = 
((4π × 10–7) × 3.7 × 1.6) 

(2π × 0.12)  

 = 9.9 × 10−6 N acting in a direction away 
from the other wire.

b The same: 9.9 × 10−6 N acting in a 
direction away from the other wire. 
That is, the two forces act in opposite 
directions.

WORKED EXAMPLE D3.8

DB
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16 Calculate the magnetic force per metre on a wire 
carrying a current of 1.2 A through a magnetic field of 
7.2 mT if the angle between the wire and the field is: 
a 30° b 60° c 90° d 0°.

17 a The Earth’s magnetic field strength at a particular 
location has a horizontal component of 24 μT. 
Calculate the maximum force per metre that a 
horizontal cable carrying a direct current of 100 A 
could experience. 

b State the direction in which the current needs to be 
flowing for this force to be vertically upwards. 

c Discuss whether it is  possible that such a force could 
support a cable.

18 A current is flowing in a horizontal wire perpendicularly 
across a magnetic field of strength 0.36 T. It experiences 
a force of 0.18 N, also horizontally. 
a Draw a diagram to show the relative directions of the 

force, field and current. 
b If the length of wire in the field is 16 cm, calculate the 

magnitude of the current.

19 a A current of 3.8 A in a long wire experiences a force 
of 5.7 × 10−3 N when it flows through a magnetic field 
of strength 25 mT. If the length of wire in the field 
is 10 cm, determine the angle between the field and 
the current. 

b If the direction of the wire is changed so that it is 
perpendicular to the field, calculate the new force on 
the current.

20 Consider Figure D3.19. Figure D3.22 shows a side 
view of the same situation: the loop of wire and the 
magnetic poles.

 The current in the loop of wire is 0.530 A, the horizontal 
magnetic field strength is 25.0 mT and the length of the 
right-hand side of loop in the magnetic field is 3.80 cm.

4.20 cm

N S

axis of rotation
F

F

   

	■ Figure D3.22 
Forces between parallel 
currents; side view

a Determine the downwards force on the current in 
right-hand side of the loop. 

b Calculate the  torque applied to the loop by this force. 
c What is the magnitude of the torque provided by 

the couple acting on the loop, and in what ‘sense’ is 
it acting? 

d How will the magnitude of the torque change as the 
loop begins to rotate from its horizontal position (as 
shown)? Explain your answer. 

e To make the loop rotate faster, the wire can be 
wound into a coil of many turns. Predict how many 
turns are needed to increase the maximum torque to 
1.0 × 10−4 Nm.

21 Show that, when a current of 1.0 A flows in two 
infinitely long, straight, parallel wires, a force of exactly 
2.0 × 10−7 N m−1 acts between them if they are exactly 
1.0 m apart in a vacuum.

22 Two long straight wires are placed parallel to each other 
and 2.0 cm apart. One wire carries a current of 1.8 A. 
a Determine what current in the other wire will result 

in a force of 4.7 × 10−5 N m−1 acting on it. 
b State the magnitude of the force per metre on the 

other wire. 
c If the currents are in opposite directions, in which 

directions will the forces act?
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D.4 Induction

• What are the effects of relative motion between a conductor and a magnetic field?
• How can the power output of electrical generators be increased?
• How did the discovery of electromagnetic induction effect industrialization?

Guiding questions

Electromagnetic induction
As before, the word induction is being used to describe something being made to happen 
without physical contact. Previously, in Topic D.2, we have discussed electrostatic induction and 
magnetic induction.

Whenever a conductor moves across a magnetic field, or a magnetic field moves across a 
conductor, an emf will be induced. This effect is called electromagnetic induction.

Reminder from Topic B.5: the electromotive force (emf) of a battery, or any other source of 
electrical energy, is defined as the total energy transferred in the source per unit charge passing 
through it. In simple terms, it is the potential difference across the source when there is no 
current flowing.

There are numerous important applications of electromagnetic induction, including:
l generating electricity
l transforming voltages
l using bank cards and smart cards
l metal detecting and security checks
l regenerative braking.

All examples of electromagnetic induction are produced by one of the following.
l A conductor moves across a permanent magnetic field.
l A permanent magnetic field is moved across a conductor.
l A changing current in a circuit produces a changing magnetic field which passes through a 

separate conductor (without any physical movement).
l A changing current in a circuit produces a changing magnetic field which passes through the 

same circuit (without any physical movement).

We will describe each of these in the rest of this topic.

Electromagnetic induction by a conductor 
moving across a permanent magnetic field

SYLLABUS CONTENT

	 A	uniform	magnetic	field	induces	an	emf	in	a	straight	conductor	moving	perpendicularly	to	it,	as	
given by: ε = BvL.

 ◆ Electromagnetic 
induction Process in 
which an emf is produced 
across a conductor that is 
experiencing a changing 
magnetic field.
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Figure D4.1 shows an experiment in which an emf is induced when a conductor (a metal wire) is 
moved across a permanent magnetic field. The induced emf can be detected because it makes a 
small current flow through a circuit containing a sensitive ammeter, called a galvanometer.

sensitive
galvanometer

magnet

flexible
wire

move wire
up or down

magnetic field lines

S

	■ Figure D4.1 Inducing an emf by moving a wire up or down across the magnetic field

The charged particles in the conductor experience forces because they are moving with the wire 
as it crosses the magnetic field (as discussed in Topic D.3). Because it is a conductor, the wire 
contains free electrons that can move along the wire under the action of these forces. Other 
charges (protons and most of the electrons) also experience forces but are not able to move along 
the conductor.

An emf is induced in a conductor because free electrons experience forces which make them 
move along the wire as it crosses a magnetic field.

Moving the wire, containing free electrons, is equivalent to a conventional current of positive 
charge in the opposite direction. We can use Fleming’s left-hand rule (Topic D.3) to predict the 
direction of the forces on the electrons, as shown on the right in Figure D4.2. In this case the 
magnetic force pushes the electrons to the left, so the left-hand end of the conductor becomes 
negatively charged, while the other end becomes positively charged (because some electrons have 
flowed the other way). This charge separation produces a potential difference (emf) across the 
ends of the conductor.

current
(opposite to direction of
motion of the electrons
in the conductor)

magnetic field

force on
chargesconductor

–

magnetic force on electron

magnetic field into paper

left-hand rule

motion of
conductor

 ◆ Galvanometer Ammeter 
that measures very small 
currents. 

	■ Figure D4.2 Magnetic 
force on electrons produces 
charge separation
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If the motion or the magnetic field is reversed in direction, then the emf is also reversed. If both 
the motion and the magnetic field are reversed, then the direction of the emf is unchanged. If the 
conductor and the magnetic field are both moving, but with the same velocity, no emf is induced. 
For electromagnetic induction to occur there must be relative motion between the conductor and 
the magnetic field.

In order to induce an emf, a conductor needs to move 
across a magnetic field. Magnetic fields are represented 
by field lines and the conductor needs to be moving so 
that it ‘cuts’ across (through) the field lines. There will be 
no induced emf if the conductor is moving in a direction 
that is parallel to the magnetic field lines. Consider 
Figure D4.3, which shows three possible movements of 
a straight conductor which remains perpendicular to the 
plane of the paper. For similar conductors moving at the 
same speed, the induced emf is highest if the motion is 
perpendicular to the magnetic field.

If the conductor shown in Figure D4.3 is moved in a direction which is parallel to its own axis, it 
will not cut field lines and no emf will be induced. If it is rotated in the position shown, emfs will 
be induced unless the plane of rotation is parallel to the magnetic field.

Experiments with the apparatus seen in Figure D4.1 can demonstrate that, for a conductor moving 
perpendicularly across the field, the emf, ε, induced can be increased by:
l increasing the speed of the movement, v
l using a magnetic field of greater strength, B
l increasing the length of the conductor in the magnetic field, L (which may mean increasing the 

extent of the magnetic field)
l winding the wire into a coil of many turns, N (with one side of the coil inside the magnetic field).

By considering the forces on free electrons, we can derive an equation for the emf, as follows.

	■ Equation for an induced emf
Figure D4.4 shows a closer look at the situation seen in Figure D4.2. A conductor of length L 
is moving perpendicularly across a uniform magnetic field of strength B, with speed v. Free 
electrons in the conductor will each experience a magnetic force, FB, given by the expression, 
F = qvB sin θ (Topic D.3). In this perpendicular arrangement sin θ = 1. These forces tend to move 
free electrons towards the left of the conductor (as shown). As more electrons move along the 
conductor, the increasing amount of negative charge repels the motion of further electrons to that 
end. The right-hand end of the conductor, which has lost electrons, will become positively charged 
and act as an attractive force on the electrons.

The charge separation produces an electric field along 
the conductor:

E = 
ε
L

where ε is the induced emf across the ends of 
the conductor.

greatest emf
induced

smaller
emf induced

magnetic
field lines

conductor out of
plane of paper

no emf induced

	■ Figure D4.3 The size of an induced emf depends on the direction of motion

length L

magnetic field
strength B

fewer
electrons

at this end

extra
electrons

at this end

a free
electron

FEFB

speed v

	■ Figure D4.4 Deriving ε = BvL
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The maximum induced potential difference will 
occur when the force on each free electron due to 
the magnetic field, FB, is equal and opposite to the 
force on the electron, FE, due to the electric field.

electric force, FE = electric field × charge = 
εq
L

At equilibrium, FE = FB

εq
L

 = qvB

So that:

the induced emf when a straight conductor moves 
perpendicularly across a uniform magnetic field:

ε = BvL

(If the field was not perpendicular to the wire, the 
component of the field in that direction would have 
to be used in the calculation.)

DB

sensitive
galvanometer

magnet

flexible wire

move wire in
this direction

magnetic field lines

S

N = 5

	■ Figure D4.5 Electromagnetic induction with more than one turn

If a long length of wire is wound into a loose coil and one side (only) is moved in the magnetic 
field, as shown in Figure D4.5, each extra loop of wire will add an emf of the same value in series, 
similar to adding more cells to a battery. If there are N turns in the coil, the induced emf will 
become ε = NBvL.

The directions of the induced emf and current are important and will be discussed later.

Calculate the induced emf produced across a 23.0 cm long conductor moving at 98.0 cm s–1 

perpendicularly	across	a	magnetic	field	of	strength	120	μT.

Answer
ε = BvL = (120 × 10–6) × 0.98 × 0.23 = 2.7 × 10–5 V

WORKED EXAMPLE D4.1

1 Explain why no emf is induced across a string made of 
plastic when it is moved through a magnetic field.

2 Figure D4.6 shows a copper wire between the poles of a 
permanent magnet. Describe the direction(s) in which the 
wire should be moved to induce: 

N S

copper wire

   

	■ Figure D4.6 
A copper wire 
between the poles of 
a permanent magnet

a the highest emf
b zero emf.

c Explain why no current can be induced in this wire 
as shown.

3 When a straight conductor of length 90 cm moved 
perpendicularly across a uniform magnetic field of 
strength 4.5 × 10–4 T, an emf of 0.14 mV was induced. 
Calculate the speed of the conductor.

4 Determine the strength of magnetic field needed for a 
voltage of 0.12 V to be induced when a conductor of length 
1.6 m moves perpendicularly across it at a speed of 2.7 m s–1.

5 Show that the units of BvL are the same as for ε.

6 Consider Figure D4.5. Calculate the effective width of the 
uniform magnetic field if it has a strength of 7.8 × 10−3 T 
and an emf of 3.8 mV is induced when the side of the coil 
moves vertically with a speed of 1.8 m s−1.
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7 An aircraft is flying horizontally at a speed of 280 m s–1 
at a place where the vertical component of the Earth’s 
magnetic	field	is	12	μT,	as	shown	in	Figure	D4.7.
a Calculate the emf induced across its wing tips if its 

wingspan is 58 m. 
b Suggest a possible reason why this voltage would be 

larger if the aircraft was flying close to the North, or 
South, Pole. 

c Could the induced emf be used to do anything useful 
on the aircraft? Explain your answer.

280 m s–1

v

B B 12 µT

	■ Figure D4.7 An aircraft flying horizontally

	■ Electromagnetic induction by moving a permanent magnetic 
field across a conductor

Moving a conductor through a permanent magnetic field has a similar effect to keeping the 
conductor still and moving the field.

Figure D4.8 shows electromagnetic induction by moving a magnetic field (around a permanent 
magnet) through a conductor in the form of a loop of wire. Again, the induced emf and 
current will be very small in this basic example, but Figure D4.9 shows how the effects can 
be increased greatly by winding the conductor into a coil, or solenoid, with many turns. The 
direction of the induced current around the coil will be reversed if the magnet is reversed, or 
alternatively, if the motion of the magnet is reversed.

switch
closed

magnet moving
into coil

N S

	■ Figure D4.9 Inducing an emf and a current in a coil of wire

Figure D4.10 shows an electromagnetic induction experiment recorded on a data logger and 
computer. The data logger records the emf being induced at regular time intervals when a 
magnet is dropped through a coil, and then the data is used to draw a graph.

2

emf/V
1

0

–1

–2
0 0.1 0.2

Time/s
0.3 0.4

a b

R
to 

data logger

magnet

coil

S

N

N S

galvanometer

magnet moving
into circuit loop

loop of wire

	■ Figure D4.8 Moving a magnet 
to induce an emf and a current

	■ Figure D4.10 Inducing 
a current by dropping a 
magnet through a coil
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Consider Figure D4.10. Describe how the 
graph would change if the:
a polarity of the magnet was reversed
b magnet was dropped from a greater 

height?

Answer
a The graph would be inverted. 
b The peaks would be higher and their 

durations reduced.

WORKED EXAMPLE D4.2

8 In a demonstration of electromagnetic induction similar 
to that shown in Figure D4.8, the induced current was 
very small. 
a Suggest two ways of increasing the induced current 

while still using the same single loop of wire. 
b State two ways in which the current can be made to 

flow in the opposite direction around the circuit.

9 Draw a sketch similar to Figure D4.9 to show the current 
direction when the bar magnet comes out of the coil at 
the other end.

10 Suggest explanations for the shape of the graph shown in 
Figure D4.10b.

11 Figure D4.11 shows a magnet oscillating vertically on a 
spring. As it oscillates, with a frequency of 0.67 Hz, the end 

of the magnet passes in and out of a coil of wire which is in 
a circuit with a centre-reading galvanometer and a switch.
a Describe how the pointer on the galvanometer 

will move while the switch is closed.
b Sketch a graph of the induced current–time for 3.0 s.

spring

magnet

coil

N

S

   
	■ Figure D4.11 A magnet 

oscillating vertically on a spring

	■ Electromagnetic induction without physical movement
Emfs can also be induced, not by movement, but by changes in the current 
in one circuit affecting another, completely separate, circuit. Figure D4.12 
represents the simplest example.

First consider circuit B at a time when the switch in circuit A is open – 
there is no power source and no changing magnetic field near B, so there 
is no current shown by the galvanometer. However, at the moment that the 
switch in circuit A is closed, a current starts to flow around circuit A and 
this sets up a magnetic field around it. This field spreads out and passes 
through circuit B.

The sudden change of magnetic field induces an emf and a current that is 
detected by the galvanometer in circuit B. The changing current produces a 
changing magnetic field in the same way as moving a magnet does.

This induced emf / current only lasts for a moment, while the switch in A is being turned on, 
because when the current in A is constant there is no changing magnetic field. When the switch is 
turned off, there is an induced emf / current for a moment in the opposite direction. As described 
so far, this is a very small (but important) effect. However, the induced emf can be increased 
greatly by winding the conducting wires in both circuits into coils of many turns (to increase the 
strength of the magnetic field) and placing them on top of each other with an iron core through 
the middle. This is shown in Figure D4.13. Remember from Topic D.2 that iron has high magnetic 
permeability and greatly increases the strength of the magnetic field.

circuit A circuit B

close
switch

	■ Figure D4.12 When the switch is closed, a 
magnetic field passes from circuit A to circuit B

369917_19_IB_Physics 3rd_Edn_SEC_D_4.indd   492369917_19_IB_Physics 3rd_Edn_SEC_D_4.indd   492 04/01/2023   22:4704/01/2023   22:47



H
L O

N
LY

D.4   Induction 493

meter for
circuit B

iron core

B

A
input to
circuit A

	■ Figure D4.13 Making the induced emf larger by using an iron core and coils of many turns

If, when a steady direct current is flowing around circuit A, it is suddenly switched off, the 
change in the magnetic field through circuit B can be so quick that a very large voltage can be 
momentarily induced if the coil in circuit B has a large number of turns. Used in this way, an 
induction coil can be both useful and dangerous.

If the voltage source in circuit A is changed from one that provides a direct current (dc) of 
constant value to a source of alternating current (ac), then the magnetic field in both circuits will 
change continuously and an alternating emf will be induced continuously. This has many useful 
applications, including transformers, as discussed below.

A changing current produces a changing magnetic field which can induce an emf without any 
physical movement. With alternating currents this effect is continuous. 

Inquiry 1: Exploring and designing

Designing

Transformers

Figure D4.14 shows the basic 
components of a device known as a 
transformer. It functions in a similar 
way to the coils seen in Figure D4.13, 
where the coils are wound together. 
Transformers are used to change 
alternating voltages to lower, or 
higher, levels.

soft iron
core

ac
input

Vp

primary coil
(Np turns)

secondary coil
(Ns turns)

ac output Vs 
(induced emf)

	■ Figure D4.14 Transformer

The alternating current in the primary coil	creates	a	constantly	changing	magnetic	field.	
The	field	is	concentrated	in	the	iron	core	and	passes	around	to	the	secondary coil, where 
it induces an emf.
1 List the factors that will affect the value of the induced emf seen on the meter.
2 Design an experiment methodology (using two self-made coils) to investigate how the 

value of the induced emf depends on one of those variables. Pilot (try out) your design 
with the test coils that you have constructed.

	■ Figure D4.15 A transformer 
on a road-side pole

 ◆ Transformer A 
device that transfers 
electrical energy from one 
circuit to another using 
electromagnetic induction 
between coils wound on 
an iron core. Transformers 
are used widely to 
transform one alternating 
voltage to another of 
different magnitude.
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12 Consider Figure D4.12. Suggest two ways in which an 
emf momentarily induced in circuit B could be increased, 
without twisting the wires into coils.

13 Use a sketch graph to explain why an alternating current 
(which varies between the same maximum and minimum 
values) will induce a greater emf in a surrounding circuit 
when the frequency is greater.

14 See Figure D4.14. The output voltage, Vs, from a 
transformer can be calculated from:

 Vs = Vp × (Ns 
Np )

 (You are not expected to remember this equation.) 
a Calculate the output voltage from a transformer which 

has an input of 230 V (ac), 350 turns on its primary 
coil and 18 turns on its secondary coil.

b Another transformer is used to ‘step-up’ an 
alternating voltage from 50 V to 2000 V. If the 
primary coil has 40 turns, predict how many turns 
are needed for the secondary coil.

15 Explain why the kind of transformer seen in Figure D4.14 
cannot transform steady voltages.

16 Suggest how induction between circuits is used in the 
operation of bank cards and transport cards. (See Figure 
D4.16 for an example.)

	■ Figure D4.16 Using a transport card

	ATL	D4A:	Research	skills	

Evaluate information sources for 
accuracy, bias, credibility and 
relevance; use a single standard 
method of referencing and citation
A typical power station may produce electricity 
at a few hundred volts. Research and write a 
short report explaining the reasons why:
l Transformers are used to greatly increase 

this voltage before it is transmitted around 
the country.

l The currents are sent through aluminium 
cables.

Ensure you use reliable sources of information by 
carrying out credibility checks. In your report, 
be sure to provide clear references to the sources 
you used using the referencing and citation 
standard advocated by your school.

	■ Figure D4.17 Transmission lines transfer 
electrical power around countries

TH
E IB LEARNER PRO

FILE

Magnetic flux and magnetic flux linkage

SYLLABUS CONTENT

	 Magnetic	flux	Φ as given by: Φ = BA cos θ.

 ◆ Transmission of 
electrical power 
Electrical power is sent 
(transmitted) from power 
stations to different places 
around a country along 
wires (cables), which 
are commonly called 
transmission (or power) 
lines. These lines are 
linked together in an 
overall system called the 
transmission grid.
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	■ Magnetic flux

Nature	of	science:	Models

Flux

The concept of flux	has	many	applications.	In	general,	the	term	is	used	to	describe	some	kind	of	flow.	A	
non-scientific	example	could	be	the	(in)flux	of	people	into	a	particular	location,	which	could	be	recorded	
in	terms	of	the	number	of	people	in	a	certain	time.	In	physics	we	may	refer	to	a	flux	of	thermal	energy,	or	
light,	or	radiation,	each	of	which	could	be	measured	in	terms	of	the	amount	of	energy	flowing	through	a	
given area every second (W m−2). See Question 20.

Magnetic flux, as explained below, is slightly different, because no movement is implied, although the 
vector arrows seen, for example, in Figure D4.18, may suggest motion.

Electromagnetic induction becomes easier to understand after the concept of magnetic flux has 
been introduced.

Suppose we want to induce an emf across a loop of wire. There are a number of possibilities, 
including:
l move the loop into, or out of, a permanent magnetic field
l rotate the loop in a permanent magnetic field
l keep the loop still and move a permanent magnetic field into, or out of, the loop
l keep the loop still in the changing magnetic field produced by a changing current in 

another circuit
l any combination of the above.

We will simplify the geometry of these situations to that shown in Figure D4.18, in which a 
magnetic field is acting into a loop of wire. To simplify the diagram, only a few field lines are 
seen, but we will assume that a uniform magnetic field is acting across the whole area of the loop. 
An emf can be induced by any of the changes listed above.

The size of the induced emf depends not only on the strength of the 
magnetic field, B, but also on the area, A, of the circuit over which it is 
acting, and the angle, θ , at which it is passing through the circuit.

Magnetic flux, Φ, (for a uniform magnetic field) is defined as the 
product of the area, A, and the component of the magnetic field 
strength which is perpendicular to that area:

Φ = BA cos θ

If the field is perpendicular to the area, cos θ = 1 so the equation reduces 
to: Φ = BA.

The SI unit of magnetic flux is the Weber, Wb. One weber is equal to one tesla multiplied by one 
metre squared (1 Wb = 1 T m2).

We can rearrange the equation for flux to give:

B = 
Φ
A

for B perpendicular to A; this shows us why magnetic field strength is widely known as magnetic 
flux density (flux / area). That is, 1 tesla = 1 weber per square metre.

The emf induced across a single loop of wire is proportional to the rate of change of magnetic 
flux through it (more details later).

 ◆ Magnetic flux, Φ 
Defined as the product 
of an area, A, and 
the component of the 
magnetic field strength 
perpendicular to that area.

 ◆ Weber, Wb Unit 
of magnetic flux. 
1 Wb = 1 T m2.

 ◆ Magnetic flux density, B  
The term more commonly 
used at Higher Level for 
magnetic field strength. 

B = 
Φ
A

.

DB

Common	
mistake
Note that the angle θ is 
the angle between the 
field and a normal to the 
surface, not the angle 
between the field and 
the surface.

area, A

normal to surface

induced emf

B

θ θ θ θ

	■ Figure D4.18	Magnetic	flux	depends	
on	field	strength,	area	and	angle
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Magnetic flux can be a difficult concept to understand and 
Figure D4.19 may help. It shows a non-mathematical 
interpretation of magnetic flux as the number of magnetic 
field lines that pass through the area.

It may be helpful to consider that the magnitude of an induced 
emf depends on the rate at which a conductor ‘cuts’ magnetic 
field lines (or the rate at which magnetic field lines cut 
a conductor).

Magnetic flux linkage

So far, we have been discussing electromagnetic induction 
using single loops of wire. But, if the wire is wound into a 
coil with N turns, each turn contributes the same emf (in 
series), so that the overall induced emf is multiplied by N. The 
concept of magnetic flux linkage takes this into account:

Magnetic flux linkage is defined as the product of magnetic flux and the number of turns in the 
coil. It does not have a widely used standard symbol:

magnetic flux linkage = NΦ

The units of flux linkage are the same as flux (Wb), although sometimes Wb-turns is used.

Nature	of	science:	Observations

Unexpected or unplanned observations

    

	■ Figure D4.20 
Michael Faraday 
(1791–1867) is 
considered to be one of 
the greatest scientists

In	1831	Michael	Faraday	(Figure	D4.20)	became	the	first	person	
to demonstrate electromagnetic induction. See Figure D4.21.

The	equipment	available	at	the	time	made	this	a	difficult	
phenomenon to observe, and some observers may have doubted its 
importance at the time, but its far-reaching consequences are now 
undeniable.	In	a	similar	way,	the	first	transmission	of	radio	waves	

more than 50 years later (by Heinrich Hertz) may have seemed 
trivial at the time, but both discoveries ultimately changed the 
world for ever.

	■ Figure D4.21 Michael Faraday giving a lecture 
at the Royal Institution in London

A

C

E

B

D

F

there is more flux through 
B than A because the field 
strength is greater 
over the same area

there is more flux through 
C than D because the area 
is greater for the same 
field strength

there is more flux through 
E than F because the field 
is perpendicular to 
the area

	■ Figure D4.19 Magnetic flux explained in terms of field lines

 ◆ Magnetic flux linkage, 
NΦ The product of 
magnetic flux and the 
number of turns in a circuit 
(unit: Wb).
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a Calculate the magnetic flux in a square loop of wire of sides 6.2 cm when it is placed at 
45° to a magnetic flux density of 4.3 × 10–4 T. 

b Calculate how many turns would be needed on a coil of the same dimensions to create 
a flux linkage of 8.4 × 10–4 Wb. 

c Determine the magnetic flux linkage in the coil if only half of it was in the magnetic field.

Answer
a Φ = BA cos θ = (4.3 × 10–4) × (6.2 × 10–2)2 × cos 45° = 1.2 × 10–6  Wb
 (1.16879… × 10–6 seen on the calculator display)
b NΦ = 8.4 × 10−4

  N = 
8.4 × 10−4

1.16879 × 10−6 = 7.2 × 102

c The magnetic flux linkage would be reduced to half (4.2 × 10−4 Wb) because the area used 
in the calculation is the area of the coil in the magnetic field, not the total area of the coil.

WORKED EXAMPLE D4.3

17 Calculate the magnetic flux in a flat coil of area 48 cm2 
placed in a field of magnetic flux density 5.3 × 10–3 T if 
the field is at an angle of 30° to the plane of the coil.

18 A magnetic field of strength 3.4 × 10–2 T passes 
perpendicularly through a flat coil of 480 turns and area 
4.4 × 10–5 m2.

	 Determine	the	flux	linkage.

19 A flat coil of 600 turns and area 8.7 cm2 is placed where 
the magnetic flux density is 9.1 × 10–3 T. The axis of the 
coil was originally parallel to the magnetic field, but it 
was then rotated by 25°.

 Calculate the change	of	flux	linkage	through	the	coil.

20 This question provides a solar radiation analogy to help 
understanding of the concept of flux. The ‘solar flux 
density’ arriving perpendicularly at the Earth’s upper 

atmosphere is 1360 W m–2. (This was called the Solar 
constant in Topic B.2.)

 Suppose that near the Earth’s surface this value has 
reduced to 800 W m–2.

 Calculate the power arriving at a horizontal solar panel 
of area 4.0 m2 if the radiation arrives at an angle of 40° to 
the vertical (see Figure D4.22).

800 W m–2

4.0 m2

40° 40° 40° 40°

normal to surface

	■ Figure D4.22 Solar flux

	■ Faraday’s law of electromagnetic induction

SYLLABUS CONTENT

	 A	time-changing	magnetic	flux	induces	an	emf	ε as given by Faraday’s law of induction: ε = –N 
ΔΦ
Δt .

We can now write down an equation which can be used to determine the value of an emf induced 
under any circumstances:

If a coil with N	turns	experiences	a	magnetic	flux	which	changes	by	∆Φ	in	time	∆t, the 
induced emf:

ε = – N 
ΔΦ
Δt

DB
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The negative sign here is important and it is explained later in this topic.

We will now explain how Faraday’s law can be applied to three different situations.

Induction because of motion of a conductor across a uniform magnetic field

Figure D4.23 shows a simple visualization of one type of electromagnetic induction: a metal rod 
is lying across two fixed parallel conducting rails. The rod is able to move horizontally which is 
perpendicularly across the magnetic field, but as it does so, it continues to complete an electrical 
circuit, as shown in the figure.

In this example of electromagnetic induction, the magnetic field is constant but the area of the 
circuit changes.

Because there is only one loop, Faraday’s law for the magnitude of the 
induced emf reduces to:

ε = 
ΔΦ
Δt 

 = 
Δ(BA) 
Δt 

 = B (ΔA 
Δt )

for a uniform magnetic field.

Suppose that the rod, of length L, moves to the right with a constant 
speed v.	In	time	Δt it will move a distance, vΔt perpendicularly across 
a uniform magnetic field of strength B.
The rate of change of area:

ΔA 
Δt 

 = 
LvΔt
Δt

 = vL

vL is	often	described	as	the	‘area	swept	out’	by	the	moving	rod	in	time	Δt; so that:

ε = B (ΔA 
Δt ) becomes:

ε = BvL which is the same equation as we have seen earlier.

Two parallel and horizontal conducting rails, which are 44 cm apart, are placed in a 
uniform magnetic flux density of 8.7 × 10−4 T which is acting vertically downwards, as 
shown in Figure D4.23. The rod moves to the right with a speed of 48 cm s−1. 
a Determine the value of the emf induced across the loop. 
b State the rate of change of magnetic flux. 
c Determine how much extra magnetic flux passes through the circuit when the rod 

moves 25 cm.

Answer
a ε = BvL = (8.7 × 10−4) × 0.48 × 0.44 = 1.8 × 10−4 V
 (1.83744 × 10−4 V seen on calculator display)
b 1.8 × 10−4 Wb s−1

c Increase in area in 0.25 × 0.44 = 0.11 m2

 increase in magnetic flux = increase in area × magnetic flux density
 = 0.11 × (8.7 × 10−4) = 9.6 × 10−5 Wb
 Alternatively:
 increase in magnetic flux = rate of change of magnetic flux × time

 = (1.837 44 × 10–4) × (0.25
0.48) = 9.6 × 10−5 Wb

WORKED EXAMPLE D4.4

 ◆ Faraday’s law of 
electromagnetic induction 
The magnitude of an 
induced emf is equal to the 
rate of change of magnetic 

flux linkage, ε = 
–NΔΦ
Δt

.  

For an explanation of 
the negative sign, see 
Lenz’s law.

v ∆t

vL

increased area of loop ∆A in time ∆tconducting rails

conducting rails

	■ Figure D4.23 Inducing an emf with a moving conductor
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Tool 3: Mathematics

Interpret areas under graphs

Consider again Figure D4.10b. What do the two areas between the curve and the horizontal 
axis represent? Explain why they are equal in magnitude.

Induction because of motion of a coil into and out of a 
uniform magnetic field

Figure D4.24 shows a coil of wire being moved into a perpendicular magnetic 
field. As the right-hand side of the coil enters the field, an emf is induced 
and a current flows around the coil as shown. When all of the coil is moving 
inside the field, there will be no changing magnetic flux and so there is no 
induced emf or current. When the coil moves out of the right-hand side of the 
field, the emf and current are reversed from their directions when entering 
the field.

In this example of electromagnetic induction, the area (of the coil) is constant but the magnetic 
field through the coil changes. The same effect can also be produced by keeping the coil stationary 
and moving the magnetic field. Then, the magnitude of the induced emf given by

ε = N 
ΔΦ
Δt

becomes:

ε = NA × 
ΔB 
Δt 

Consider Figure D4.24. 
a Determine the average magnitude of the induced emf when a coil of 40 turns and area 

5.0 cm2 is moved from completely outside to completely inside a uniform magnetic 
field of strength 0.34 T in 0.56 s. 

b The coil is then turned upside-down (rotated 180°) in the same magnetic field, in a time 
of 0.29 s. Calculate the magnitude of the induced emf.

Answer

a ε = N 
ΔΦ
Δt  = NA × 

ΔB
Δt

  = 40 × (5.0 × 10–4) × (0.34 
0.56) 

  = 1.2 × 10–2 V

b The field changes from 0.34 T in one 
direction through the coil to 0.34 T in 
the opposite direction. Which is an 
overall change of 0.68 T.

 ε = N 
ΔΦ
Δt  = NA × 

ΔB
Δt

  = 40 × (5.0 × 10–4) × (0.68 
0.29) 

  = 4.7 × 10–2 V

WORKED EXAMPLE D4.5

coil of area A
with N turns

induced
current

movement

B

	■ Figure D4.24 Coil moving into a magnetic field
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21 A train is travelling with a speed of 38 m s−1 through a region where the Earth’s magnetic 
field	is	42	μT,	acting	at	50°	to	the	horizontal.	An	axle	on	the	train	has	a	length	of	1.43	m.
a Calculate the area swept out by the axle every second. 
b Determine the component of the magnetic field acting perpendicular to the axle. 
c Calculate the rate of change of magnetic flux experienced by the axle. 
d What was the magnitude of the induced emf across the axle?

22 The magnetic flux through a coil of 1200 turns increases from zero to 4.8 × 10–5 Wb in 
2.7 ms. Calculate the magnitude of the average induced emf during this time.

23 A coil of area 4.7 cm2 and 480 turns is in a magnetic field of strength 3.9 × 10–2 T. 
a Calculate the maximum possible magnetic flux linkage through the coil. 
b Determine the average induced emf (mV) when the coil is moved to a place where the 

perpendicular magnetic field strength is 9.3 × 10–3 T in a time of 0.22 s.

Induction between circuits

Reconsider Figure D4.13. Induction between circuits is called mutual induction. The changing 
magnetic flux passing through coil B depends on the rate at which the current, I, is changing 
in coil A.

For mutual induction in a fixed arrangement 
ΔΦ
Δt  and the induced emf, ε, are proportional to 

ΔI
Δt.

You will not be expected to answer detailed quantitative questions on mutual induction.

24 Figure D4.25 shows a coil of 250 turns moving from position A, outside a strong uniform 
magnetic field of strength 0.12 T, to position B at the centre of the magnetic field in a time 
of 1.4 s. 
a Calculate the change of magnetic flux in the coil when it is moved. 
b State any assumption that you made in answering a. 
c Determine the change of magnetic flux linkage. 
d Calculate the average induced emf. 
e Sketch a graph to show how the induced emf changes as the coil is moved at constant 

speed from A to C (no values needed).

B
A

C

4.7 cm

250 turns

magnetic field into paper

8.2 cm

     
	■ Figure D4.25 A moving 

coil of 250 turns

25 Imagine you are holding a flat coil of wire in the Earth’s magnetic field. 
a Draw a sketch to show how you would hold the coil so that there is no magnetic flux 

through it. 
b	 At	a	place	where	the	magnitude	of	the	Earth’s	magnetic	field	strength	is	48	μT,	what	emf	

would be induced by moving a coil of 550 turns and area 17 cm2 from being parallel to 
being perpendicular to the magnetic field in 0.50 s?

 ◆ Mutual induction 
Electromagnetic induction 
between separate circuits. 
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26 A small coil of area 1.2 cm2 is placed in the centre of a long solenoid with a large cross-
sectional area. A steady current of 0.50 A in the solenoid produces a magnetic field of 
strength 8.8 × 10–4 T. 
a Determine how many turns would be needed on the coil if an induced emf of 2.4 mV was 

required when the current in the solenoid was increased to 2.0 A in a time of 0.10 s. 
b Describe the position in which the coil needs to be placed.

	ATL	D4B:	Thinking	skills	

Applying key ideas and facts in new contexts

Induction cookers

In an induction cooker, like that shown in Figure D4.26, there are 
coils of wire below the flat top surface. When a high-frequency 
current is passed through a coil in the cooker, a strong, rapidly 
oscillating magnetic field is created that will pass through 
anything placed on or near the cooker’s surface, like a cooking 
pot. If the material of the pot is a conductor, emfs and currents 
will be induced in it. Currents circulating within solid conductors, 
rather than around wire circuits, are known as eddy currents.

The electrical energy in the eddy currents will be transferred to 
internal energy and the pan will get hotter. As in any circuit, the 
power generated can be calculated using P = I2R. Thermal energy 
is then transferred by conduction to any food that is in the pan.

Apply your understanding of thermal physics and 
electromagnetic induction to explain the following:
l why the choice of metal for the pan is important
l why the cooker itself does not get noticeably hot (except for 

any thermal energy transferred from the pan)
l why induction cookers are more efficient at cooking food than 

conventional electric hot plates.

      

cooking surface

eddy currents
(parallel to cooking surface)

b

steel pan

coil with high
frequency current

	■ Figure D4.26 a A steel pan on an induction cooker and b How an induction cooker works

 ◆ Eddy currents 
Circulating currents 
induced in solid pieces 
of metal when changing 
magnetic fields pass 
through them. 

a

	■ Energy transfers during electromagnetic induction

SYLLABUS CONTENT

 The direction of an induced emf is determined by Lenz’s law and is a consequence of 
energy conservation.

We will now explain why a negative sign appears in Faraday’s law of electromagnetic induction.

If a current is generated from motion by electromagnetic induction, then energy must have 
been transferred from outside the circuit. We know this from an understanding of the law of 
conservation of energy. The origin of this energy is often the kinetic energy of the moving 
conductor or moving magnet. The moving object must therefore slow down as it loses some of its 
kinetic energy (unless there is an external force keeping it moving).

An induced electric current has had energy transferred to it from the process that induced it, for 
example from kinetic energy of motion.
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Consider again Figure D4.11. To begin the experiment, a student pulled the magnet downwards, 
stretching the spring. The student supplied the energy. The magnet then oscillates vertically, 
interchanging elastic potential energy and kinetic energy (assuming that changes of gravitational 
potential energy are not significant). If there is no coil, or if the switch is open, the oscillations will 
continue for some time, although there will be a little energy dissipation (damping), as discussed 
in Topic C.2.

However, if the magnet oscillates into and out of a conducting coil, an emf will be induced across 
the coil because of the changing magnetic flux in it. A current will flow if the switch is closed and 
energy will be transferred in the coil. Energy is transferred to the current from the kinetic energy 
of the magnet, which means that the magnet must move more and more slowly.

Consider again Figure D4.9. A current is induced in the coil as the magnet moves towards it. 
That current makes the coil behave as an electromagnet, with one end a south magnetic pole and 
the other a north magnetic pole (Topic D.2). The induced emf across the coil is in the direction 
such that the induced current makes the right-hand side of the coil (as shown) a north pole. In this 
way there is a repulsive force between the magnet and the coil because two north poles are close 
together. Work has to be done to overcome this force and move the magnet into the coil. When this 
is done, the energy is transferred to the current in the coil.

If the motion of the magnet is reversed, an attractive force will be created and, again, work has to 
be done to move the magnet and induce a current in the coil.

If the magnet was already in the coil and then removed from the left-hand side, the induced 
current would set up a magnetic field to oppose that motion.

Whenever the magnet is moved in any way (in Figure D4.9) a current will be induced and the 
magnetic field of that current will tend to stop the movement. This application of the law of 
conservation of energy is known as Lenz’s law and it is the reason why there is a negative sign in 
Faraday’s law:

ε = –N 
ΔΦ
Δt 

If the switch in Figure D4.9 is opened, there will still be an induced emf, but no current can flow. 
This means that there will be no magnetic field created and no force from the coil.

Lenz’s law

Lenz’s law states that the direction of any induced emf (and current) is 
always such that it will oppose the change that produced it.

That is, an induced emf will be in such a direction that any induced current will 
set up a magnetic field that resists the change.

Dropping a bar magnet through a vertical copper tube makes an interesting 
demonstration of Lenz’s law. See Figure D4.27. The physics involved in this 
demonstration is similar to that shown in Figure D4.10.

As the magnetic field surrounding the falling magnet cuts through the copper 
tube, eddy currents are created. These currents produce their own magnetic 
fields which oppose the motion of the falling magnet. As a result, the magnet 
takes a surprisingly long time to reach the bottom of the tube.

 ◆ Lenz’s law (of 
electromagnetic 
induction) The direction of 
an induced emf is such that 
it will oppose the change 
that produced it. This is 
represented mathematically 
by the negative sign in 
the equation representing 
Faraday’s law.

N

induced currents
attract magnet from
above and repel magnet
from below

copper tube

S

	■ Figure D4.27 Magnet falling 
through a copper tube
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27 Explain what positive and negative values of emfs 
represent.

28 Figure D4.28 shows what happens when a bar magnet 
is being moved away from a solenoid connected in a 
complete circuit. A galvanometer shows that a current I 
is flowing at that moment.

N S

I

N S

	■ Figure D4.28 What happens when a bar magnet is being 
moved away from a solenoid connected in a complete circuit?

a Draw a similar diagram to represent what happens 
when the magnet is moved towards the solenoid.

b Under these circumstances, the coil is acting like an 
electromagnet. Make up rules to help another student 

predict how the polarity of the electromagnet is 
related to the motion of the magnet and the direction 
of the current.

29 Consider again a magnet falling through a metal tube 
(Figure D4.27).

 Describe and explain what difference it would make if 
the copper tube was replaced by an aluminium tube of 
similar dimensions. (Aluminium has a higher resistivity 
than copper.)

30 Figure D4.29 shows an aluminium plate swinging as a 
pendulum through a magnetic field.

 Sketch an appropriate graph to represent three complete 
oscillations.

N

pivot

N

S

   
	■ Figure D4.29 An aluminium 

plate swinging as a pendulum

Top	tip!
In Question 30 there is no quantitative data provided, so there is no need to include any numbers on the 
sketch. The quantities being represented should be shown on the axes, preferably in words, although 
standard symbols are acceptable. Any important features of the graph should be labelled.

	ATL	D4C	
RESEARCH	
SKILLS	

Research into the 
uses and advantages 
of electromagnetic 
induction in 
‘regenerative braking’.

TOK

The natural sciences
l Does the precision of the language used in the natural sciences successfully eliminate all ambiguity?

The terminology used in physics can often confuse people who have not studied the subject. The 
theory of electromagnetic induction is a good example. Does the use of specialized terminology make 
communicating scientific concepts to the public more difficult?

Faraday’s law states that ‘an induced emf is equal to the rate of change of magnetic flux linkage’. 
You should appreciate that this is an elegant and precise way of expressing a very important concept. 
However, to many non-scientists it may seem like a foreign language. Scientists aim to express ideas as 
briefly and as succinctly as possible, especially when communicating with other scientists. This involves 
the use of precise scientific terminology, including the introduction of new words for new ideas, or 
perhaps the use of common words in precise scientific ways.

It is certainly possible to write an explanation of Faraday’s law without using the phrases induced emf, 
rate of change and magnetic flux linkage, but it might require several pages instead of one line.

LINKING	QUESTION
l Faraday’s law of 

induction includes 
a rate of change. 
Which other areas 
of physics relate 
to rates of change? 
(NOS)
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Electromagnetic induction 
in rotating coils

SYLLABUS CONTENT

 A uniform magnetic field induces a sinusoidal varying emf in a coil rotating 
within it.

 The effect on induced emf caused by changing the frequency of rotation.

Electromagnetic induction is used to generate most of the world’s 
electrical energy.

	■ Alternating current (ac) generators
Consider Figure D4.30, which shows a coil of wire between the poles of a 
magnet. For simplicity, only one loop is shown, but in practice there will 
be a large number of turns on the coil(s) of any practical ac generators.

If the coil is rotating, there will be a changing magnetic flux passing 
through it and a changing emf will be induced. As side WX moves 
upwards, the induced emf will make a current flow into the page, if it is 
connected in a circuit. At the same time any induced current in YZ will 
flow out of the page, because it is moving in the opposite direction. In this 
way, the current flows continuously around the coil.

The emfs induced in opposite sides of a coil rotating in a magnetic field 
act in series to drive a current around the coil.

The connection between the coil and the external circuit cannot be fixed 
and permanent because the wires would become twisted as the coil 
rotated. Therefore carbon ‘brushes’ are used to make the electric contact 
with slip rings which rotate with the coil, so that the induced current can 
flow into an external circuit.

Figure D4.31 shows three views of the rotating coil from the side. In 
Figure D4.31a the plane of the coil is parallel to the magnetic field and, at 
that moment, the sides WX and YZ are cutting across the magnetic field 
at the fastest rate, so this is when the maximum emf is induced. In Figure 
D4.31b the sides WX and YZ are moving parallel to the magnetic field, 
so no emf is induced at that moment. In Figure D4.31c the induced emf 
is a maximum again, but the direction is reversed because the sides are 
moving in the opposite direction to Figure D4.31a.

The overall result, if the coil rotates at a constant speed in a uniform 
magnetic field, is to induce an emf that varies sinusoidally. This is shown 
by the green line in Figure D4.32.

In positions B and D the plane of the coil is parallel to the magnetic field. 
At A, C and E the plane of the coil is perpendicular to the field. One 
complete revolution occurs in time T. Frequency, f, equals 1/T. If the coil 
rotates at a slower frequency (fewer rotations every second), then there 
will be a smaller rate of change of magnetic flux through it and a smaller 
emf will be induced. For example, halving the frequency will halve the 

N S
W Z

X Y

coil

slip rings
(rotate
with coil)

rotation

alternating voltage
output

brushes (fixed)

	■ Figure D4.30 A simple ac generator
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	■ Figure D4.31 The sides of the coil cut 
through the magnetic field at different angles as 
they rotate, alternating the emf produced

 ◆ Slip rings and brushes In an ac generator these 
are used for connecting the rotating coil to the 
external circuit.

B

A Time

frequency f

frequency f
2

emf

T

C

D

E

	■ Figure D4.32 Comparing induced 
emfs at different frequencies
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rate of change of magnetic flux linkage and therefore halve the induced emf. The time period 
is doubled. This is represented by the blue line in Figure D4.32. You should watch a computer 
simulation of an ac generator as the coil(s) rotates slowly to help your understanding.

Throughout the world, electrical energy is generated in this way using turbines with ac 
generators. A turbine is a device which transfers the kinetic energy of a moving fluid into useful 
rotation. Turbine blades can be made to rotate by, for example, forces from the wind, or from 
high-pressure steam produced from burning fossil fuels or nuclear reactions, or from falling water 
(hydroelectricity). See Figures D4.33 and D4.34.

In order to generate electricity, turbine blades are attached to the coils inside an ac generator. 
The coils – with many turns and cores with high magnetic permeability – are rotated in strong 
magnetic fields by the action of the turbine blades. Electricity can also be generated using the 
same principle, but with the magnetic field rotating inside the circuit, rather than the other way 
around. Such devices are commonly used in cars and they are often called alternators. Note that 
dc generators can be similar to ac generators in basic design, but the connections to the external 
circuit need to be modified.

Mains electricity (also known as utility power) is the name given to the electrical power supply 
that is delivered from large power stations to homes and businesses. Figure D4.35 shows the 
symbol for an ac power supply.

In most of the world the electricity power supply is rated at 230 V ac 50 Hz. This is shown in 
Figure D4.36. 120 V 60 Hz is common in North America. There are a range of different designs of 
sockets and plugs used in different countries.

 ◆ Turbine Device that 
transfers the energy from 
a moving fluid to do 
mechanical work and cause 
(or maintain) rotation.

 ◆ Alternator ac electrical 
generator. 

	■ Figure D4.33 An engineer working on a 
steam turbine

	■ Figure D4.34 Wind turbine blades are set 
in motion by the flow of wind past them
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	■ Figure D4.36 Mains voltage rated at 230 V

	■ Figure D4.35 Symbol 
for an ac power supply

An ac electrical supply which is rated at 230 V actually varies between 
peaks	of	+325	V	and	−325	V.	The	average	value	is	zero,	but	that	is	not	
really useful information. The supply is rated at 230 V because it delivers 
the same power as a steady 230 V dc would in the same circuit. (The 
effective voltage is described as the RMS voltage – root mean squared 
voltage. RMS voltage = peak voltage divided by 

 
 2. But you are not 

expected to remember this.)

Two wires are required to make a connection from the mains and deliver 
electrical energy to a circuit. One connection, called the neutral wire, 
is always kept at 0 V, while a varying voltage, as seen in Figure D4.36, 
drives a current backwards and forwards. This connection is commonly 
called the live wire.

LINKING	QUESTION
l	 How	is	the	efficiency	of	electricity	generation	

dependent on the source of energy?

This question links to understandings in Topic B.4.
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31 Figure D4.37 shows the output of an ac generator.
a Determine the frequency of the output. 
b Estimate the approximate voltage rating of the supply.
c Make a copy of Figure D4.37 and add a curve to 

represent the output if the frequency of the generator 
was reduced to 25 Hz. 

e/
v

0
10 20 30

350

–350

t/ms

 

	■ Figure D4.37 Output of an a.c. generator

32 a Sketch a voltage–time graph, with numerical values, 
for a 120 V 60 Hz rated power supply.

b Estimate the maximum voltage in each cycle of 
the supply.

33 A rectangular coil of copper wire has 500 turns and sides 
of length 5.2 cm and 8.7 cm. The coil rotates at a constant 
frequency of 24 Hz about an axis that passes centrally 
through the shorter sides. A uniform magnetic field of 
0.58 T acts on the coil in a direction perpendicular to 
the axis. 
a Draw a labelled sketch of this arrangement. 
b Calculate the linear speed of the sides of the coil. 
c Use ε = NBvL to determine the emf that is induced 

across one of the longer sides at the instant that it is 
moving perpendicularly across the field. 

d What are the maximum and minimum induced emfs 
as the coil rotates?

34 What are the voltages on the live and neutral wires in 
your home?

35 Outline why some electrical sockets have three 
connections (rather than two).

Self-induction
When a current in any circuit changes, the magnetic flux associated with that current must also 
change. This means that an emf will be induced. So far, we have discussed induction in a separate 
circuit, but induction also occurs within the same circuit and then the induced emf opposes the 
change of current (Lenz’s law), so that it acts in the reverse direction to the original emf producing 
the current. It is often called a back-emf.

In most simple circuits this effect will not be noticeable or important, but if a many-turned coil is 
involved, especially if it is wound on a core of high magnetic permeability, the effect will become 
significant when dealing with alternating currents. It is called self-induction.

Self-induction is the effect in which a change in the current in a circuit tends to produce an 
induced emf which opposes the change of current in the same circuit.

 ◆ Back-emf An induced 
potential difference that 
opposes a change of 
current in the same circuit.

 ◆ Self-induction 
Electromagnetic induction 
within a single circuit.

Self-induction becomes more important at higher frequencies, which usually 
involve	greater	values	of	ΔI/Δt, and so greater rates of changing 
magnetic flux.

The magnitude of self-induction (or mutual induction) effects will change 
with the magnetic properties of different surrounding materials (especially 
metals). This has some interesting applications, including:
l The presence of cars waiting at traffic lights can be detected by changes 

to the self-induction of coils under the road surface.
l Metal detectors (for example at airport security checks) can use changes 

in self-inductance to identify the presence of metals. See Figure D4.38 
for a similar application.	■ Figure D4.38 Treasure hunting
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E.1 Structure of the atom

• What is the current understanding of the nature of an atom?
• What is the role of evidence in the development of models of the atom?
• In what ways are previous models of the atom still valid despite recent advances in understanding?

Guiding questions

The nuclear model of the atom
We have already briefly described the nuclear model of the atom, at the beginning of Topic B.5. 
As a reminder, Figure E1.9 shows another visualization of this model.

We now want to use knowledge about electric forces (Topic D.2) to explain how and why the 
nuclear model of the atom was first developed.

At the end of the nineteenth century, it had become clear that the atom was not an elementary, 
indivisible particle. However, only one subatomic particle, the negatively charged electron, had 
been identified, although it was not known for sure how many electrons were in each atom. Since 
atoms were not charged overall, it was clear that there must also be some part of atoms which were 
positively charged. This led to a model of the atom often described as the ‘plum pudding model’ 
(J.J. Thomson in 1904), see Figure E1.1.

Today, we may be more inclined to use a blueberry muffin visualization (Figure E1.2): an 
unknown number of individual blueberries (negative electrons) in a muffin of spread-out 
positive charge.

	■ Figure E1.2 Blueberry muffin

This model of the atom was far from being satisfactory and it raised many questions, but it was 
to be about seven years before it was improved, following the famous experiments of Geiger, 
Marsden and Rutherford.

 ◆ Subatomic particle Any 
particle contained within 
an atom.

positively charged
matter

electron
+

++

+
++

+

+
+

+

+

–

– –

– –

–
– –

–

–

–

	■ Figure E1.1 The ‘plum 
pudding model’ of the atom
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TOK

The natural sciences

‘What is everything made of?’ is one of the most basic questions 
we can ask and there are records going back about 2500 years, 
to Greek philosophers (Democritus and others), asking just 
that. It was at that time that the concept of the ‘atom’ was first 
introduced: as tiny, solid spheres.

Moving forward about 2200 years, scientists of that time still had 
much the same ideas. The following is a quote from the famous 
physicist Isaac Newton in 1704.

‘All these things being considered, it seems probable to me 
that God in the Beginning form’d Matter in solid, massy, hard, 
impenetrable, moveable Particles, of such Sizes and Figures, 
and with such other Properties, and in such Proportion to 
Space, as most conduced to the End for which he form’d 

them; and that these primitive Particles being Solids, are 
incomparably harder than any porous Bodies compounded of 
them; even so very hard, as never to wear or break in pieces; no 
ordinary Power being able to divide what God himself made one 
in the first Creation.’

A lot has changed in the following three centuries. Chemical 
reactions were explained by the elements having different atoms 
which could be combined to form molecules (Dalton and others). 
However, the concept of the indivisible atom remained until the 
discovery (1897) of a constituent particle: the electron.

Rutherford’s proposal of a nuclear atom (and the existence of 
protons and neutrons), as explained below, was another paradigm 
shift in models of the atom, but not the last. The discovery of the 
wave properties of electrons (1924) meant that the model had to be 
significantly changed again.

	■ Geiger–Marsden–Rutherford experiment

SYLLABUS CONTENT

 The Geiger–Marsden–Rutherford experiment and the discovery of the nucleus.

	■ Figure E1.3 Geiger and Rutherford (right)

In 1909, Ernest Rutherford and two of his research students, Hans Geiger and 
Ernest Marsden, working at the University of Manchester, UK, directed a narrow 
beam of positively charged alpha particles (see below) from a radioactive 
source at very thin gold foil. A zinc sulfide detector was moved in a circle 
around the foil to determine the directions in which alpha particles travelled 
after striking the foil (Figure E1.4). The alpha particles had enough energy 
individually to be detected by a tiny flash of light when they were stopped by the 
zinc sulfide.

vacuum microscope

zinc sulfide
detector

gold foil

source of
α-particles

	■ Figure E1.4 The alpha particle 
scattering experiment

 ◆ Geiger–Marsden–
Rutherford experiment 
The scattering of alpha 
particles by a thin sheet 
of gold foil, which 
demonstrated that atoms 
consist of mostly empty 
space with a very dense 
positively charged core (the 
nucleus).

 ◆ Alpha particle 
A positively charged 
particle emitted by a 
radioactive nucleus. 

 ◆ Radioactive source 
Radioactive substance used 
for the nuclear radiation it 
emits. 
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Inquiry 1: Exploring and Designing

Exploring

What are alpha particles?

The nuclei of some atoms are unstable and they can emit particles and electromagnetic 
radiation. This is called radioactivity and the subject is covered in Topic E.3. Alpha 
particles are a common product of radioactivity and they are often used in school 
demonstrations. Research using a variety of relevant sources to find out:
1 What subatomic particles are alpha particles made from?
2 What is the overall electrical charge of an alpha particle?

 ◆ Radioactive decay 
(radioactivity) 
Spontaneous emission of 
particles and / or radiation 
from unstable nuclei.

Alpha particles carry a very large amount of energy relative to their small size and, at that time 
(1909), it was expected that the alpha particles would not be affected much by passing through such 
thin gold. Gold foil can be made very thin (less than 10−6 m) and the foil may then only have about 
6000 layers of atoms. Although alpha particles only travel about 4 cm in air, they would encounter 
many more molecules travelling that distance in air than passing through gold atoms in very thin foil.

But Geiger and Marsden’s results were surprising. Rutherford published the results in 1911. He 
reported that:
l Most of the alpha particles passed through the foil with very little or no deviation from their 

original path (as was expected).
l A small number of particles (about 1 in 1800) were deviated through an angle of more than 

about 10° (see Figure E1.5).
l An extremely small number of particles (about 1 in 10 000) were deflected through an angle 

larger than 90°. Some particles were even deflected by 180°, returning in the direction from 
which they came.

The importance of this last point is emphasized by Rutherford’s famous 
quote: ‘It was quite the most incredible event that has ever happened to me 
in my life. It was almost as incredible as if you fired a 15-inch shell [large 
bullet] at a piece of tissue paper and it came back and hit you.’

From alpha particle scattering experimental results Rutherford drew the 
following conclusions:

Most of the mass of an atom is concentrated in a very small volume at the centre of the atom. 
Most alpha articles would therefore pass through the foil undeviated (continuing in a straight line) 
because most of the atom was empty space.

The centre of an atom (he called it the nucleus) must be positively charged in order to repel the 
positively charged alpha particles. Alpha particles that pass close to a nucleus will experience a 
strong electrostatic repulsive force, causing them to change direction.

Only alpha particles that pass very close to the nucleus, striking, or almost striking it directly, will 
experience electrostatic repulsion large enough to cause them to deviate through large angles. The 
fact that so few particles did so, confirms that the nucleus is very small, and that most of the atom 
is empty space.

Figure E1.6 shows some of the possible trajectories (paths) of the alpha particles. Rutherford used 
his new nuclear model of the atom and Coulomb’s inverse square law (covered in Topic D.2) to 
explain the repulsive force between the positively charged particles. He used the magnitudes of the 
forces to calculate the fraction of alpha particles expected to be deviated through various angles. 

– –

–

–
–

– –

–
–

–

expected results observed results

	■ Figure E1.5 Alpha 
scattering experiments 
produced unexpected results
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Rutherford’s calculations agreed very closely with the results from the experiment, supporting his 
proposal of a nuclear model of the atom.

closest approach

scattered a-particles

gold nucleus

Alpha particle scattering can be modelled using simple 
apparatus such as that shown in Figure E1.7, in which a small 
ball rolls down a wooden ramp onto a specially shaped metal 
‘hill’. The shape of the hill is made so that, when viewed from 
above, the ball moves as if it was being repelled from the centre 
of the hill by an inverse square law of repulsion. In other words, 
gravitational forces are used to model electric forces. Using this 
apparatus, it is possible to investigate how the direction in 
which a ball travels after leaving the hill (the scattering angle) 
depends on its initial direction (‘aiming error’) and/or its 
energy. In Geiger and Marsden’s experiment it was not possible 
to observe the scattering paths of individual alpha particles, but 
the observed scattering pattern of large numbers of alpha 
particles in a beam is found to be in very close agreement with 
modelling based on individual balls rolling on hills.

From his results, Rutherford calculated that the diameter of the gold nucleus was of the order 
of 10−14 m, compared to the diameter of the whole atom, which was known to be of the order 
of 10−10 m.

1 Explain in your own words (less than 100), without using a diagram, why Rutherford 
concluded that atoms contain a small, positively charged central nucleus.

2 Sketch the path of an alpha particle being scattering by a large angle by a positive nucleus. 
Label the ‘aiming error’ and the ‘scattering angle’.

3 ‘Gold foil can be made very thin (less than 1 × 10−6 m) and the foil may then only have about 
6000 layers of atoms.’ 
a Use this information to determine an approximate radius of a gold atom. 
b State any assumptions that you made in answering part a.

4 a Calculate the forces acting between an alpha particle and a nucleus of charge + 81e when 
they are at their closest, separated by a distance of 2.0 × 10−14 m. 

b If the alpha particle was scattered by an angle of about 40°, sketch its path, showing the 
forces that you calculated in part a.

5 Suggest what would have happened if neutrons had been used in Rutherford’s experiment 
instead of alpha particles. Explain your answer.

LINKING QUESTION
l How have 

observations led to 
developments in the 
model of the atom? 
(NOS)

	■ Figure E1.6 Alpha 
particle trajectories in the 
gold foil experiment

	■ Figure E1.7 Alpha particle scattering analogue
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a Make a sketch of an alpha particle being deflected through about 120° by a gold nucleus. 
b On the same sketch draw the path of an alpha particle (approaching along the same path 

as before) being scattered by a copper nucleus (which has a much smaller charge). 
c Show how an alpha particle of higher energy could be affected if it approached a gold 

nucleus along the same path.

Answer
a centre of

Au nucleus

S

a
b

c

S

	■ Figure E1.8 Answer to Worked example E1.1

The repulsive force from a copper nucleus is less than from a gold nucleus, so the alpha 
particle is scattered less. An alpha particle of greater energy will be scattered through a 
smaller angle than an alpha particle of less energy. For convenience, b and c have been 
shown with similar deflection, but that is unlikely. All paths are symmetrical about the 
dashed lines labelled S.

WORKED EXAMPLE E1.1

	■ Composition of the nucleus
In the years that followed Rutherford’s famous experiment, it was confirmed that a nucleus 
consists of separate subatomic particles: protons and neutrons, which contain almost all of the 
mass of the atom. The protons are positively charged and the neutrons are electrically neutral. The 
electrons are negatively charged but have very little mass in comparison to protons and neutrons. 
Atoms are electrically neutral because there are equal numbers of protons and electrons.

In this model of the atom, the electrons orbit the nucleus because of the centripetal force 
provided by the electrical attraction between opposite charges. If the electrons were not in 
circular motion, the electrostatic force of attraction would accelerate them towards the nucleus.

The vast majority of an atom is empty space, a vacuum. The properties of protons, neutrons and 
electrons are summarized in Table E1.1.
	■ Table E1.1 Properties of subatomic particles

Name of particle Approximate relative mass Relative charge

proton 1 +1

neutron 1 0

electron 1/1840 −1
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Figure E1.9 shows the features of the nuclear model of an atom as visualized in the years 
immediately following Rutherford’s discovery. The example shown is a nitrogen atom. Although 
this model has been changed in important ways, some of which are explained below, it persists in 
popular culture and it continues to be a very useful starting point in the study of atomic structure 
in elementary science lessons.

6 × 10–15
 m 1.2 × 10–10

 m

orbiting
electron

positive
nucleus with

7 protons, 7 electrons
and 7 neutrons

+
+
+
++

+
+

 

Nature of science: Models

Power of visual models

The latest models of the atom cannot be drawn on paper or a computer screen. Instead, we need 
complex mathematical models (equations) to describe what we cannot see. (These are not included in 
the IB course.) It is unlikely that scientists will ever produce an accurate model of the atom that can be 
visualized, but we should have no expectation that the atomic-scale world behaves in any way similar to 
the world we see around us.

The visual model seen in Figure E1.9 can be understood to some extent by many people, but the complex 
mathematical modelling needed to explain the latest theories about the structure of matter will continue 
to be inaccessible to most people.

What holds the particles in the nucleus together?

After it was proposed that the nucleus was composed of separate particles (protons and neutrons), 
there was an obvious question to ask: what forces are there between these particles that holds them 
so closely together? In particular, it was known that there is a very large repulsive force between 
protons, as the following approximation demonstrates:

F = k
q1q2

r2

(from Topic D.2)

F ≈ 
(8.99 × 109) × (1.60 × 10–19)2

(6 × 10–15)2  ≈ 10 N (to an order of magnitude)

which, on the atomic scale, is an extremely large force.

To oppose this repulsive force, we now know that there is a very short-range strong nuclear 
force (attractive) between the nuclear particles. However, detailed knowledge of this force is not 
required in the IB course.

The term nucleon is used to describe a particle in the nucleus of an atom which is either a proton 
or a neutron.

	■ Figure E1.9 The 
orbital model of a nitrogen 
atom (not to scale)

 ◆ Strong nuclear force 
Fundamental force that is 
responsible for attracting 
nucleons together. It is a 
short-range attractive force 
(the range is about 10−15 m), 
but for smaller distances 
it is repulsive, and hence 
it also prevents a nucleus 
from collapsing. 

 ◆ Nucleon A particle in a 
nucleus, either a neutron or 
proton.
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 ATL E1A: Research skills 

Use search engines and libraries effectively
For many years (until the 1960s) it was believed that protons and neutrons were elementary particles, 
meaning that it was thought that they were not composed of smaller particles. Scientists now know that 
protons and neutrons are composite particles, each consisting of three quarks with the strong nuclear 
force holding them together. You are not expected to have knowledge of quarks for examinations.

There are 17 known elementary particles, which can be arranged into four groups. Use the internet to 
find out the names of these particles. Do you find it surprising that there are 17? Explain your answer.

The number of protons in the nucleus of an atom determines which element it is. So, atoms of 
a particular element are identified by their proton number (sometimes called atomic number), 
which is given the symbol Z. The periodic table of the elements arranges the elements in order of 
increasing proton number.

The proton number, Z, is the number of protons in the nucleus of an atom.

Because atoms are electrically neutral, the number of protons must be equal to the number of 
electrons in the space around the nucleus. If electrons are added or removed from an atom, it is 
then described as an ion (of the same element).

The nucleon number, A, is defined as the total number of protons and neutrons in a nucleus.

The nucleon number represents the mass of an atom, because the mass of the electrons is (almost) 
negligible. (Nucleon number is sometimes referred to as the mass number.)

The difference between the nucleon number and the proton number gives the number of neutrons 
in the nucleus: N = A – Z.

The neutron number, N, is defined as the number of neutrons in a nucleus.

The number of neutrons in a nucleus is similar to the number of protons, although the ratio of the 
number of neutrons / number of protons generally increases with increasing proton number. (See 
Figure E3.22 in Topic E.3). As we will see, this ratio is an important factor when considering the 
stability of nuclei.

	■ Nuclear notation

SYLLABUS CONTENT

 Nuclear notation A
ZX where A is the nucleon number Z is the proton number and X is the 

chemical symbol.

The term nuclide is used to specify one particular species (type) of atom, as defined by the 
structure of its nucleus.

All atoms with the same nucleon number and the same proton number are described as the 
same nuclide.

There is a standard notation used to represent a nuclide by identifying its proton number and 
nucleon number, as shown in Figure E1.10, which uses C-12 as an example.

 ◆ Elementary particles 
Particles that have no 
internal structure. They 
are not composed of other 
particles. For example, 
electrons.

 ◆ Proton number, Z 
The number of protons in a 
nucleus.

 ◆ Nucleon number, A 
The total number of 
protons and neutrons in a 
nucleus.

 ◆ Neutron number, N 
The number of neutrons in 
a nucleus.

 ◆ Nuclide Term used to 
identify one particular 
species (type) of atom, as 
defined by the structure of 
its nucleus. A radionuclide 
is unstable and will emit 
radiation.
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element
symbol

ZX
A

6C
12

element
carbon

proton
number

nucleon
number

12 nucleons

6 protons

                                    

element
symbol

ZX
A

6C
12

element
carbon

proton
number

nucleon
number

12 nucleons

6 protons

	■ Figure E1.10 Standard notation for specifying a nuclide

Isotopes

Two or more nuclides with the same proton number may have different numbers of neutrons. The 
atoms are of the same element and have identical chemical properties, but they have different 
nucleon numbers. These atoms are called isotopes.

An isotope is one of two or more different nuclides of the same element (which have the same 
number of protons, but different nucleon numbers).

Some elements have many isotopes, but others have few or even one. For example, the most 
common isotope of hydrogen is hydrogen-1, 11H. Its nucleus is a single proton.

Hydrogen-2, 21H, is called deuterium; its nucleus contains one proton and one neutron.

Hydrogen-3, 31H, with one proton and two neutrons, is called tritium.

Hydrogen isotopes (Figure E1.11) are involved in nuclear fusion reactions (see Topic E.5).

H1
1

one proton,
no neutrons

hydrogen

one electron

+

–

H2
1

one proton,
one neutron

deuterium

one electron

+

H3
1

one proton,
two neutrons

tritium

one electron

+

– –

As a further example, the following nuclides are three isotopes of carbon:
l 12

6C (six protons, six neutrons)
l 13

6C (six protons, seven neutrons)
l 14

6C (six protons, eight neutrons).

Samples of elements are often mixtures of isotopes. Isotopes cannot be separated by chemical 
means. Separation can only be achieved by processes that depend on the difference in masses of 
the isotopes, for example the diffusion rate of gaseous compounds.

The notation for describing nuclides can also be applied to the nucleons. For example, a proton 
can be written as 11p and a neutron as 10n. An electron's charge is −1 compared to the +1 charge on 
a proton, so an electron can be represented by 0

–1e, remembering that the mass (number) of the 
electron is effectively zero compared to the proton and neutron.

 ◆ Isotope One of two or 
more atoms of the same 
element with different 
numbers of neutrons (and 
therefore different masses). 
A radioisotope is unstable 
and will emit radiation.

	■ Figure E1.11 The three 
isotopes of hydrogen

 ◆ Diffusion Random 
movement of particles 
from a place of high 
concentration to places of 
lower concentration.
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A certain element has the proton number 17. 
a Research which element this is. 
b Suggest the nucleon numbers of two possible isotopes of this element.
c Chemists may say that the atomic mass (weight) of this element is 35.5.
 Explain what this number represents.

Answer
a Chlorine
b Chlorine has a large number of isotopes, each with a different nucleon number. We 

know that the number of neutrons is approximately equal to the number of protons, 
so A = 33, 34, 35, 36, 37 and so on are all reasonable guesses. (In fact, the two most 
common are chlorine-35 and chlorine-37.)

c 35.5 represents the average number of a large number of nucleons in a sample of 
chlorine (with a mixture of isotopes).

WORKED EXAMPLE E1.2

6 Explain the differences between an atom, a nuclide and 
an isotope.

7 The nuclides 129
53I, 137

55Cs and 90
38Sr were all formed during 

atomic weapons testing more than 40 years ago. State the 
number of neutrons, protons and electrons in the atoms of 
these nuclides.

8 State the electric charge of the nucleus 4
2He.

9 The number of electrons, protons and neutrons in an ion 
of sulfur, S, are equal to 18, 16 and 16, respectively.

 What is the correct nuclide symbol for this sulfur ion?

10 State the number of nucleons in one carbon-13 atom, 13
6C.

11 Chlorine, Cl, is an element that has 17 protons in its 
nucleus. The two most common isotopes of chlorine 
are chlorine-35 and chlorine-37. Write down the nuclide 
symbols for these two isotopes. 

12 U-238 and U-235 are the two most common isotopes 
found in uranium ore. The more massive isotope has 
146 neutrons in its nucleus. 
a Write down the nuclide symbols for these 

two isotopes. 
b Explain why it is difficult to separate these isotopes 

from each other.

Energy levels within atoms

SYLLABUS CONTENT

 Emission and absorption spectra provide evidence for discrete atomic energy levels.
 Emission and absorption spectra provide information on the chemical composition.

The total energy of an atom, such as the nitrogen atom represented in Figure E1.9, may be 
considered to be the sum of the kinetic energies of the electrons plus the electric potential energy 
of the system of negatively charged electrons moving around the positively charged nucleus 
(assumed to be stationary). Energies within the nucleus are for another discussion and they are not 
included in this topic.

Comparing this simplified model of an atom to a gravitational model of satellites orbiting a planet 
(Topic D.1), we define our zero of electric potential energy in the same way: at infinity.
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The energies of electrons within atoms are given negative values because we would have to 
supply energy to remove them from the atom (to infinity), where they would then be considered 
to have zero electric potential energy.

The orbiting electrons model of an atom has its uses, but is a long way from the whole truth, as 
we shall explain. Most significantly, orbiting satellites can, in principle, orbit at any height, with a 
continuous range of possible energies, but electron energies are very different: they can only have 
one of a range of very precise values. That is, their possible energies are discrete, quantized. We 
refer to the possible energies as atomic energy levels.

Figure E1.12 shows the simplest example: possible energy levels (of an electron) within the 
simplest atom, hydrogen. These levels will be discussed in detail later.

zero

ground state

–0.061 × 10–18
 J 

–0.086 × 10–18
 J

–0.136 × 10–18
 J 

–0.24 × 10–18
 J 

–0.54 × 10–18
 J 

–0.38 eV
–0.54 eV
–0.85 eV
–1.51 eV

–3.39 eV

–2.18 × 10–18 J –13.6 eV

energy

The following points should be noted about this important diagram:
l The energy levels are drawn to scale vertically, but the shape of this diagram has no 

physical meaning.
l The ground state is the lowest possible energy level. An electron in the ground state of any 

atom is the most difficult to remove. Atoms are usually in their ground states.
l All energies are negative (as explained above).
l The highest energy level shown is equivalent to removing the electron from the atom (to 

infinity, where it would then have zero energy – if it were not moving). That is, the ionization 
energy of hydrogen atoms is 13.6 eV (2.18 × 10−18 J).

l The energy levels have been given in both joules and electronvolts. Electron volts are widely 
used for atomic-scale energies.

13 Explain what it means if we say that the (first) ionization energy of an atom is 4.0 × 10−18 J.

14 Show that an energy of −0.136 × 10−18 J is equivalent to −0.85 eV (as shown in Figure E1.12).

15 110 eV is required to ionize an atom in its ground state. The four lowest energy levels above the 
ground state are −70 eV, −40 eV, −20 eV and −10 eV. 
a Draw an energy level diagram for this atom.
b  Determine the number of different transitions possible between these five levels.

We need to explain how physicists discovered that atoms had discrete energy levels. The evidence 
came from examining in detail the light that is emitted from (or absorbed by) atoms.

 ◆ Atomic energy level 
One of a series of possible 
discrete (separate) energy 
levels of an electron within 
an atom.

 ◆ Ground state The 
lowest energy state of an 
atom / electron (or nucleus).

 ◆ Ionization energy 
Amount of energy needed 
to remove an electron from 
an atom or molecule. 

	■ Figure E1.12 The energy 
levels of the hydrogen atom

Top tip!
A reminder: 1 eV 
(electronvolt) is the 
amount of energy 
transferred when unit 
charge e is accelerated, 
or decelerated, by a 
potential difference 
of one volt. (W = qV; 
1 eV = 1.6 × 10−19 J) 
The electronvolt is a 
common unit of energy 
used throughout atomic 
physics, not just for 
accelerated charges.
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	■ Evidence for energy levels within atoms
Emission and absorption spectra

Light is electromagnetic radiation that has been emitted from atoms. We can learn a lot about the 
energy inside atoms by examining the radiation (spectra) that atoms emit. 

When elements (in the form of gases) are excited – given enough energy (by heating, or by an 
electrical current at high voltage), the spectra of the light that they emit are seen as a series of 
bright lines on black backgrounds– called line spectra. See Figure E1.13. Each line corresponds 
to a precise frequency. (In this Figure, a prism has been used to disperse the light. Alternatively, a 
diffraction grating could be used, as discussed in Topic C.3 for HL students.)

excited
sample

prism

prism

white light
source

absorbing
gas

film or
detector emission spectrum

increasing frequency

absorption spectrum

increasing frequency

	■ Figure E1.13 Emission and absorption spectra of the same element

When a continuous spectrum passes through a gas, the atoms in the gas will absorb the same 
frequencies as they would emit when given energy. This results in a spectrum with black 
absorption lines, also as seen in Figure E1.13 (lower diagram.) The atoms re-emit the energy, but 
in random directions.

Each line on an emission spectrum is explained by electrons moving to a lower energy level 
within the atom. Each line on an absorption spectrum is explained by electrons moving to a 
higher energy level within the atom.

Since the energy levels of atoms of different elements are different, emission and absorption 
spectra can be used to identify the elements involved.

 Inquiry 2: Collecting and processing data

Collecting data

The study of spectra is called (optical) 
spectroscopy, and instruments used to 
measure the wavelengths of spectra are 
called spectrometers (see Figure E1.14).

Ask your teacher, or otherwise find out, how 
a spectrometer is used to measure 
wavelengths of line spectra. Identify what 
precautions and methods must be taken to 
ensure accurate readings. 	■ Figure E1.14 A spectrometer

 ◆ Excitation The addition 
of energy to a particle, 
changing it from its ground 
state to an excited state. 

 ◆ Emission spectrum 
Line spectrum associated 
with the emission of 
electromagnetic radiation 
by atoms, resulting from 
electron transitions from 
higher to lower energy 
states.

 ◆ Absorption spectrum 
A series of dark lines 
across a continuous 
spectrum produced when 
white light passes through 
a gas at low pressure.

LINKING QUESTION
l How can emission 

spectra allow for the 
properties of stars to 
be deduced?

This question links 
to understandings in 
Topic E.5.
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	■ Photons

SYLLABUS CONTENT

 Photons are emitted and absorbed during atomic transitions.
 The frequency of the photon released during an atomic translation depends on the difference in 

energy level as given by: E = hf.

The emission, transmission and absorption of light are not continuous processes. They are a 
very large number of separate events.

When an (excited) atom moves to a lower energy level, it emits an amount of energy equivalent 
to the difference in energy levels. Figure E1.15 shows a simplified example: an atom with four 
different energy levels that could have six possible energy transitions between energy levels.

E4

E3

E2

E1, ground state

If an atom receives electromagnetic energy equal to the difference between its energy level and a 
higher level, it can move to the higher level when the energy is absorbed. Typically, the energy is 
then quickly re-emitted as the atom returns to a lower energy level.

The ‘bundles’ of emitted electromagnetic energy are called photons. More generally, the term 
quanta (singular: quantum) is used to describe the smallest possible quantity of any entity that 
can only have discrete values. We can say that light is quantized.

The energy, E, carried by one photon of electromagnetic radiation depends only on its 
frequency, f, as follows:

E = hf

h is a very important fundamental constant that controls the properties of 
electromagnetic radiations.

h is called Planck’s constant. It has a value of 6.63 × 10−34 Js.

Since we know from Topic C.2 that c = fλ, this equation is often rewritten as E = 
hc
λ

.

(It is often convenient to know that hc = 1.99 × 10–25 Jm = 1.24 × 10–6 eV m)

 ◆ Transition (between 
energy levels) A photon 
is emitted when an atom 
(or nucleus) makes a 
transition to a lower energy 
level. The energy of the 
photon is equal to the 
difference in energy of the 
levels involved.

 ◆ Photon A quantum of 
electromagnetic radiation, 
with an energy given by 
E = hf. 

 ◆ Quantum The minimum 
amount of a physical 
quantity that is quantized. 
Plural: quanta..

 ◆ Planck’s constant, h, 
Fundamental constant of 
quantum physics which 
connects the energy and 
frequency of a photon. 

	■ Figure E1.15 Energy 
transitions between four 
energy levels in an atom

DB

DB

DB
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Nature of science: Measurement

Fundamental constants

Fundamental constants are the numbers that appear in the equations physicists use to describe the 
properties of force, mass and energy in the Universe around us (as in, for example, h in E = hf ). They 
are believed to have exactly the same value at all places and for all time. Fundamental constants are 
determined experimentally and are not theoretical.

If any of the values of these constants were different, then the Universe would be very different.

In the IB Physics course, the list of fundamental constants used includes:

l gravitational constant, G

l speed of electromagnetic radiation in free space, c

l electric permittivity of free space, ε0

l magnetic permeability of free space, μ0 (connected to ε0 and c)

l Planck's constant, h

l elementary charge, e

Calculate the energy carried by one photon 
of microwaves of wavelength 10 cm (as 
might be used in a mobile phone): 
a in J
b in eV.

Answer

a E = 
hc
λ  

= 
((6.63 × 10–34) × (3.00 × 108))

0.10  
E = 2.0 × 10–24 J

b 
(1.989 × 10–24)
(1.60 × 10–19)  

 = 1.3 × 10−5 eV

WORKED EXAMPLE E1.3

Figure E1.16 shows the visible emission line spectrum of hydrogen.

Hydrogen
spectrum

410.3 nm486.3 nm656.5 nm
434.2 nm

Taking one line as an example: 434.2 nm

We can use E = 
hc
λ

 to determine the energy of a photon with this wavelength:

E = 
hc
λ  

= 
((6.63 × 10–34) × (3.00 × 108))

(434.2 × 10–9)  
= 4.58 × 10−19 J (equal to 2.86 eV)

Referring back to Figure E1.12, we can see that this amount of energy is equivalent to the 
difference between the energy levels of −0.54 eV and −3.39 eV.

Here, we are using one line of the hydrogen spectrum as an example but, similarly, all spectral 
lines can be directly related to specific transitions between the discrete energy levels of the atoms 
of different elements. In practice, the reverse is also true:

spectral lines were used to determine atomic energy levels.

	■ Figure E1.16 
Lines on the 
hydrogen spectrum

Common 
mistake
In examination 
questions when you are 
asked to show that a 
given value is valid, you 
should show the result of 
your calculation to more 
significant figures than 
given in the question.
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a Show that the frequency of a photon emitted by a 
transition in the hydrogen atom between its two lowest 
energy levels is approximately 2 × 1015 Hz. 

b State in which part of the electromagnetic spectrum 
this radiation occurs.

Answer
a Consider Figure E1.12. The transition is from −0.54 × 

10−18 J down to −2.18 × 10−18 J = –1.64 × 10−18 J
 E = hf  

1.64 × 10 = 6.63 × 10−34 × f
 f = 2.5 × 1015 Hz
b This frequency is in the ultraviolet part of the spectrum.

WORKED EXAMPLE E1.4

16 a Show that when an electron in an energy level of 
−1.36 × 10−18 J moved to a level of −0.74 × 10−18 J, a 
photon of energy approximately 4 eV was involved. 

b Was the photon emitted or absorbed?

17 a Determine the frequency of electromagnetic radiation 
which has photons of energy 1.0 × 105 eV. 

b State the name we give to that kind of radiation.

18 a A microwave oven uses electromagnetic photons 
of energy 1.6 × 10−24 J. What is the wavelength of 
this radiation?

b  Use the internet to find out why this wavelength 
is used.

19 One of the electromagnetic frequencies absorbed by the 
greenhouse gas carbon dioxide is 1.4 × 1014 Hz. 
a Calculate how much energy is carried by the 

absorbed photons.
b In what part of the electromagnetic spectrum is 

this radiation?

20 A particular visible line in the spectrum of oxygen has a 
wavelength of 5.13 × 10−7 m. Determine the energy (eV) 
transferred by one photon of this radiation.

21 Light has a typical wavelength of 5 × 10−7 m, and X-rays 
have a typical wavelength of 5 × 10−11 m. 
a Draw a small square of sides 2 mm to represent the 

energy carried by a light photon. 
b Assuming that photon energy is represented by the 

area, draw another square to represent the energy 
carried by an X-ray photon. 

c Suggest why X-rays are more dangerous than light.

22 A light bulb emits light of power 7.0 W. Estimate the 
number of photons emitted every second.

23 An atom has six energy levels. What is the maximum 
possible number of transitions between these levels?

24 Consider Figure E1.17, which shows some of the energy 
levels in a mercury atom.

ground state

Energy levels of mercury

ionized
0.00

−1.59
−1.60

−2.51
−2.71

−5.55
−5.77

−10.44 eV

−4.98

−3.74

    

	■ Figure E1.17 
Some of the energy 
levels of mercury

a Determine the wavelength of radiation emitted by the 
transition shown. 

b State in which part of the electromagnetic spectrum 
this radiation occurs. 

c When radiation of frequency 1.18 × 1015 Hz passes 
through cool mercury vapour it is absorbed. Identify 
the transition involved in this process. 

d Determine the longest wavelength of radiation that could 
be emitted by a transition between the levels shown.

25 When the spectrum emitted by the Sun is observed 
closely using a spectrometer, by looking at a white surface 
– not the Sun directly, it is found that light of certain 
frequencies is missing and, in their place, are dark lines. 
a Explain how the cooler outer gaseous atmosphere 

of the Sun is responsible for the absence of 
these frequencies. 

b Suggest how an analysis of the solar absorption 
spectrum could be used to determine which elements 
are present in the Sun’s atmosphere.
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A mathematical understanding of the 
Geiger–Marsden–Rutherford experiment

SYLLABUS CONTENT

 The distance of closest approach in head-on scattering experiments.
 The relationship between the radius and the nucleon number for a nucleus as given by: R = R0A

1
3 and 

the implications for nuclear densities.

Refer again to Figure E1.6. As an alpha particle approaches a positive nucleus, it loses kinetic 
energy, Ek, because it is being repelled, but the same amount of energy is transferred to electric 
potential energy, Ep, as shown in more detail in Figure E1.18.

+2e +2e
energy = Ek

α-particle
kinetic energy transferred to

electric potential energy

α-particle
stationary
(EP = Ek)

energy = EP

gold
nucleus

+79e

r

An alpha particle moving directly towards a nucleus will have lost all of its initial kinetic energy 
at the moment it is stationary, before returning back in the opposite direction. Then, assuming that 
the gold nucleus does not gain any significant kinetic energy:

initial kinetic energy of the alpha particle = the maximum electric potential energy momentarily 
stored in the system when the alpha particle is at its closest to the nucleus, with a separation of r. 
(Ep = kqαqn/r)

Determine the closest distance from a gold nucleus that is possible for an alpha particle 
with kinetic energy of 5.0 MeV. Charge on alpha particle = (2 × 1.60 × 10−19 C), charge on 
gold nucleus = (79 × 1.60 × 10−19 C)

Answer

Kinetic energy of alpha particle, Ek = k
qαqn 

r

(5.0 × 106) × (1.60 × 10−19) = 
((8.99 × 109) × (2 × 1.60 × 10–19) × (79 × 1.60 × 10–19))

r  

r = 4.5 × 10−14 m

WORKED EXAMPLE E1.5

Considering that the alpha particle has a very large amount of kinetic energy (for its small mass) 
and would therefore be expected to be able to get close to a nucleus, this type of calculation was 
the first to provide some evidence for the possible size of a nucleus. However, a gold nucleus is 
smaller than the value shown above. (The actual radius of a gold nucleus is about 0.7 × 10−14 m.)

LINKING QUESTION
l How is the distance 

of closest approach 
calculated using 
conservation of 
energy?

This question links 
to understandings in 
Topics A.3 and D.2.

	■ Figure E1.18 As an alpha 
particle approaches a positive 
nucleus, energy is transferred 
to electric potential energy, Ep
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	■ Nuclear radii
Rutherford scattering experiments (and similar) have shown that the radius, R, of any nucleus is 
proportional to the cube root of its nucleon number, A:

radius of nucleus R = R0A
1
3

This has implications for nuclear density, as seen below.

The constant R0 = 1.20 × 10−15 m is called the Fermi radius, which is the assumed  
radius of a nucleus with only one proton (A = 1).

Show that the radius of a 197
79Au (gold) 

nucleus is ‘about 7.0 × 10−15 m’.
Answer
R = RoA

⅓ = (1.20 ×10−15) × 197⅓ = 6.98 × 10−15 m

WORKED EXAMPLE E1.6

	■ Nuclear density
We can use ρ = m/V to estimate nuclear density. The mass of a nucleus will be approximately 
equal to Au, where u can be considered as the average mass of a nucleon, 1.661 × 10-27 kg. (u is 
called the atomic mass unit. It is explained in Topic E.3.)

ρ = 
Au

4
3 

π ( R0A
1
3)3 = 

3u
4πR0

3

Importantly, this result shows us that nuclear densities do not depend on the radius of the nucleus, 
or the number of nucleons.

The densities of all nuclei are approximately the same.

ρ = 
(3 × (1.661 × 10–27))
(4π × (1.20 × 10–15)3) = 2.3 × 1017 kg m−3

This is an extremely large density! If the electrons in an atom are considered to have negligible 
mass compared to the nucleons, and the radius of an atom is typically 105 times larger than a 
nucleus, then an order of magnitude density for atoms would be:

1017

(105)3 ≈ 102 kg m−3

which is comparable to everyday observations of the density of matter, as expected. The only 
macroscopic objects with densities comparable to nuclear densities are collapsed massive stars, 
known as neutron stars and black holes.

26 Determine the closest distance that an alpha particle of 
energy 1.37 MeV could approach to:
a a gold nucleus 
b a copper nucleus.

 Copper has a proton number of 29.

27 An alpha particle nearly collides with a gold nucleus and 
returns along the same path.

 Sketch a graph showing how the electric potential energy 
and kinetic energy possessed by the alpha particle vary 

with the distance of the alpha particle from the gold 
nucleus (assumed to be stationary).

28 a Calculate the velocity at which an alpha particle 
(mass of 6.64 × 10−27 kg) should travel directly 
towards the nucleus of a gold atom (charge +79e) in 
order to get within 2.7 × 10−14 m of it. Assume the 
gold nucleus remains stationary. 

b Calculate the energy (MeV) of an alpha particle with 
this velocity.

DB

DB

 ◆ Nuclear radius, R R is 
proportional to the cube 
root of the nucleon number. 
R = R0A

1
3 , where R0 is 

called the Fermi radius.
 ◆ Rutherford scattering 

Sometimes called Coulomb 
scattering. The scattering 
of alpha particles by 
nuclei, which can only be 
explained by the action of 
an inverse square law of 
electric repulsion. When 
high-energy particles are 
used they might enter the 
nucleus, so that strong 
nuclear forces are also 
involved and then the 
scattering will no longer 
follow the same pattern.

 ◆ Nuclear density All 
nuclear densities are 
similar in magnitude and 
are extremely large.
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29 Explain why alpha particles were used in the Geiger–
Marsden–Rutherford experiments.

30 Discuss whether it is reasonable to assume that when an 
alpha particle approaches a gold atom in thin foil:
a the repulsive force from the alpha particle is the only 

force acting on the gold nucleus
b the gold atom remains stationary.

31 a Estimate the radius of:
i a gold nucleus (A = 197)
ii an oxygen nucleus (A = 16). 

b The measured radius of a gold-197 nucleus is 
6.87 × 10−15 m.

 How does this compare with the value calculated in 
part a?

32 Show that the largest possible nuclear radius (of a 
naturally occurring element) is only about six times 
the smallest. 

33 Gold is considered to be a dense element. Estimate what 
fraction of the volume of a gold ring is actually occupied 
by the subatomic particles. Assume that the radius of a 
gold atom is 1.5 × 10–10 m. State any other assumptions 
that you make.

34 The mass of the Sun is 2.0 × 1030 kg and its radius is  
7.0 × 108 m.  
a  Estimate the radius of a neutron star that has twice 

the mass of the Sun. Assume that a neutron star has 
the same density as a nucleus. 

b  Compare your answer to the radius of the Sun.

	■ The strong nuclear force

SYLLABUS CONTENT

 Deviations from Rutherford scattering at high energies.

Up to this point, we have assumed that the only force acting between the alpha particle and a 
nucleus is a repulsive electric force between positive charges. Rutherford scattering is sometimes 
called Coulomb scattering because Coulomb’s law can be used to describe it.

However, there is another field force acting between individual nucleons when they are close 
together: the strong nuclear force. This is the attractive force that overcomes the repulsive forces 
between positively charged protons as mentioned earlier in this topic.

A very energetic alpha particle can get close enough to the nucleons that it is 
affected by the attractive strong nuclear force as well as the repulsive electric force.

If this happens, the scattering can no longer be explained simply by Coulomb’s law.

Figure E1.19 approximately compares the strong nuclear force to the electric force 
between two protons. The electric repulsion force dominates for separations greater 
than about 3 × 10−15 m, whereas the strong nuclear force is ‘short range’ and only 
becomes significant for separations less than about 1.5 × 10−15 m. At that separation, 
the strong force attracts the protons together, but if they get much closer the force 
becomes repulsive.

The Bohr model of the hydrogen atom

SYLLABUS CONTENT

 The discrete energy levels in the Bohr model for hydrogen as given by: E = 
–13.6

n2  eV.

 The existence of quantized energy and orbits arise from the quantization of angular momentum in the 

Bohr model for hydrogen as given by: mvr = 
nh
2π.
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	■ Figure E1.19 How the strong nuclear force 
varies with distance between two protons
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The hydrogen atom is the simplest atom and, as such, it was at the centre of attention when 
physicists were beginning to understand atomic structure. The ideas in this section can be 
expanded to include other atoms, but we will restrict discussion to hydrogen.

Figure E1.20 shows the energy levels of hydrogen again, this time with all the possible energy 
transitions, arranged into three groups.

All the possible levels are shown and they are numbered, beginning with the lowest level, the 
ground state as n = 1. n is called the principal quantum number.

The energy levels in hydrogen atoms get closer together as n increases. This enables the possible 
transitions to be grouped as shown. All transitions down to the ground state (n = 1) are larger 
than all transitions down to the level n = 2, but note that Figure E1.20 is not drawn to scale. All 
transitions down to level n = 2 are larger than all transitions down to the level n = 3. (You do not 
need to remember the names of these three series. The transitions of the Lyman series all produce 
photons of ultraviolet radiation, the transitions of the Balmer series all produce photons of visible 
light, the transitions of the Paschen series all produce photons of infrared radiation.)

It is easily confirmed that all the discrete energy levels of hydrogen can be predicted by:

energy levels of hydrogen E = 
–13.6

n2  eV (electronvolts)

n = �

Lyman
series

Balmer
series

Paschen
series

n = 6
n = 5

n = 4

n = 3

n = 2

n = 1

emission of a photon when an
electron falls to a lower energy level

produces an emission spectrum

n = �

n = 6
n = 5

n = 4

n = 3

n = 2

n = 1

absorption of a photon when an
electron jumps to a higher energy level

produces an absorption spectrum

 

n = �

Lyman
series

Balmer
series

Paschen
series

n = 6
n = 5

n = 4

n = 3

n = 2

n = 1

emission of a photon when an
electron falls to a lower energy level

produces an emission spectrum

n = �

n = 6
n = 5

n = 4

n = 3

n = 2

n = 1

absorption of a photon when an
electron jumps to a higher energy level

produces an absorption spectrum

	■ Figure E1.20 The Lyman, Balmer and Paschen series of the hydrogen atom

 ◆ Energy levels of 
hydrogen Because 
hydrogen is the atom with 
the simplest structure, 
scientists were very 
interested in determining 
the energy levels of the 
electron within the atom by 
examining hydrogen’s line 
spectrum. They were able 
to show that the energy 
levels could be predicted 
by the empirical equation  
E = 13.6n2.

 ◆ Principal quantum 
number, n Number used to 
describe the energy level of 
an atom. The lowest energy 
level is called the ground 
state, with n = 1, the next 
level has n = 2, and so on.

 ◆ Bohr model A theory 
of atomic structure that 
explains the spectrum of 
hydrogen atoms. 

DB
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Calculate a value for the fifth energy level of the hydrogen atom (n = 5) in:
a electronvolts b joules.

Answer

a E = 
–13.6

n2  eV = 
–13.6

52  = –0.544 eV

b −0.544 × 1.60 × 10−19 = −8.70 × 10−20 J

WORKED EXAMPLE E1.7

The equation highlighted above was empirical, not based on any theory, when it was first 
discovered by the Danish physicist Neils Bohr (Figure E1.21). Of course, scientists wanted an 
explanation of why atoms had discrete energy levels and why the energy levels of hydrogen were 
predicted by a simple equation.

The Bohr model of the atom, first proposed in 1913, has electrons orbiting around the nucleus due 
to the centripetal force provided by electric attraction between opposite charges. But the essential 
feature of the Bohr model was that it restricted the orbits to only certain distances from the 
nucleus and, most importantly, because they remained in that orbit, they did not emit 
electromagnetic radiation, lose energy and spiral inwards. It was known that accelerated charges 
emit electromagnetic radiation, remembering that moving in a circle involves a 
centripetal acceleration.

In the Bohr model, each electron orbit had a definite and precise 
energy, and intermediate energies were not possible. Photons were 
emitted or absorbed when electrons moved between these energy 
levels. See Figure E1.22, in which the radii of the orbits are not drawn 
to scale.

Bohr showed that the quantized radii, r, of possible orbits of an electron 
of mass, m, moving with speed, v, in a hydrogen atom can be calculated 
from the equation:

mvr = 
nh
2π

 

The product of linear momentum and radius, mvr, is the angular 
momentum, L, of the electron about the nucleus (see Topic A.4). 
h, as before, is Planck's constant.

Calculate three possible values for the angular momentum of an electron in a hydrogen atom.

Answer

Angular momentum, L = 
nh
2π

For n = 1, L = 1 × 
(6.63 × 10–34)

(2 × 3.14)  = 1.06 × 10−34 kg m2 s−1

For n = 2, L = 2.11 × 10–34 kg m2 s−1

For n = 3, L = 3.17 × 10–34 kg m2 s−1

WORKED EXAMPLE E1.8

	■ Figure E1.21 Niels Bohr

Balmer series

Paschen series

nucleus

Lyman series

n = 6n = 5

n = 1

n = 2

n = 3

n = 4

not to scale

	■ Figure E1.22 The Bohr model explains the spectrum of 
Hydrogen using possible orbits of different radii for the electron
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As the following mathematics shows, the Bohr model combined the classical physics of circular 
motion and the force of electric attraction with quantum concepts in order to predict the radii of 
orbits and the energy levels in hydrogen atoms.

Equating the centripetal force on the electron to the electric attraction between it and the proton 
in a hydrogen atom, remembering that both the electron and the proton have charges of the same 
magnitude, e, we get:

mv2

r
 = 

kee
r2

(the signs of the charges are not relevant here); which leads to:

v =   (ke2

mr)
Putting this expression for v in the equation for angular momentum (highlighted above), we get:

  ke2mr = 
nh
2π

and rearranging enables us to obtain an expression for r (which need not be remembered):

r = 
n2h2

4π2ke2m
 

Putting in various values for n enables us to correctly predict the radii of possible electron orbits 
within the hydrogen atom.

Determine a value for the radius of the electron’s orbit when the hydrogen atom is in its 
ground state (n = 1). 

Answer

r = 
n2h2

4π2ke2m = 
(12 × (6.63 × 10–34)2)

(4 × π2 × (8.99 × 109) × (1.60 × 10–19)2 × (9.110 × 10–31))
 = 5.3 × 10–11 m

WORKED EXAMPLE E1.9

Then, using equations for electrical potential energy and kinetic energy, the total energy 
associated with the ground state of the atom can be calculated as follows.

The total energy of the hydrogen–electron system, a hydrogen atom, can be determined as follows:

Etotal = Ek of electron + Ek of proton + electric potential energy

assuming that the electron (charge −e, mass m) is orbiting at speed v in a circular orbit of radius r 
around a proton (charge +e) which is effectively stationary:

total energy of a hydrogen atom, Etotal = 
1
2
mv2 + (– 

ke2

r ) 
But, we know that the magnitude of the centripetal force:

mv2

r
 = 

ke2

r2  (see above), or mv2 = 
ke2

r

Top tip!
The calculation on the 
right has determined 
a value for the ground 
state energy level of 
the hydrogen atom. It 
has clearly involved the 
electric potential energy 
of the electron–proton 
system. Nevertheless, it 
is common to refer to the 
energy levels of electrons 
within hydrogen (and 
other) atoms. This is 
understandable because 
we commonly visualize 
electrons moving 
between orbits when 
an atom receives or 
emits energy.
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Leading to:

Etotal = 
1
2 

ke2

r
 + (– 

ke2

r ) = – 
1
2 

ke2

r
For the ground state, r = 5.3 × 10−11 m (as above), so that:

Etotal = – 
1
2 

ke2

r
 = – 2.2 × 10−18 J

So, Bohr’s quantization of angular momentum equation leads directly to a correct calculation of 
the hydrogen atom ground state (and other energy levels).

35 Consider Figure E1.20.
a Calculate the lowest frequency of the Balmer series. 
b In which part of the electromagnetic spectrum is 

this radiation?

36 Determine the energy (J) of the level with n = 8 in the 
hydrogen atom.

37 Determine the angular momentum of an electron in a 
hydrogen atom if it has a principal quantum number 
of four:
a in terms of h/π b in SI units.

38 Calculate the radius of the first electron orbit above the 
ground state of a hydrogen atom.

39 Determine the total energy of a hydrogen atom if its 
electron is in the energy level which has a principal 
quantum number of three.

Although Bohr’s quantized model of the atom was a big step forward in understanding the 
structure of the atom, and it was very accurate in predicting the energy levels of one-electron 
atoms such as a hydrogen atom or a helium ion, it was less successful with atoms containing more 
electrons. Furthermore, the reasons for the existence of energy levels were still not understood. 
The Bohr model still remains an important initial step for students learning about quantization in 
atoms, but the discovery of the wave properties of electrons (Topic E.2) quickly led to dramatic 
changes in physicists’ understanding of the atom, but there are not included in the IB course.

Quantum mechanics is the name given to the important branch of physics that deals 
mathematically with events on the atomic and subatomic scales that involve quantities that can 
only have discrete (quantized) values. In the quantum world the laws of classical physics are often 
of little use; trying to apply knowledge and intuition gained from observing the macroscopic world 
around us often only leads to confusion.

LINKING QUESTION
l Under what 

circumstances does 
the Bohr model fail? 
(NOS)

 ◆ Quantum mechanics 
The mathematical aspects 
of quantum physics 

TH
E IB LEARNER PRO

FILE
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E.2 Quantum physics

• How can light be used to create an electric current?
• What is meant by wave–particle duality?

Guiding questions

Nature of science: Theories

What is quantum physics?

A quantum is the general term used to describe the minimum amount of any physical quantity that can 
only exist in discrete quantities (which are all basic multiples of one quantum).

On the subatomic scale, we have seen that charge is quantized, and in Topic E.1 we discussed the 
quantization of atomic energy levels, angular momentum and electromagnetic radiation. In a more 
general sense, matter itself could be considered as quantized because it is made of discrete particles, 
rather than being continuous.

Quantum ideas are so fundamental to understanding the behaviour of subatomic particles and waves 
(which, of course, also affects everything in our macroscopic world), that this branch of science 
has become generally known as quantum physics, and its detailed mathematic treatment is called 
quantum mechanics.

A famous quote from Neils Bohr: ‘Everything that we call real is made of things that cannot be regarded 
as real. If quantum mechanics has not profoundly shocked you, you haven’t understood it yet.’

The photoelectric effect

SYLLABUS CONTENT

 The photoelectric effect as evidence of the particle nature of light.
 Photons of a certain frequency, known as the threshold frequency, are required to release 

photoelectrons from the metal.
 Einstein’s explanation using the work function and the maximum kinetic energy of the photoelectrons 

as given by: Emax = hf – Φ, where Φ is the work function of the metal.

The photoelectric effect (described below) was first discovered by Hertz in 1887. Eighteen 
years later, in 1905, Einstein expanded ideas about quantized energy (E = hf ) proposed by Max 
Planck five years earlier, to propose that light and other electromagnetic radiation consisted of 
individual bundles of energy, thereby explaining the photoelectric effect. These events marked the 
beginnings of quantum physics. We will start by giving details of the photoelectric effect.

When electromagnetic radiation is directed onto a clean surface of some metals, electrons 
may be ejected. This is called the photoelectric effect and the ejected electrons are known as 
photoelectrons. The principle is shown in Figure E2.1. The importance of this effect lies in 
understanding why photoelectrons are emitted under some circumstances, but not others.

 ◆ Photoelectric effect 
Ejection of electrons from 
a substance by incident 
electromagnetic radiation.

 ◆ Photoelectrons 
Electrons ejected in the 
process of the photoelectric 
effect.
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Under suitable circumstances, the photoelectric effect can occur with visible light, X-rays or 
gamma rays, but it is most often demonstrated with ultraviolet radiation and zinc. A possible 
arrangement is shown in Figure E2.2.

Ultraviolet radiation is shone onto a zinc plate attached to a coulombmeter (an instrument which 
measures very small quantities of charge). The ultraviolet radiation causes the zinc plate to 
become positively charged because some negatively charged electrons on the (previously neutral) 
zinc plate have gained enough kinetic energy to escape from the surface.

photoelectrons

clean zinc plate

ultraviolet
radiation

	■ Figure E2.1 The photoelectric effect – a stream of photoelectrons 
is emitted from a metal surface illuminated with ultraviolet radiation

Investigations of the photoelectric effect show a number of 
important observations.
l If the intensity of the radiation is increased, the charge on the 

plate increases more quickly because more photoelectrons 
are being released every second.

l There is no time delay between the radiation reaching the metal 
surface and the emission of photoelectrons. The release of 
photoelectrons from the surface appears to be instantaneous.

l The photoelectric effect can only occur if the frequency of 
the radiation is above a certain minimum value. The lowest 
frequency for emission is called the threshold frequency, f0. 
(Alternatively, we could say that there is maximum 
wavelength above which the effect will not occur.) If the 
frequency used is lower than the threshold frequency, the 
effect will not occur even if the intensity of the radiation 
is greatly increased. The threshold frequency of zinc, for 
example, is 1.04 × 1015 Hz, which is in the ultraviolet part of 
the spectrum. Visible light will not release photoelectrons 
from zinc (or other common metals).

l For a given incident frequency, the photoelectric effect 
occurs with some metals but not with others. This is because 
different metals have different threshold frequencies.

l The photoelectrons emitted from a particular metal by 
monochromatic radiation of a known frequency have a range 
of kinetic energies, up to a well-defined maximum.

ultraviolet
radiation

negatively charged
photoelectrons

coulombmeter

zinc plate
becomes
positively
charged

	■ Figure E2.2 Demonstration of the photoelectric effect

 ◆ Threshold frequency, f0 The minimum frequency of a photon 
that can eject a photoelectron from the surface of a metal.

	■ Explaining the photoelectric effect: the Einstein model
If we tried to use the wave theory of radiation to make predictions about the photoelectric effect, 
we would expect the following. (1) Radiation of any frequency will cause the photoelectric effect 
if the intensity is made high enough. (2) There may be a delay before the effect begins because it 
needs time for enough energy to be provided (similar to heating water until it boils).

These predictions are wrong, so an alternative theory is needed. Einstein realized that we cannot 
explain the photoelectric effect without first understanding the quantum nature of radiation.

The Einstein model explains the photoelectric effect using the concept of photons.

When a photon in the incident radiation interacts with an electron in the metal surface, it transfers 
all of its energy to that electron. It should be stressed that a single photon interacts with a single 
electron and that this transfer of energy is instantaneous; there is no need to wait for a build-up 
of energy. If a photoelectric effect is occurring, increasing the intensity of the radiation only 
increases the number of photons and photoelectrons, not their individual energies.
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Einstein realized that some of the energy carried by the photon was used to overcome the 
attractive forces that normally keep an electron within the metal surface. The remaining energy 
is transferred to the kinetic energy of the newly released photoelectron. Using the principle of 
conservation of energy, we can write:

energy carried by photon  
= work done in removing the electron from the surface + kinetic energy of photoelectron

But the energy required to remove different electrons from the same surface is not always the 
same. It will vary with the position of the electron with respect to the surface. Electrons closer to 
the surface will require less energy to remove them. However:

there is a well-defined minimum amount of energy needed to remove an electron from the 
surface of any particular metal and this is called the work function, Φ, of the metal.

Different metals have different values for their work functions. For example, the work function of 
a clean zinc surface is 4.3 eV. This means that at least 4.3 eV (= 6.9 × 10−19 J) of work must be done 
to remove an electron from zinc.
To understand the photoelectric effect, we need to compare the photon’s energy, hf, to the work 
function, Φ, of the metal:

If hf < Φ

If an incident photon has less energy than the work function of the metal, the photoelectric effect 
cannot occur. Radiation that may cause the photoelectric effect with one metal may not have the 
same effect with another (which has a different work function).

If hf (= hf0) = Φ

At the threshold frequency, f0, the incident photon has exactly the same energy as the work 
function of the metal. We may assume that the photoelectric effect occurs, but any released 
photoelectrons will have zero kinetic energy.

If hf > Φ

If an incident photon has more energy than the work function of the metal, the photoelectric effect 
occurs and a photoelectron will be released. Photoelectrons produced by different photons (of the 
same frequency) will have a range of different kinetic energies because different amounts of work 
will have been done to release them.

 ◆ Work function, Φ 
The minimum amount of 
energy required to free an 
electron from the attraction 
of ions in a metal’s surface. 

 ◆ Photoelectric equation 
The maximum kinetic 
energy of an emitted 
photoelectron is the 
difference between the 
incident photon’s energy 
and the work function, Φ: 
Emax = hf – Φ.

It is important to consider the situation in which the minimum amount of work is done 
to remove an electron (equal to the work function):
energy carried by photon = work function + maximum kinetic energy of photoelectrons
Or in symbols: hf = Φ + Emax.
Or:

Emax = hf − Φ

This equation is often called Einstein’s photoelectric equation.
Because hf0 = Φ, we can also write this as: Emax = hf − hf0.
Figure E2.3 shows a graphical representation of how the maximum kinetic energy of 
the emitted photons varies with the frequency of the incident photons. The equation of 
the line is Emax = hf − Φ, as above.

Frequency
of incident

radiation
–φ

f0

a different metal
produces the
same gradient

M
ax

im
um

 k
in

et
ic

 e
ne

rg
y

of
 p

ho
to

el
ec

tr
on

s 
(E

m
ax

)

0

	■ Figure E2.3 Theoretical variation 
of maximum kinetic energy of 
photoelectrons with incident frequency 
(for two different metals)
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Tool 3: Mathematics

Interpret features of graphs including 
gradient, intercepts

Any straight line on an x–y graph can be represented by 
the equation y = mx + c, where m is the gradient (Δy/Δx) 
and c is the intercept on the y-axis (y = c, when x = 0). See 
Figure E2.4. The value of the intercept on the x-axis:  
x = –c/m when y = 0.

gradient m =
∆y
∆x

∆y

∆x

intercept, c

0 x

y

	■ Figure E2.4 The line y = mx + c

We can take the following measurements from graphs of the form seen in Figure E2.3:
l The gradient of the line is equal to Planck’s constant, h. The gradient will be the same for all 

circumstances because it does not depend on photon frequencies, or the metal used.
l The intercept on the frequency axis gives us the value of the threshold frequency, f0.
l A value for the work function can be determined from: when Emax = 0, Φ = hf0; or when f = 0, 

Φ = −Emax.

Radiation of wavelength 5.59 × 10−8 m was incident on a metal surface that had a work 
function of 2.70 eV. 
a Calculate the frequency of the radiation. 
b Determine how much energy is carried by one photon of the radiation. 
c Calculate the value of the work function expressed in joules. 
d Explain whether the photoelectric effect occurs under these circumstances. 
e Determine the maximum kinetic energy of the photoelectrons. 
f Calculate the threshold frequency for this metal.
g Sketch a fully labelled graph to show how the maximum kinetic energy of the 

photoelectrons would change if the frequency of the incident radiation was varied.

Answer
a f = c/λ = 

(3.00 × 108)
(5.59 × 10–8)

 = 5.37 × 1015 Hz

b E = hf = (6.63 × 10−34) × (5.37 × 1015) = 3.56 × 10−18 J
c 2.70 × (1.60 × 10−19) = 4.32 × 10−19 J
d Yes, because the energy of each photon is greater than the work function.
e Emax = hf − Φ = (3.56 × 10−18) − (4.32× 10−19) = 3.13 × 10−18 J
f Φ = hf0

 f0 = 
4.32 × 10–19

6.63 × 10–34 = 6.52 × 10−14 Hz

g The graph should be similar to Figure E2.3, with numerical values provided for 
the intercepts.

WORKED EXAMPLE E2.1
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1 Repeat Worked example E2.1 but for radiation of 
wavelength 6.11 × 10−7 m incident on a metal with a work 
function of 2.21 eV. Omit part e.

2 a Outline how Einstein used the concept of photons to 
explain the photoelectric effect. 

b Explain why a wave model of electromagnetic 
radiation is unable to explain the photoelectric effect.

3 The threshold frequency of a metal is 7.0 × 1014 Hz.
 Calculate the maximum kinetic energy of the electrons 

emitted when the frequency of the radiation incident on 
the metal is 1.0 × 1015 Hz.

4 a The longest wavelength that emits photoelectrons 
from potassium is 550 nm.

 Calculate the work function (in joules). 
b Determine the threshold wavelength for potassium. 

What is the name given to this kind of radiation? 
c State one colour of visible light that will not produce 

the photoelectric effect with potassium.

5 When electromagnetic radiation of frequency 
2.90 × 1015 Hz is incident on a metal surface, the emitted 
photoelectrons have a maximum kinetic energy of 
9.70 × 10−19 J.

 Calculate the threshold frequency of the metal.

	■ Experiments to test the Einstein model
Investigating stopping voltages (potential differences)

To test Einstein’s equation (model) for the photoelectric effect, it is necessary to determine the 
maximum kinetic energy of the photoelectrons emitted under a variety of different circumstances. 
In order to do this the kinetic energy must be transferred to another (measurable) form of energy.

The kinetic energy of the photoelectrons can be transferred to 
electrical potential energy if they are repelled by a negative voltage. 
This experiment was first performed by the American physicist 
Robert Millikan and a simplified version is shown in Figure E2.5.

Ideally monochromatic radiation should be used, but it is also possible 
to use a narrow range of frequencies such as those obtained by using 
coloured filters with white light.

When radiation is incident on a suitable emitting surface, 
photoelectrons will be released with a range of different energies, 
as explained previously. Because it is emitting negative charge, this 
surface can be described as a cathode (the direction of conventional 
current flow will be out of a cathode and around the circuit). Any 
photoelectrons that have enough kinetic energy will be able to move 
across the tube and reach the other electrode, the anode. The tube is 
evacuated (the air is removed to create a vacuum) so that the electrons 
do not collide with air molecules during their movement across the tube.

evacuated
tube

monochromatic
radiation

photoelectrons emitted from
the metal cathode

window

cathode anode

microammetervariable reverse
potential difference

V

+ –

	■ Figure E2.5 Experiment to test Einstein’s 
model of photoelectricity

The most important thing to note about this circuit is that the (variable) source of potential 
difference is connected the ‘wrong way around’. We say that it is supplying a reverse potential 
difference across the tube. This means that there is a negative voltage on the anode that will 
repel the photoelectrons. Photoelectrons moving towards the anode will have their kinetic energy 
reduced as it is transferred to electrical potential energy. (Measurements for positive voltages can 
be made by reconnecting the battery the ‘correct’ way.)
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Any flow of charge across the tube and around the circuit can be measured by 
a sensitive microammeter. When the reverse voltage on the anode is increased 
from zero, more and more photoelectrons will be prevented from reaching the 
anode and this will decrease the current. (Remember that the photoelectrons 
have a range of different energies.) Eventually the reverse potential difference 
will be large enough to stop even the most energetic of photoelectrons, and the 
current will fall to zero (Figure E2.6).

The potential difference across the tube needed to just stop all photoelectrons 
reaching it is called the stopping voltage (p.d.), Vs.

Because, by definition, potential difference = energy transferred / charge, 
after measuring Vs we can use the following equation to calculate values for 
the maximum kinetic energy of photoelectrons under a range of 
different circumstances: Emax = eVs.

For convenience, it is common to quote all energies associated with the 
photoelectric effect in electronvolts (eV). In which case, the maximum kinetic 
energy of the photoelectrons is numerically equal to the stopping voltage. That 
is, if the stopping voltage is, say, 3 V, then Emax = 3 eV.

Einstein’s equation (Emax = hf − Φ) can be rewritten as: eVs = hf − Φ.

By experimentally determining the stopping voltage for a range of different 
frequencies, the theoretical graph shown previously in Figure E2.3 can now 
be confirmed by plotting a graph from actual data, as shown in Figure E2.7.

Use Figure E2.7 to determine:
a the threshold frequency
b the work function
c a value for Planck’s constant.

Answer
a f0 can be determined from the intercept on the frequency axis: f0 = 4.8 × 1014 Hz
b from the intercept on the eVs axis: 1.9 eV
c h can be determined from the gradient (remembering to convert electronvolts to joules):

 h = 
(2.1 × 1.60 × 10–19)
((10 – 4.8) × 1014)  = 6.5 × 10−34 Js

WORKED EXAMPLE E2.2

Investigating photoelectric currents

Using apparatus similar to that shown in Figure E2.5, it is also possible to investigate 
quantitatively the effects on the photoelectric current of changing the:
l intensity
l frequency
l metal used in the cathode.

0 Potential difference
across anode and cathode

Photoelectric
current

�Vs

	■ Figure E2.6 Increasing the reverse potential 
difference decreases the photoelectric current

 ◆ Stopping voltage The 
minimum voltage required 
to reduce a photoelectric 
current to zero.
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	■ Figure E2.7 Experimental results showing 
variation of maximum energy (eVs) of 
photoelectrons with incident frequency

Common 
mistake
If two sources of 
monochromatic 
radiation have the same 
intensity, but different 
frequencies, the photons 
from the source with 
the lower frequency 
will carry less energy, 
so there must be more 
photons emitted every 
second from that source.
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Intensity
Figure E2.8 shows the photoelectric currents produced by monochromatic 
radiation of the same frequency with three different intensities.

For positive p.d.s, each of the photoelectric currents remain constant because 
the photoelectrons are reaching the anode at the same rate as they are being 
produced at the cathode, and this does not depend on the size of the positive 
voltage on the anode. Greater intensities (of the same frequency) produce 
higher photoelectric currents because there are more photons releasing more 
photoelectrons (with the same range of energies). Because the maximum kinetic 
energy of photons depends only on frequency and and work function, but not 
intensity, all these graphs have the same value for stopping voltage, Vs.

Frequency
Figure E2.9 shows the photoelectric currents produced by radiation from two 
monochromatic sources of different frequencies, A and B, incident on the 
same metal.

The individual photons in radiation A must have more energy (than B) and 
produce photoelectrons with a higher maximum kinetic energy. We know 
this because a greater reverse voltage is needed to stop the more energetic 
photoelectrons produced by A. No conclusion can be drawn from the fact that 
the current for A has been drawn higher than for B, because the intensities of 
the two radiations are not known. In the unlikely circumstances that the two 
intensities were equal, the maximum current for B would have to be higher 
than for A because the radiation from B must have more photons, because each 
photon has less energy than in A.

Metal used in the cathode
Experiments confirm that when different metals are tested using the same 
frequency, the photoelectric effect is observed with some metals but not with 
others (those metals for which their work function is higher than the energy of 
the photons).

6 Calculate the maximum kinetic energy of photoelectrons 
emitted from a metal if the stopping voltage was 2.4 V. 
Give your answer in electronvolts and in joules.

7 Make a copy of Figure E2.6 and sketch lines to show the 
results that would be obtained with:
a the same radiation, but with a metal of higher 

work function (assume that the photoelectric effect 
still occurs)

b the original metal and the same frequency of 
radiation but using radiation with a greater intensity.

8 In an experiment using monochromatic radiation of 
frequency 7.93 × 1014 Hz with a metal that had a threshold 
frequency of 6.11 × 1014 Hz, it was found that the 
stopping voltage was 0.775 V.

 Calculate a value for Planck’s constant from these results.

9 Make a copy of Figure E2.6 and sketch the results that 
would be obtained using radiation of a higher intensity 
(of the same frequency) incident on a metal that has a 
smaller work function.

10 Make a copy of Figure E2.6. Add to it a line showing 
the results that would be obtained with radiation of a 
higher frequency but with same number of photons every 
second incident on the same metal.

11 a Select five different metallic elements and then use 
the internet to research their work functions.

b Calculate the threshold frequencies of the five metals.

Potential difference
across anode and cathode

increasing
intensity

0

Photoelectric
current, I

�Vs

	■ Figure E2.8 Variation of photoelectric 
current with potential difference for radiation 
of three different intensities (same frequency)

A

B

Photoelectric
current, I

Potential difference
across anode and cathode

0VBVA

	■ Figure E2.9 Variation of photoelectric 
current with potential difference for 
radiation of two different frequencies

369917_21_IB_Physics 3rd_Edn_SEC_E_2.indd   534369917_21_IB_Physics 3rd_Edn_SEC_E_2.indd   534 04/01/2023   21:3304/01/2023   21:33



H
L O

N
LY

E.2   Quantum physics 535

Inquiry 2: Collecting and processing data

Processing data

Light emitting diodes (LEDs) can be used to determine 
an approximate value for Planck’s constant. Each LED 
emits photons of a precise frequency. The energy of each 
photon (E = hf) is transferred when an individual electron is 
accelerated by the voltage across the LED. That is, eV = hf.

If the voltage across the LED that just results in the LED 
emitting light is measured, then this equation can be used 
to determine a value for h if the frequency of the radiation 
is known. However, it is better to draw a graph.

1 Draw a voltage–frequency graph of the results shown in 
Table E2.1 and use the gradient to determine a value for 
Planck’s constant.

	■ Table E2.1

Colour Frequency / 1014 Hz Voltage / V

red 4.54 1.91

amber 5.01 2.06

yellow 5.10 2.12

green 5.37 2.21

blue 6.37 2.65

The wave nature of matter

SYLLABUS CONTENT

 Diffraction of particles as evidence of the wave nature of matter.

 The de Broglie wavelength for particles as given by: λ = 
h
p.

The fact that light and other electromagnetic waves could behave as particles (photons) raises an 
obvious question: can particles behave like waves?

In 1924 the French physicist Louis de Broglie proposed that electrons, which were thought of as 
particles, might also have a wave-like character. He later generalized his hypothesis to suggest that:

All moving particles have wave-like properties.

According to de Broglie’s hypothesis, the wavelength, λ, of a moving particle was inversely 
proportional its momentum, p, as represented by:

wavelength of a moving particle λ = 
h
p

Once again, we can see the importance of Planck’s constant, h, in predicting the size of quantum 
phenomena. The very small value of Planck’s constant shows us that wave properties of particles 
are only significant for those with tiny momenta, as Worked example E2.3 illustrates.

Nature of science: hypotheses and theories
A hypothesis uses limited information to suggest a possible 
outcome or explanation. A hypothesis is not assumed to be true until 
it has been tested. For example, student investigations will usually 
begin with a hypothesis about what they think will happen in their 
experiments. Many scientific advances are preceded by hypotheses.

An explanation that has been confirmed from much-repeated 
experiments / observations is usually described as a theory.

It is reported that Isaac Newton was strongly opposed to the 
use of hypotheses, and that he believed that theories should be 
inferred directly from observations. But experimentation was not 
such a major feature of science at that time.

Despite the fact that it has been confirmed that all moving 
particles have wave properties, de Broglie’s work is still usually 
described as a ‘hypothesis’ rather than a theory. Suggest why.

 ◆ de Broglie’s hypothesis 
All particles exhibit wave-
like properties, with a de 

Broglie wavelength, λ = 
h
p

 ◆ Hypothesis 
A suggested explanation 
of a phenomenon (but 
not proven).

DB
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 ATL E2A: Social skills 

Working collaboratively to achieve a common goal
Working in small groups, discuss one of the following, and then summarize your conclusions for the 
rest of your class.
l Are there circumstances under which it may not be reasonable to require a hypothesis before a 

student’s investigation?
l Are there examples of major scientific advances which were not preceded by hypotheses?
l Should governments provide funds for research projects which are not aimed at producing a 

useful result?
l Will the research of private science-based companies always be aimed at financial profit and, if so, 

what are the implications?

a Calculate the momentum of a moving particle that has a de Broglie wavelength of 
200 pm (1 pm = 1 × 10−12 m).

b Determine the wavelength associated with an electron moving with a speed of five 
million metres per second. 

c If we were to suppose that de Broglie’s hypothesis extends to macroscopic objects, 
estimate the wavelength of a moving tennis ball.

Answer

a p = 
h
λ 

= 
6.63 × 10–34

200 × 10–12  = 3.32 × 10−24 kg m s−1

b λ = 
h
p 

= 
6.63 × 10–34

(9.110 × 10–31) × (5.0 × 106) = 1.5 × 10−10 m

c Estimate momentum, p = mv = 0.06 × 20 ≈ 1 kg m s−1

 λ = 
h
p 

= 
6.63 × 10–34

1  ≈ 7 × 10−34 m

 If a ball had this wavelength, it would be too small to measure.

WORKED EXAMPLE E2.3

12 A neutron has a de Broglie wavelength of 80 pm.
 Calculate the velocity of the neutron. 

13 Show that a potential difference of about 4000 V is needed to accelerate an electron from rest 
so that it has a de Broglie wavelength of 2.0 × 10−11 m.

14 Which is associated with a de Broglie wavelength of longer wavelength – a proton or an 
electron travelling at the same velocity? Explain your answer.

15 Explain why a moving car has no detectable wave properties.

	■ Evidence for the wave nature of matter
Superposition (interference and diffraction) is behaviour that is characteristic of waves, but 
not particles.

In order to verify de Broglie’s hypothesis, it was necessary to observe and measure the 
diffraction of a beam of particles (electrons).

LINKING QUESTION
l What are the 

defining features 
and behaviours 
of waves?

This question links 
to understandings in 
Topics C.2 and C.3.
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A reminder: we have seen in Topic C.3 that the diffraction of light by a diffraction grating can be 
represented by the equation nλ = d sin θ. Knowledge of d (the spacing of lines on the grating) and 
the measurement of the diffraction angle θ (for n = 1), can lead to a determination of an unknown 
wavelength, λ. An important example of this is the determination of spectral wavelengths and 
frequencies (Topic E.1).

In principle, other electromagnetic waves can be similarly diffracted into patterns. The diffraction / 
scattering of X-rays is of especial importance because a typical X-ray wavelength is comparable to 
the separation of atoms / ions (approximately 10−10 m). This is the necessary condition for 
significant diffraction effects.

The regular three-dimensional arrangement of atoms in a crystal has similarities 
with the regular two-dimensional arrangement of lines on a diffraction grating. 
Figure E2.10 shows a much-simplified arrangement. (Knowledge of X-ray 
diffraction is not required for the IB Physics examination.)

When X-rays are diffracted / scattered by parallel layers of atoms / ions in a crystal, 
knowledge of n, λ and θ can lead to a determination of d, the separation of the layers.

De Broglie’s hypothesis proposed that electrons can have wavelengths similar to 
X-rays and atomic separations (≈ 10−10 m) as shown in Worked example E2.3, so 
it was anticipated that electrons would also be diffracted / scattered by regular 
arrangements of atoms / ions.

The diffraction of an electron beam was first achieved in the Davisson–Germer 
experiment as seen in Figure E2.11, using a nickel crystal target.

A scattered beam of electrons was detected at an angle which confirmed that 
diffraction was occurring of electron waves with a wavelength consistent with de 
Broglie’s hypothesis.

When the electrons were accelerated to greater speeds (using a larger voltage), 
they were diffracted through a smaller angle because the wavelength was less.

Figure E2.12 shows the type of modern apparatus used in schools to demonstrate 
the diffraction of electrons. Two prominent diffraction rings are seen, representing 
constructive interference of electron waves from two different sets of layers of 
carbon atoms in the graphite target. (The graphite has many sets of layers with 
different orientations.)

If the voltage accelerating the electrons is increased, they 
will have greater speed and momentum when they arrive at 
the graphite. This means that the electron wavelength and 
diffraction angle will be reduced.

Tool 1: Experimental techniques

Recognize and address safety, ethical or 
environmental issues in an investigation

What safety precautions are necessary when using the 
apparatus shown in Figure E2.12? Make a list of safety 
precautions for other experimenters to follow.

scattered X-rays

X-ray
beam

crystal target

φ

movable X-ray
detector

	■ Figure E2.10 Diffraction/
scattering of X-rays by a crystal

scattered electrons

electron
beam

nickel
crystal target

φ

movable
electron
detector

	■ Figure E2.11 Davisson-Germer experiment

thin
graphite

vacuum
heater

low p.d.

accelerating high p.d. electron beam

� �

diffraction rings
seen on fluorescent

screen

	■ Figure E2.12 An electron diffraction apparatus

 ◆ Davisson–Germer 
experiment Experiment 
that verified the wave 
properties of matter by 
showing that a beam of 
electrons is diffracted 
by a crystal (at an angle 
dependent upon the 
velocity of the electrons).
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Using apparatus similar to that seen in Figure E2.11, electrons were accelerated by 5.0 kV.
Calculate the:
a kinetic energy of the electrons (J)
b speed of the electrons
c momentum of the electrons
d wavelength of the electrons using de Broglie’s hypothesis
e diffraction angle for these electrons, assuming that:

l layers causing the diffraction had a separation of 1.4 × 10−10 m
l diffraction can be modelled by the equation λ = 2d sin θ.

Answer
a W = qV = (1.60 × 10−19) × 5000 = 8.0 × 10−16 J (= 5000 eV)
b Ek = ½mv2

 8.0 × 10−16 = ½ × (9.110 × 10−31) × v2

 v = 4.2 × 107 m s−1

c p = mv = (9.110 × 10–31) × (4.2 × 107) = 3.8 × 10−23 kg m s−1

d λ = 
h
p = 

6.63 × 10–34

3.8 × 10–23
 = 1.7 × 10−11 m

e λ = 2d sin θ
 (1.7 × 10−11) = 2 × 1.4 × 10−10 × sin θ
 θ = 3.6°

TH
E IB LEARNER PRO

FILE

WORKED EXAMPLE E2.4

16 If the accelerating voltage in Figure E2.12 was doubled, determine by what factor the 
following would change:
a electron kinetic energy
b momentum of electrons
c wavelength of electrons
d sine of the diffraction angle?

17 In Figures E2.10 and E2.11, the beams can be seen to pass between two slits.
 Suggest a reason why the slits are needed.

18 Outline the differences and similarities between electrons and X-rays.

 ATL E2B:  
 Social skills 

Appreciate the 
diverse talents 
of others
Ask an IB chemistry 
student (or teacher) to 
give a short presentation 
to your class about 
X-ray crystallography 
(diffraction), as it 
is explained in the 
chemistry course. 
Find out if electron 
diffraction is 
used similarly. 	■ Wave–particle duality

SYLLABUS CONTENT

 Matter exhibits wave–particle duality.

In principle, all particles have wave properties and all electromagnetic waves have particle 
(photon) properties. This is widely known as wave–particle duality.

 ◆ Wave–particle duality 
Theory that all particles 
have wave properties and 
that all electromagnetic 
waves have particle 
properties.

 ◆ X-ray diffraction 
(crystallography) 
Investigating the 
arrangements of atoms 
and molecules in matter by 
detecting how X-rays are 
diffracted by crystalline 
materials.
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Nature of science: Theories

Two theories for the same thing

We may choose to believe that light, for example, is composed of 
waves (because it interferes and diffracts), or we may choose to 
think of light as a stream of particles (photoelectric and Compton 
effects), but we have difficulty believing the confusing truth 
that light can behave as both waves and particles, depending on 
the circumstances.

The following two famous quotations reflect the situation:

‘It seems as though we must use sometimes the one theory and 
sometimes the other, while at times we may use either. We are 
faced with a new kind of difficulty. We have two contradictory 

pictures of reality; separately neither of them fully explains the 
phenomena of light, but together they do.’ (Albert Einstein)

‘God runs electromagnetics by wave theory on Monday, 
Wednesday, and Friday, and the Devil runs them by quantum theory 
on Tuesday, Thursday, and Saturday.’ (William Lawrence Bragg)

Maybe we are tempted to believe that there is some, yet unknown, 
discovery which will solve this paradox, but it is much more likely 
that we have to accept, once again, that the world of quantum 
physics does not match the ‘reality’ we observe in everyday life.

Adding to the confusion, we use the frequency of a wave to 
determine the energy carried by an individual particle (E = hf ).

Compton scattering

SYLLABUS CONTENT

 Compton scattering of high-frequency photons by electrons as additional evidence of the particle 
nature of light.

 Photons scatter off electrons with increased wavelength.
 The shift in photon wavelength after scattering off an electron as given by: λf – λi = ∆λ = 

h
mec 

(1 – cos θ).

As well as the photoelectric effect, the interaction of electromagnetic radiation 
with matter was also investigated in the Compton effect (scattering), named 
after Arthur Compton, the American physicist who won the Nobel prize in 
1927 for his work. The effect is most significant with shorter wavelength 
radiation, such as X-rays and gamma rays. (Compton used wavelengths 
typically smaller than those used in X-ray diffraction experiments.)

The experiment examined the interaction of monochromatic X-rays with 
electrons. The electrons were the outer electrons in carbon atoms in a small 
graphite target placed in the X-ray beam. See Figure E2.13.

The essential feature of Compton scattering is that it cannot be explained by considering 
the incident X-rays to be waves. A ‘particle model’ is needed: an individual photon (with 

momentum, p = 
h
λ) ‘collides’ with an individual electron.

The laws of conservation of energy and momentum can be applied to the scattering. The electron 
gains kinetic energy, so the photon must lose energy. Since for the X-ray photon, E = hf, 
if it loses energy, it must change to a smaller frequency (equivalent to a change to a greater 
wavelength: λi to λf). This was confirmed by experiment, although the change in wavelength was 
relatively small.

Applying the laws of conservation of momentum and energy leads to the following equation, 
which accurately predicts the change in wavelength, Δλ, of the photons. (You do not need to know 
how this equation is derived.)

scattered radiation

scattered electron

X-ray beam

electron considered
to be initially at rest

graphite target

θ

	■ Figure E2.13 Compton scattering

 ◆ Compton effect 
(scattering) The increase 
in wavelength (decrease in 
energy) of high-frequency 
photons when they interact 
(collide) with electrons.  
Important evidence for 
the particle nature of 
electromagnetic radiation.
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Compton scattering equation:

λf – λi = ∆λ = 
h

mec
(1 – cos θ)

θ is the scattering angle, as shown in Figure E2.13 and me is the mass of the electron, which is 
assumed to be effectively stationary (at rest) before being scattered.

Determine the change in wavelength for photons scattered at an angle of 30° in the 
Compton effect.

( h
mec

 is a constant, called the Compton wavelength, and it has a value of 2.426 × 10−12 m.)
Answer

∆λ = 
h

mec 
(1 – cos θ) = (2.426× 10−12) × (1 – cos 30°) = 3.25 × 10−13 m

This is a small change of wavelength and requires excellent experimental techniques and 
equipment to measure.
Photons scattered at different angles will have different wavelengths, as is represented by 
the equation.

WORKED EXAMPLE E2.5

Interestingly, the change of wavelength in Compton scattering depends only on the scattering 
angle, it does not depend on the energy, or wavelength of the incident photon. It is also relatively 
small: for example, if the incident X-ray photon had a wavelength of 2.25 × 10−10 m, a change of 
3.25 × 10−13 m would only be 0.14%.

19 Arthur Compton’s scattering experiment is considered to 
be one of the classic physics investigations of the early 
twentieth century. Explain why.

20 Calculate the change in photon frequency that occurred 
in Worked example E2.5.

21 Compton’s original experiment used X-rays of 
wavelength 0.0709 nm.

 Calculate the change of wavelength of photons scattered 
through an angle of 45°.

22 At what scattering angle would you expect to observe 
the largest change in photon wavelength? Explain 
your answer.

23 a Calculate a typical energy (eV) of:
i a photon of visible light
ii a photon of X-rays. 

b It requires about 10 eV to remove an electron from 
a carbon atom. Suggest why this was ignored in the 
previous discussion of the Compton effect. 

c State two reasons why Compton scattering of visible 
light is not observed.

24 An X-ray photon with initial wavelength of  
4.700 × 10–11 m was scattered through 34°. 
a Determine the change in photon:

i wavelength ii energy.
b State the resulting kinetic energy of the electron with 

which it collided. 
c State any assumption(s) you made in answering 

part b.

25 Outline the main evidence for:
a the wave nature of electromagnetic radiation
b the particle nature of electromagnetic radiation.

DB

LINKING QUESTIONS
l How can particles 

diffract?
l Why is Compton 

scattering more 
convincing evidence 
for the particle 
nature of light 
than that from the 
photoelectric effect? 
(NOS)

These questions link 
to understandings in 
Topic C.3.
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E.3 Radioactive decay

• Why are some isotopes more stable than others?
• In what ways can a nucleus undergo change?
• How do large, unstable nuclei become more stable?
• How can the random nature of radioactive decay allow for predictions to be made?

Guiding questions

What is radioactivity?

	■ Isotopes
The nuclei of some atoms are unstable. Spontaneous changes within an unstable nucleus can result 
in the emission of a particle and/or a high-energy photon. This process is called radioactivity. 
When particles are emitted, the proton number of the atom will change, so that it becomes a 
different element. This is called transmutation or radioactive decay.

A material involved in the process of radioactivity is described as being radioactive, while an 
atom with an unstable nucleus may be referred to as a radioisotope or radionuclide.

The term isotope was explained in Topic E.1. As a reminder: an isotope is one of two or more 
different nuclides of the same element (which have the same proton numbers, but different 
nucleon numbers).

Radioactive decay should not be confused with chemical or biological decay. The decay of a 
radioactive material will not usually involve any obvious change in appearance.

Most of this topic is concerned with explaining radioactivity, but a straightforward example now 
will help you to begin to understand all these terms, which will become more familiar as your 
understanding develops.

Atoms of 235
92U have unstable nuclei, so we can describe the material as being radioactive. The 

element uranium has several isotopes which are all unstable / radioactive. They can all be 
described as radioisotopes. In the last two sentences, we can replace ‘isotope’ with ‘nuclide’ if we 
wish to stress that we are discussing nuclei.

At some (uncertain) time in the future, any 235
92U nucleus may emit an alpha particle, 42He, and 

when this happens, we say that the nucleus has decayed or transmuted. In this example 231
90Th (the 

element thorium) is formed and it may be called the decay product or the daughter product.

TOK

The natural sciences
l Does the precision of the language used in the natural sciences successfully eliminate all ambiguity?

New terminology

The last section illustrates a recurring theme in science education: so many new words to learn! When 
acquiring new scientific knowledge, is the introduction of new terms unavoidable? Does it help, or 
discourage, a student? Is science different from other areas of knowledge in this respect?

TH
E IB LEARNER PRO

FILE

 ◆ Radioactivity 
Spontaneous transmutation 
of an unstable nucleus, 
accompanied by the 
emission of ionizing 
radiation in the form 
of alpha particles, beta 
particles or gamma rays.

 ◆ Transmutation When 
a nuclide changes to form 
a different element after 
emitting a particle.

 ◆ Radioactive Describes 
a substance which contains 
unstable nuclei which will 
emit radiation.

 ◆ Radioisotope or 
radionuclide Isotope / 
nuclide with an unstable 
nucleus which emits 
radiation. 

 ◆ Daughter product 
The resulting nuclide after 
a radionuclide (‘parent’) 
emits a particle.
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	■ Radioactivity experiments

SYLLABUS CONTENT

 Effect of background radiation on count rate.

Figure E3.1 shows a typical experimental arrangement for investigating radioactivity in a 
school laboratory.

ratemeter

GM tube
source

ions created

A tiny amount of a radioactive nuclide is contained in the ‘source’. When nuclear radiation emitted 
by the source enters the GM (Geiger–Muller) tube through the end ‘window’, it causes ionization 
of the gas inside and a sudden tiny burst of current. These events are ‘counted’ by an electronic 
‘counter’, or ratemeter, and the results are expressed as a radioactive count, or a count per 
second, or per minute. (The tube and counter together are often described as a Geiger counter.) For 
example, if over a period of five minutes a total count of 7200 was detected, this would probably 
be recorded as a count rate of 1440 min−1 or 24 s−1. Many radiation detectors display a count rate 
directly, as seen in Figure E3.1.

Top tip!
If a radioactive count is repeated, it will probably not give the same result. This is because of the 
random nature of radioactive decays and not because of uncertainty in the measurement. For example, 
if a repeated count had an average of 9, it probably varied between 6 and 12, which means that a single 
measurement could have been unreliable. Larger counts are better. For example, if a repeated count had 
an average of 900, it probably varied between 870 and 930.

Tool 1: Experimental techniques

Recognize and address safety, ethical or environmental issues in an investigation

Nuclear radiation can be hazardous to humans and 
animals. Any experiment with radioactive materials must 
follow safety precautions, which include the following.
l The radioactive sources must be well marked and 

stored securely in lead-lined boxes. They should be 
used for as short a time as possible.

l All experiments should be done by, or supervised by, a 
teacher experienced with the appropriate procedures.

l Sources should be handled with tongs and never 
pointed directed towards anybody.

l Students watching a demonstration should be a safe 
distance away. (Nuclear radiation from a point source 
will be absorbed to some extent 
in air (depending on the type 
of radiation) and it will also 
spread out.)

However, radiation sources used 
in schools emit very low levels 
of radiation.

	■ Figure E3.2 
Radiation hazard sign

	■ Figure E3.1 Basic 
components of a 
radioactivity experiment

 ◆ Geiger–Muller tube 
Apparatus used with a 
counter or ratemeter to 
measure the radiation from 
a radioactive source.

 ◆ Count rate 
(radioactivity) The 
number of nuclear radiation 
events detected in a given 
time (per minute or per 
second).

 ◆ Ratemeter Meter which 
is connected to a Geiger–
Muller tube (or similar) to 
measure the rate at which 
radiation is detected.
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There are a number of things that could be investigated with the apparatus seen in Figure E3.1, 
including:
l How does the count rate vary when the distance between the GM tube and the source 

is changed?
l How is the count rate affected by placing various materials between the source and the 

GM tube?
l Does the count rate change with time?
l Is any count detected if the source is removed?
l Are the radiations affected by passing through electric or magnetic fields?
l How much radiation is emitted by the source every second?

It is important to understand that there are tiny amounts of radioactive materials in almost 
everything around us (and in our bodies). These materials emit very low amounts of nuclear 
radiation which we are all unavoidably exposed to everyday. Under most circumstances, this 
background radiation is low enough to be considered completely harmless.

Because of background radiation, a GM tube and ratemeter, such as seen in Figure E3.1 will 
record a background count, even when there is no obvious source of radiation present. A 
typical count might be 0.25 to 0.5 s−1. If an experiment is measuring low counts, the effect of 
this background count is significant and it should be deducted from all readings before they 
are processed.

In a radioactivity experiment, a count of 42 was recorded from a source in one minute. 
If the background count rate in that location was 0.44 s−1, what was the value of the count 
from the source after it had been adjusted for background radiation?

Answer
42 – (0.44 × 60) = 16 min−1

WORKED EXAMPLE E3.1

1 Give two reasons why it is better to use larger count rates in radioactivity experiments.

2 a A ratemeter recorded an average 400 counts per minute from repeated measurements.
 Use information from the previous ‘Top tip’ box to predict the range of the count 

rates detected.
b Discuss which is better: 

l determine a count rate over ten minutes, or
l calculate an average of ten one-minute measurements.

3 Research on the internet to find possible sources of background radiation.

4 In 15 minutes, a count of 5486 was measured when the GM tube was directed towards a 
radioactive source. It was known that the background count at that location was 18 per minute.

 Calculate the average count rate, per second, due to nuclear radiation coming directly from 
the source.

5 At a location where the background count was 22 min−1, in separate experiments, count rates 
of 50 min−1 and 5000 min−1 were measured.

 Compare the significance of the background counts in these experiments.

 ◆ Background radiation 
Radiation from radioactive 
materials in rocks, soil and 
building materials, as well 
as cosmic radiation from 
space and any radiation 
escaping from artificial 
sources.

 ◆ Background count 
Measure of background 
radiation.
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Alpha particles, beta particles and gamma rays

SYLLABUS CONTENT

 The penetration and ionizing ability of alpha particles, beta particles and gamma rays.
 The changes in the state of the nucleus following alpha, beta and gamma radioactive decay.
 The radioactive decay equations involving α, β−, β+, γ.
 The existence of neutrinos ν and antineutrinos ν̄.

In a school laboratory we can detect three different kinds of radiation emitted from radionuclides:
l alpha particles: fast-moving helium-4 nucleus (2 protons and 2 neutrons tightly bound 

together), released from a nucleus during alpha decay
l beta particles
l gamma rays (usually associated with alpha or beta emission).

Atoms of the same radionuclide always emit the same types of radiation

	■ Alpha particles
The composition of an alpha particle is the same as a helium-4 nucleus: the 
combination of two protons and two neutrons, which is very stable. It has 
a nucleon number of 4 and a proton number of +2. Alpha particles can be 
represented by the symbols 42α or 42He.

Clearly the emission of an alpha particle results in the loss of two protons 
and two neutrons from a nucleus, so that the proton number of the nuclide 
decreases by two and a new element is formed (transmutation). This is 
represented in a generalized radioactive decay equation as follows:

A
ZX → A–4

Z–2Y + 42α

parent nucleus → daughter nucleus + alpha particle

 ◆ Beta particle A high-
speed electron that is 
released from a nucleus 
during beta negative decay, 
or a high-speed positron 
released during beta 
positive decay.

 ◆ Nuclear equation An 
equation representing 
a nuclear reaction. The 
sum of nucleon numbers 
(A) on the left-hand side 
of the nuclear equation 
must equal the sum of 
the nucleon numbers on 
the right-hand side of the 
equation. Similarly with 
proton numbers (Z).

 ◆ Radioactive decay 
equation Balanced nuclear 
equation which shows 
a radionuclide and its 
decay products.

As an example, the decay of radium-226 results in the emission of an alpha particle:
226

88Ra → 222
86Rn + 42α

The change to a more stable nucleus is equivalent to a decrease in nuclear potential energy. 
This energy is transferred to the kinetic energy of the alpha particle (and a lesser amount to the 
daughter nucleus). 

All alpha particles from the decay of radium-226 have exactly the same (kinetic) energy: 4.7 MeV, 
or 7.5 × 10−13 J. (Some radionuclides emit alpha particles with different, but discrete, energies. This 
is explained later in this topic for HL students.)

Assuming that there are only two particles after the decay, they must move (recoil) in exactly 
opposite directions. This is because of the law of conservation of momentum, which also predicts 
that the alpha particle will have more kinetic energy and a much faster speed, because it is the less 
massive particle.

One mole of radium (226 g) would release a total energy of: 6.02 × 1023 × 4.71 = 2.83 × 1024 MeV. 
This is a lot of energy (4.53 × 1011 J) from a relatively small mass, but the energy will be released 
over a very long time (because the half-life of radium-226 is about 1600 years – the concept of 
half-life is explained later).

Radionuclides are not generally used to transfer large amounts of energy because they are both 
low power and expensive, but they can provide energy for a long period of time. Alpha sources 

 ATL E3A: Communication skills 

Using terminology, symbols and 
communication conventions 
consistently and correctly

Nuclear equations

The particle(s) before the reaction are shown on 
the left and the products shown on the right.

Nuclear equations must balance: the sum of the 
nucleon numbers and proton numbers must be 
equal on both sides of the equation.
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can be used to generate small amounts of electrical energy, or in places that are difficult to 
access, such that replacing a power source would be problematic. This includes some uses on 
satellites and space probes. But, as we will see later, another kind of nuclear reaction is capable of 
transferring large amounts of energy quickly – nuclear fission.

Penetrating power and ionizing ability

We have already noted in discussing the Geiger–Muller–Rutherford experiment (Topic E.2), that 
alpha particles have considerable kinetic energy (for a subatomic particle) however they have 
limited penetration of matter (penetrating power). This is because they transfer significant 
amounts of energy in collisions with other atoms / molecules. (Kinetic energy transfer is greatest 
when the colliding particles have comparable masses, as discussed in Topic A.3.) See Figure E3.3.
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The collisions transfer the energy needed to ionize a large number of atoms / molecules in the 
material through which the alpha particles are passing. After most of their kinetic energy has 
been transferred, the alpha particles are effectively absorbed (as tiny amounts of helium). See 
Question 14 for a numerical example.

Typically, all the alpha particles emitted from a source will be absorbed by a few centimetres of 
air, or a sheet of paper (although they will mostly pass through much thinner gold foil). Alpha 
particles would be absorbed in the outer layers of skin, so that radioactive sources that only emit 
alpha particles are not considered to be dangerous outside of the human body. However, sources 
of alpha radiation that have been taken into the body (by eating, drinking or breathing) are a 
significant health hazard.

	■ Beta-negative particles
In an unstable nucleus it is possible for an uncharged neutron to be converted into a positive proton 
and a negative electron. This also involves the creation of another particle called an antineutrino, v̄. 
An antineutrino is an example of an antiparticle (antimatter).

1
0n → 11p + 0

–1e + v̄

 ATL E3B: Communication skills 

Clearly communicating complex ideas in response to open-ended questions
Find out what physicists mean by ‘antimatter’.

When particles of matter and antimatter collide, they destroy (annihilate) each other, with an 
enormous release of energy. Since we live in a universe which is made of matter, if any antimatter is 
created, it very quickly annihilates.

Antineutrinos (and neutrinos) are very small particles with no charge, which travel at speeds close 
to the speed of light, so they are very penetrating and very difficult to detect. (They cannot be 
detected in a school experiment.)

 ◆ Penetrating power 
The penetrating power of 
nuclear radiation depends 
upon the ionizing power of 
the radiation. The radiation 
continues to penetrate 
matter until it has lost 
(nearly) all of its energy. 
The greater the ionization 
per cm, the less penetrating 
power it will possess.

 ◆ Ionizing ability A 
measure of how much 
ionization is caused when a 
particular type of radiation 
passes through a material. 

	■ Figure E3.3 Formation of 
ion pairs by alpha particles 
from molecules in the air

 ◆ Antiparticle Every 
particle has an antiparticle 
with opposite physical 
properties.

 ◆ Antimatter Matter 
consisting of antiparticles.

 ◆ Antineutrino Low-
mass, uncharged and 
very weakly interacting 
particle emitted during 
beta-negative decay. 
Antiparticle of neutrino.

 ◆ Annihilation When a 
particle and its antiparticle 
interact, their mass is 
totally converted to 
electromagnetic energy.

 ◆ Neutrino Low-mass, and 
very weakly interacting 
uncharged particle emitted 
during beta-positive 
decay. Antiparticle of 
antineutrino.
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After the nuclear reaction shown in the equation above occurs, it is not possible for the newly formed 
electron to remain within the nucleus and it is ejected from the atom at a very high speed (close to the 
speed of light). It is then called a beta-negative particle and it is represented by the symbol 0

–1β– or 0
–1e.

When beta-negative decay occurs, the number of nucleons in the nucleus remains the same, but 
the number of protons increases by one, so that a new element is formed. This can be represented 
in a radioactive decay equation of the general form:

A
ZX → A

Z+1Y + 0
–1β– + v̄

A typical example is the decay of a strontium-90 nuclide:
90
38Sr → 90

39Y + 0
–1β– + v̄

The beta particles in this decay have a range of energies up to 0.55 MeV.

Beta particles (unlike alpha particles) are emitted with a continuous range of different energies, 
but there is a well-defined maximum energy from any particular source, typically about 1 MeV.

Penetrating power and ionizing ability

Beta particles are considerably less massive than alpha particles, which means that they transfer 
less energy in ionizing collisions with atoms and molecules. Therefore, they travel further before 
they lose their kinetic energy and become absorbed.

Beta particles travel typically about 30 cm in air, although more energetic particles may go as far 
as one metre. They will mostly pass through a sheet of paper easily and their absorption in other 
materials is usually characterized by saying that a sheet of aluminium of thickness 3 mm will just 
absorb them all.

Sources of beta radiation can be dangerous if they enter the body, but they should also be 
considered as a possible health hazard if they are outside the body.

	■ Beta-positive particles
In a similar process to beta-negative decay, called beta-positive decay, a proton in a nucleus can 
be converted into neutron and a positively charged electron, called a positron (another example 
of antimatter), which is then ejected from the atom, after which it is called a beta-positive particle 
and it is represented by the symbol 01β+ or 01e.

A neutrino, v, is created at the same time.
1
1p → 10n + 01β+ + v

The following equation represents a typical beta-positive decay:
23
12Mg → 23

11Na + 01β+ + v

	■ Gamma rays
Gamma rays are high-frequency, high-energy electromagnetic radiation (photons) released from 
unstable nuclei. A typical wavelength is about 10−12 m. This corresponds to an energy of about 
1 MeV (use E = hc/λ). Gamma rays are usually emitted after an unstable nucleus has emitted an 
alpha or beta particle. Gamma rays are represented by the symbol 00γ.

For example, when a thorium-234 nucleus is formed from a uranium-238 nucleus by alpha decay, 
the thorium nucleus contains excess energy and is said to be in an excited state. The excited 
thorium nucleus (shown by the symbol * in an equation) returns to a more stable state by emitting 
a gamma ray:

234
90Th* → 234

90Th + 00γ

Top tip!
You will not be expected 
to remember the names 
of elements from their 
proton numbers.

 ◆ Beta-negative decay 
Radioactive decay 
resulting in the emission 
of an electron (and an 
antineutrino)

 ◆ Beta-positive decay 
Radioactive decay 
resulting in the emission of 
a positron (and a neutrino). 

 ◆ Positron Antiparticle 
of the electron; released 
during beta-positive decay.

 ◆ Gamma radiation / ray 
Electromagnetic radiation 
(photons) emitted from 
some radionuclides and 
having an extremely short 
wavelength.
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Because gamma rays have no mass or charge, the composition of the emitting nucleus does not 
change. There is no transmutation.

Penetrating power and ionizing ability

Gamma rays cause less ionization, so that they have much greater penetrating power than alpha 
particles or beta particles.

We usually assume that gamma rays are not significantly absorbed in air, but if a beam is 
spreading out, its intensity falls with distance, following an inverse square law (assuming that they 
come from a point source). At least a two centimetres thickness of solid lead is needed to absorb 
most gamma rays. Because they are so penetrating, gamma rays are less easy to detect than alpha 
particles and beta particles rays.

However, because all of their energy can be transferred in one interaction, gamma rays can cause 
significant chemical and biological changes when absorbed in the human body. Because they are 
so penetrating, sources outside the body can be as dangerous as sources inside the body.

	■ Summary of the properties of alpha, beta and gamma 
nuclear radiations

	■ Table E3.1 Summary of properties of alpha, beta and gamma radiations

Property Alpha (α) Beta negative (β–) Beta positive (β+) Gamma (γ)

relative charge +2 −1 +1 0

relative mass 4 1/1840 1/1840 0

typical range in air 4 cm 30 cm very quickly annihilates very little absorption in air

composition helium nucleus electron positron electromagnetic wave / photon

typical speed ≈ 107 ms−1 = 0.1c ≈ 2.5 × 108 ms−1 ≈ 0.9c ≈ 2.5 × 108 ms−1 ≈ 0.9c 3.00 × 108 ms−1 = c

notation 4
2He or 4

2α 0
–1e or 0

–1β– 0
+1e or 0

+1β+ γ or 0
0γ

ionizing ability very high low very quickly annihilates very low

absorbed by thick piece of paper 3 mm aluminium very quickly annihilates intensity halved by about 2 cm lead

less than 4 cm

thick paper

GM tube

electrons

gamma rays

helium
nuclei

a

b − b −

g g g

GM tube

3 mm aluminium sheet 2 cm of lead

GM tube

to rate counter

to rate counter

to rate counter

	■ Deflection of nuclear radiations in electric and magnetic fields
Alpha and beta radiation will be emitted in random directions from their sources, but they can be 
formed into narrow beams (collimated) by passing the radiation through slits.

Because a beam of alpha particles, or beta particles, is a flow of charge they will be deflected if 
they pass across a an electric field or magnetic field (as discussed in Theme D).

Gamma radiation is uncharged, so it cannot be deflected in this way.

LINKING QUESTION
l Are there differences 

between the photons 
emitted as a result 
of atomic versus 
nuclear transitions?

	■ Figure E3.4 Absorption 
of ionizing radiations
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Figure E3.5 shows the passage of the three types of ionizing radiation 
perpendicularly across a strong magnetic field. Fleming’s left-hand rule 
can be applied to confirm the deflection of the alpha and beta particles into 
circular paths, the magnetic force providing the centripetal force. The radius 
of the path of a charged particle moving perpendicularly across a magnetic 
field can be calculated from:

r = 
mv
qB

 (Topic D.3).

An alpha particle has twice the magnitude of charge and about 8000 times 
the mass of a beta particle, although a typical beta particle may be moving 
ten times faster. Taking all three factors into consideration, we can predict 
that the radius of an alpha particle’s path may be about 400 times the radius 
of a beta particle in the same magnetic field: it is deflected much less. (Note 
that observation of the deflection of alpha particles will require a vacuum.)

Alpha and beta radiation can also be deflected by electric fields, as shown in 
Figure E3.6. Alpha particles are attracted to the negative plate; beta particles 
are attracted to the positive plate. The combination of constant speed in one 
direction, with a constant perpendicular force and acceleration, produces 
a parabolic trajectory. This is similar to the projectile movement discussed 
in Topic A.1. The deflection of the alpha particles is small in comparison to 
beta particles, due to the same factors as discussed for magnetic deflection.

6 a Assuming they have energies of 1.0 MeV, calculate 
the speeds of alpha particles (mass = 6.64 × 10–27 kg).

b What potential difference would be needed to 
accelerate doubly charged helium ions to the same 
energy from rest?

7 Explain why the distance before the thick paper in 
Figure E3.4 is labelled as ‘less than 4 cm’.

8 Alpha particles usually carry more energy than beta 
particles, or gamma rays but, paradoxically, they are less 
penetrating. Explain why.

9 Explain why a source of alpha radiation outside the 
human body may be considered to be very low risk (for 
example, they are used in smoke detectors), but a source 
inside the body is considered dangerous.

10 Explain how a beam of beta particles can be 
distinguished experimentally from alpha particles and 
gamma rays.

11 Explain why gamma rays are considered to be 
particularly dangerous.

12 Calculate the amount of energy carried by a gamma ray 
photon of wavelength 2.6 × 10−12 m in i J and ii eV.

13 An adjusted count rate of 45 min−1 was detected from a 
gamma ray source when the GM tube was 20 cm from 
the source.

 Predict what average count rate would be detected at a 
distance of:
a 40 cm b 100 cm c 10 m.

14 Alpha particles lose about 2.2 × 10−18 J of kinetic energy 
in each collision with an atom or molecule in the air. 
An alpha particle travelling through air makes 7 × 104 
ionizing collisions with molecules or atoms in the air for 
each centimetre of travel.

 Calculate the approximate range of an alpha particle if 
the particle begins with an energy of 7.0 × 10−13 J.

15 Represent in a drawing a magnetic field acting 
perpendicularly into the paper.

 Then draw a straight line down the page to represent the 
original direction of a beam containing alpha particles, 
beta particles and gamma rays passing through the field.

 Finally, show in your drawing, what happens to the three 
different types of radiation as they pass through the 
magnetic field.

a

g

b −

magnetic field
perpendicular out
of plane of paper

	■ Figure E3.5 Behaviour of ionizing 
radiations in a magnetic field

a
g

b −

+

–

	■ Figure E3.6 Behaviour of ionizing 
radiations in an electric field

369917_22_IB_Physics 3rd_Edn_SEC_E_3.indd   548369917_22_IB_Physics 3rd_Edn_SEC_E_3.indd   548 04/01/2023   21:3604/01/2023   21:36



E.3   Radioactive decay 549

16 Discuss why beta particles are usually affected more 
than alpha particles as they pass through electric and 
magnetic fields.

17 Some beta-negative particles in a beam have an speed of 
2.2 × 108 ms–1. The beam passes perpendicularly across a 
magnetic field of strength 6.5 mT in a vacuum. Using an 
equation from Topic D.3, determine the radius of the arc 
of their circular path.

18 From Topic A.3, we know that kinetic energy, Ek = 
p2

2m
.

a Use the law of conservation of momentum to show 
that, after a stationary nucleus X emits an alpha 
particle, the kinetic energy of the alpha particle = 
mX

mα

 × kinetic energy of X. 

b Earlier in this section it was stated that the alpha 
particle emitted in the decay of radium-226 had a 
(kinetic) energy of 4.7 MeV.

 Show that the total energy released in the decay is 
about 4.8 MeV.

	■ Chart of the nuclides and decay series

Every nuclide can be placed on a chart of nuclides, which has a square for every possible 
combination of proton number and neutron number.

This is a large chart, as can be seen in Figure E3.7, but the start of it can be seen in Figure E3.21 (it 
is discussed in greater detail later in this topic for HL students).

	■ Figure E3.7 A full chart of the nuclides contains a lot of data and requires a large wall!

When a nucleus emits an alpha particle or beta particle, we know that it transmutes to a different 
nuclide. These changes can be tracked on a chart of the nuclides, as shown in Figure E3.8.
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	■ Figure E3.8 Transmutation on a chart of the nuclides
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 ◆ Chart of nuclides A 
chart which displays every 
possible nuclide on axes 
of proton number and 
neutron number.
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Heavy radioactive nuclides, such as radium-226 and uranium-238, cannot become stable by 
emitting just one particle. They undergo a radioactive decay series, producing either an alpha or 
a beta particle and maybe gamma radiation during each step, until a stable nuclide is formed. For 
example (not to be remembered!), uranium-238 undergoes the decay series seen in Figure E3.9 to 
eventually form the stable nuclide lead-206. Each decay will have its own particular half-life. (For 
the sake of clarity, the individual squares have not been included in the figure.)

 ◆ Decay series A series of 
nuclides linked in a chain 
by radioactive decay. Each 
nuclide in the chain decays 
to the next until a stable 
nuclide is reached.

If it was possible to have a source of pure 
uranium-238, for example, it would immediately start 
decaying into other nuclides and, after some time, all 
the nuclides in the decay series would be present in 
the sample. The relative proportions of different 
nuclides depend on their half-lives. After a very long 
time most of the source will have turned into lead. 
Figure E3.10 is a rough indication of how the 
proportions of U-238 and Pb-206 change over 
billions of years.
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	■ Figure E3.10 Uranium transmuting into lead

We should expect that most radioactive sources (of the 
heavier elements particularly) to contain a range of 
different nuclides.
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a stable nuclide at the end of the chain

	■ Figure E3.9 An example of a decay series (uranium-238) on a chart of nuclides

19 Make a sketch, similar to those seen in Figure E3.8, to represent the transmutation that 
occurs as a result of beta-plus emission.

20  222
86Rn, decays to Po-218. This radionuclide then emits an alpha particle to create an isotope 

of lead. Next in the decay series is Bi-214. Write out the full decay equations for these three 
nuclear reactions.

21 Use the internet to find out how the nuclide carbon-14 decays and then represent the process 
in a similar way to that shown in Figure E3.8.
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Patterns of radioactive decay

SYLLABUS CONTENT

 Random and spontaneous nature of radioactive decay.
 Activity, count rate and half-life in radioactive decay.
 Changes in activity and count rate during radioactive decay using integral values of half-life.

Radioactivity comes from unstable nuclei, but when any particular nucleus will decay and emit 
a particle or radiation, is completely unpredictable and uncontrollable. At some point in time an 
unstable nucleus will decay, but there is no way that the process can be controlled by scientists. 
Temperature, for example, cannot be used to control nuclear reactions (unlike chemical reactions).

Imagine that we could observe the decay of a number of unstable nuclei (another ‘thought experiment’):

Individual nuclei do not decay in any pattern (the decays are random) and each decay occurs 
without any obvious cause, (the decays are spontaneous).

Paradoxically, such randomness and unpredictability on the scale of individual nuclei, results in 
predictability when we consider very large numbers of nuclei.

Nature of science: Patterns and trends

Randomness

This is not the first time that the random behaviour of particles has been discussed in this course. Our 
understanding of the physical properties of gases developed from an appreciation of the random motions 
of gas molecules. Although the individual motions of gas particles are random and unpredictable, over 
large numbers of particles (in bulk) we can observe patterns and trends in the properties of the gas.

In everyday life, the toss of a single coin or the throw of a single dice (die) are used to make an 
event random and unpredictable. However, if we toss a coin enough times, we can be sure that, to 
a close approximation, 50% will be ‘heads’ and 50% will be ‘tails’. Similarly, if a six-sided dice is 
thrown, for example 100 times, then any particular number can be expected to occur about once 
in every six throws (about 17 times in 100 throws). The greater the number of events, the more 
precisely the outcome can be predicted.

The same principle can be applied to random nuclear decays: we might say, for example, that 50% 
of the nuclei of a particular nuclide in a source will decay during the next year.

	■ Activity of a radioactive source

The activity, A, of a radioactive source is the total number of nuclei decaying every second.

Activity may also be described as the rate of decay. We usually assume that the activity of a 
source is equal to the number of particles emitted every second. The SI unit of (radio) activity is 
the becquerel, Bq.

1 Bq is equivalent to one decay every second and is considered to be a very low activity.

The activity of a source is proportional to the number of undecayed atoms it contains.

 ◆ Random Without 
pattern or predictability.

 ◆ Spontaneous (decay, 
for example) Without 
any cause, cannot be 
controlled.

 ◆ Activity, A (of a 
radioactive source) The 
number of nuclei which 
decay in a given time 
(second).

 ◆ Becquerel, Bq The 
SI unit for (radio) activity. 
1 Bq = one nuclear decay 
every second.
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It should be noted that a count rate from a source (as being 
measured in Figure E3.1, for example) is not the same as its activity. 
This is because the GM tube is certainly not detecting all the 
radiation emitted. However, it is often assumed that a count rate is 
proportional to the activity.

The activity of all radioactive sources decreases with time. This is 
because the number of nuclei decaying every second (the activity) 
depends on the number of nuclei in the source which have not yet 
decayed. As more nuclei decay, the number remaining undecayed 
decreases, so the activity decreases. This reducing activity and 
count rate (adjusted for background count) are represented in 
Figure E3.11.

As explained above, half of the nuclei of any particular nuclide in 
a source will decay during a well-defined period of time. This is 
called the half-life, T½, of the nuclide.

The half-life, T½, of a radionuclide is the time it takes for half of its undecayed nuclei to decay. It 
is also the time taken for the activity (or count rate) to halve.

Half-lives of different radionuclides can be as short as fractions of a second, or as long as millions 
of years, or anything in between. See Table E3.2 for some diverse examples.

The graph seen in Figure E3.11 represents an exponential decrease: in equal intervals of time 
(shown clearly on the time axis) the count rate falls by the same fraction (one half): starting at N0, 
then N0/2, then N0/4 and so on. In theory, for an exponential decrease, the count rate will never 
reduce to zero.

Tool 3: Mathematics

Carry out calculations involving logarithmic and exponential functions

Any exponential decrease can be recognized by the fact that a quantity decreases to the 
same fraction in equal intervals of time. We usually refer to a quantity falling to half of its 
value at the end of each equal time interval, but the same behaviour also falls by any other 
chosen fraction in different, but equal, time intervals.

LINKING QUESTION
l Which areas of physics involve exponential change? (NOS)

Common mistake
Many people wrongly believe that the term ‘exponential’ is only used to describe rapid increases. 
However, exponential changes can also be decreases and they are just as likely to be slow: consider, for 
example, that uranium-238 has a half-life of about 4.5 billion years.

Figure E3.12 shows a visualization that may help understanding. The same information is 
displayed in Table E3.3. The radionuclide americium-242 has a half-life of 16 hours.

 ◆ Half-life (radioactive) 
The time taken for the 
activity, or count rate, from 
a pure source to be reduced 
to half. Also, equals the 
time taken for the number 
of radioactive atoms in a 
pure source to be reduced 
to half.

 ◆ Exponential change 
A change which occurs 
when the rate of change of 
a quantity at any time is 
proportional to the actual 
quantity at that moment. 
Can be an increase or 
a decrease.
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	■ Figure E3.11 
Radioactive decay curve

	■ Table E3.2 Half-
life examples

Radionuclide Half-life

uranium-238 4.5 × 109 
years

radium-226 1.6 × 103 
years

radon-222 3.8 days

francium-221 4.8 minutes

astatine-217 0.03 
seconds
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= undecayed nuclei = decayed nuclei

40 million
undecayed

nuclei

0 hours

20 million
undecayed

nuclei

16 hours

10 million
undecayed

nuclei

32 hours

half-life

5 million
undecayed

nuclei

48 hours time

half-lifehalf-life     

	■ Table E3.3

Number of 
undecayed nuclei

Fraction of original 
undecayed nuclei remaining

Number of 
decayed nuclei

Number of half-
lives elapsed

Number of hours 
elapsed

40 × 106 1 0 0 0

20 × 106 1
2

20 × 106 1 16

10 × 106 1
4

30 × 106 2 32

5.0 × 106 1
8

35 × 106 3 48

2.5 × 106 1
16

37.5 × 106 4 64

Radium-226 has a half-life of 1620 years. A source which has a total mass of 0.010 g 
contains 30% of Ra-226 and no other radionuclides. 
a Calculate the mass of Ra-226 that will remain in the source after 3240 years. 
b Determine how many Ra-226 nuclei will have decayed in this time.

Answer

a After two half-lives, 
1 
2  × 

1 
2  = 

1 
4  of the unstable nuclei will remain (

3 
4  has decayed).

 Mass of Ra-226 remaining = 
1 
4  × 0.30 × 0.010 = 7.5 × 10−4 g

b Mass of Ra-226 decayed = 
3 
4  × 0.30 × 0.010 = 22.5 × 10−4 g

 226 g of radium-226 contain 6.02 × 1023 atoms (Avogadro constant)

 
22.5 × 10–4 

226  × 6.02 × 1023 = 5.99 × 1018 nuclei.

WORKED EXAMPLE E3.2

Experimental determination of half-life

In principle, the half-life of any radionuclide can be determined from a graph of count rate 
against time (as in Figure E3.11).

	■ Figure E3.12 The 
radioactive decay of a 
sample of americium-242
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However, this can be difficult to obtain, for two reasons:
l Half-lives will usually be too short or too long for convenient 

measurement. For example, for a school experiment a half-
life between a few minutes and few hours may be considered 
ideal, but there are not many obtainable radioisotopes that fit 
that description.

l When a nuclide decays it is probable that its daughter product will 
also be radioactive. This means that there will often be two (or 
more) radioisotopes with different half-lives in the same source.

solution of
uranium-238
and other decay
products

solvent with
protactinium-234

atoms

GM tube

	■ Figure E3.13 Measuring the half-life of protactinium-234

The decay of protactinium-234 is widely used in schools as a demonstration of a half-life 
determination. (Details need not be remembered.) A compound of uranium-238 dissolved in 
water is contained in a very securely sealed plastic bottle. A separate layer contains a chemical 
which reacts with protactinium. U-238 decays to thorium-234 by emitting an alpha particle. The 
thorium then decays to protactinium-234 by beta-negative emission. Protactinium then decays to 
uranium-234 when beta-negative particles are emitted. These decays are shown below. This decay 
series should be understood, but not remembered.

238
92U → 234

90Th → 234
91Pa → 234

92Pa

Of all the radionuclides present in the bottle, only Pa-234 has a suitable half-life for measurement. 
The protactinium compound can be separated chemically when the contents of the bottle are 
shaken up. The protactinium moves into the upper layer. See Figure E3.13.

Inquiry 2: Collecting and Processing data

Processing data

Table E3.4 shows the variation with time, t, of the count rate of a sample of a radioactive 
nuclide X. The average background count during the experiment was 36 min−1.
	■ Table E3.4 Variation with time of the count rate of a sample of radioactive nuclide X

t/hour 0 1 2 3 4 5 6 7 8 9 10

Count rate/min−1 854 752 688 576 544 486 448 396 362 334 284

Plot a graph to show the variation with time of the corrected count rate and use the graph to 
determine the half-life of nuclide X.

22 One hundred dice were thrown at the same time and all 
the dice that showed 6 were then removed. The remaining 
dice were thrown again and, again, all the 6s were 
removed. The process was repeated another five times. 
a Draw a bar chart to represent the results you 

would expect. 
b Explain why the shape of your chart should be similar 

to Figure E3.11.

23 Count rates detected every five minutes (s−1) were as 
follows: 75, 60, 48, 38, 31, 25. Assuming that these 
readings were adjusted for background count, do they 
represent an exponential decrease? Justify your answer.

24 The initial count rate from a sample of a radioactive 
nuclide is 560 s−1 (adjusted for background count). 
The half-life of the nuclide is 5 minutes.

 Sketch a graph to show how the activity of the sample 
changes over a time interval of 25 minutes.

25 Explain why it would be difficult for a laboratory to 
provide a school with a pure radioisotope with a half-life 
of about of about one hour.

26 A radioactive isotope has a half-life of eight days and the 
initial count rate is 996 min−1.

 If the average background count was 20 min−1, predict the 
count rate after 32 days.

α β– β–
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27 a The half-life of francium-221 is 4.8 minutes.
 Calculate the fraction of a sample of francium-221 

remaining undecayed after a time of 24.0 minutes. 
b The half-life radon-222 is 3.8 days.
 Calculate the fraction of a sample of radon-222 that 

has decayed after 22.8 days. 
c Cobalt-60 is used in many applications in which 

gamma radiation is required. The half-life of 
cobalt-60 is 5.26 years. A cobalt-60 source has an 
initial activity of 2.00 × 1015 Bq.

 Calculate its activity after 26.30 years.
d A radioactive element has a half-life of 80 minutes.
 Determine how long will it take for the count rate to 

decrease to 250 per minute if the initial count rate is 
1000 per minute. 

e The half-life of radium-226 is 1620 years. For an 
initial sample: 
i calculate what fraction has decayed after 

4860 years
ii what fraction remains undecayed after 6480 years?

28 Technetium-99 is a radioactive waste product from nuclear 
power stations. It has a half-life of about 212 000 years.
a Estimate the percentage of technetium that is still 

radioactive after one million years. 
b Approximately how many years are needed for the 

activity from the technetium to fall to 1% of its 
original value?

	■ Practical uses of radionuclides
Radioactive substances have a wide range of uses including:
l diagnosis of illness
l treatment of cancer
l food preservation and sterilization of medical equipment (see Question 35)
l determining the age of rocks (see Question 34)
l locating faults in metal structures, such as pipes (see Question 32)
l carbon dating (See Question 30)
l determining thicknesses (see Question 33)
l smoke detectors (see Question 31).

The choice of a suitable radionuclide for each of these applications requires careful consideration 
of the health risks involved, a suitable half-life and the penetrating power of the emitted radiation.

We will look at one application in detail: medical tracers.

Medical tracers

Substances introduced into the body for the purpose of checking the functioning 
of particular organs are called medical tracers. They may be injected (see 
Figure E3.14) or swallowed. The radioactive substance most commonly used is 
technetium-99m. This is an excited nuclide produced from molybdenium-99 by 
beta decay. The decay of the Tc-99m has a half-life of six hours and the gamma 
ray photons emitted have an energy of 0.14 MeV. Both of these properties make 
technetium-99m a good choice for tracer studies. The amount of energy carried by 
the gamma photons makes them easy to detect outside of the body using a gamma 
‘camera’. The doctor will be able to use the pattern of gamma rays detected to 
compare the patient’s organ to the pattern received from a fully healthy organ.

The half-life of 6.0 hours is a good compromise between activity lasting long 
enough to be useful and the need to expose the patient to ionizing radiation 
for as short a time period as possible. Atoms in a chemical compound which is 
preferentially taken up by the organ are replaced by radioactive substitutes. This 
process is often called ‘labelling’.

 ◆ Carbon dating Using 
the radioactive decay of 
carbon-14 to estimate the 
age of once-living material.

 ◆ Tracer (radioactive) 
Radioisotope introduced 
into a system (for example, a 
human body) to track where 
it goes by detecting the 
radiation that it emits

	■ Figure E3.14 Injecting a radioactive tracer

TH
E IB LEARNER PRO

FILE
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29 a Determine the percentage of technetium-99m that 
will remain in a patient 24 hours after they have been 
injected with a tracer. 

b Discuss why gamma ray sources are needed for 
medical tests similar to that seen in Figure E3.14.

30 Neutrons are continually created in the Earth’s 
atmosphere by cosmic rays. The following nuclear 
reaction can then occur:

 14
7N + 1

0n → 14
6C + 1

1H
a Describe what this equation represents.
b Carbon-14 is radioactive and decays by beta-negative 

emission.
 Write an equation for this decay.
c All living plants and animals contain many carbon 

atoms. A very small fraction of those atoms are C-14. 
This fraction remains constant while the plant or 
animal is alive (12 atoms of C-14 in every 1 × 1013 
atoms of C-12).

 Explain why this percentage will decrease after the 
plant or animal dies.

d If 12% of the atoms in a human body are carbon, and 
a body has about 7 × 1027 atoms, estimate how many 
radioactive carbon-14 atoms are in the body.

e C-14 has a half-life of approximately 5700 years.
 Predict how many years after death will the fraction 

of C-14 have fallen to an average of 0.15 atoms of 
C-14 in every 1013 atoms of C-12.

f i Explain how scientists can ‘date’ the age of once-
living material using the presence of C-14. 

ii Suggest one reason why the results of this process 
may have a large uncertainty.

31 Many smoke detectors (see Figure E3.15) contain a 
tiny amount (about one quarter of a microgram) of the 
radionuclide Am-241. An alarm automatically sounds if 
smoke comes between the Am-241 and a small radiation 
detector inside the unit. 

	■ Figure E3.15 Smoke detector

a Suggest what kind of radiation is being used, 
and why. 

b Discuss what would be an ideal half-life for the source. 
c Use the internet to determine the half-life of Am-241.

32 A leak from a pipe can be traced by using a radionuclide.
 Suggest how this can be done, including your choice for 

the type of radiation to be used and its half-life.

33 Figure E3.16 shows how the relative absorption of nuclear 
radiation in a metal sheet can be used to control its 
thickness during manufacture. 
a Explain why beta particles are being used. 
b Discuss whether the same source would be suitable 

for monitoring the production of rolls of paper or 
thin plastic.

sheet metal 

β-particle source

sensor adjusts
rollers

detector

rollers

	■ Figure E3.16 Using a radionuclide to control 
the manufacture of sheet metal.

34 Uranium-238 is a naturally occurring radionuclide with a 
half-life comparable to the age of the Earth.

 It is widespread in the rocks of the Earth, but in relatively 
small quantities. 
a Discuss whether U-238 in the rocks around us is a 

significant health hazard.
b Determine the approximate percentage of U-238 that 

remains since the creation of planet Earth. 
c U-238 is the start of a long decay series. What stable 

nuclide is at the end of that series? 
d Explain how the decay of U-238 can be used to obtain 

a value for the age of the Earth.

35 Explain why gamma rays can be used in hospitals to treat 
cancerous growths.
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The energy inside a nucleus 

SYLLABUS CONTENT

 Existence of the strong nuclear force, a short-range attractive force between nucleons.
 Nuclear binding energy and mass defect.
 Variation of the binding energy per nucleon with nucleon number.
 The mass–energy equivalence as given by E = mc2 in nuclear reactions.

We have already seen (Topic E.1) that it is the strong nuclear force that holds nucleons together 
in a nucleus. Because of these forces, we consider that all nuclei have nuclear potential energy. 
Importantly, the magnitude of that energy is enormous, considering the small size of nuclei.

If we wanted to completely separate the nucleons of a nucleus (another thought experiment which 
is impossible in practice), we would need to supply energy. After the nucleons were separated, they 
would then effectively have zero nuclear potential energy. As with gravitational or electric forces, 
the zero of nuclear potential energy is defined as occurring when the particles concerned are an 
infinite distance apart.

The energy that would be needed to completely separate 
all the nucleons of a nucleus is called its nuclear 
binding energy.

Figure E3.17 shows an example.

Alternatively, we can consider that binding energy of a 
nucleus is the energy that would be released when the 
nucleus was formed from separate nucleons.

Nature of science: Models

Energy in bound systems

Consider any system in which there are attractive forces between 
the particles it contains. For example, between masses, between 
opposite charges, or between nucleons.

When the particles move, work will be done (provided the movement 
is not perpendicular to the force) and energy is transferred. We 
describe this as a change in the potential energy of the system.

If we wish to compare different systems, we need to agree on a 
common zero for potential energy: for this we choose the situation 
when the particles are a long way apart from each other (infinity), 
where the forces are zero.

Stationary separated particles which are free to move will be 
attracted closer together and gain kinetic energy and lose potential 
energy, so that their total energy remains the same. This implies 
that all potential energies in systems like these must be negative 
and that, if possible, any such systems will change to lower 
potential energy, when they could then be described as being more 
stable. In effect, this means that the potential energy of the system 
will change to a larger negative value as it becomes more stable.

If we wish to separate particles which are attracted together, 
for example nucleons in a nucleus, we need to do work (supply 
energy) so as to increase the potential energy of the system which, 
in effect, means to decrease the magnitude of negative potential 
energy. This can be confusing!

Nuclear binding energy is equivalent to nuclear potential energy 
in magnitude, but the concept of nuclear binding energy looks 
at the same situation in a different, perhaps less confusing, way. 
Binding energy is the energy that an external agent would need 
to supply to separate the nucleons (rather than being a property of 
the nucleus). Binding energy is always positive and using positive 
numbers is more intuitive, also larger positive binding energies 
corresponds well with greater stability.

A nucleus which had a potential energy of −50 MeV would be 
more stable than the same nucleus if it had a potential energy of 
−40 MeV. In terms of the binding energy for the same situations, 
we would say that a nucleus which had a binding energy of 
+50 MeV would be more stable than the same nucleus if it had a 
binding energy of +40 MeV.

 ◆ Binding energy The 
energy released when a 
nucleus is formed from 
its constituent nucleons. 
Alternatively, it is equal 
to the work required to 
completely separate the 
nucleons.

nucleus

+

separated nucleons

binding energy

+

+
+

+

+

+

	■ Figure E3.17 Binding energy is needed to separate 
nucleons; this example is lithium-7
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The more nucleons in a nucleus (greater nucleon number, A), the greater the total binding energy 
will be.
Binding energy is central to understanding nuclear events because when a nucleus changes in any 
way, the nuclear potential energy (binding energy) will also change. So, changes in binding energy 
can be more important than total binding energy, and in particular, the concept of average binding 
energy per nucleon is widely used.

binding energy per nucleon = 
total binding energy

number of nucleons in the nucleus 
Binding energy per nucleon is a guide to a nucleus’s stability.

Figure E3.18 shows how average binding energy per nucleon varies with nucleon number. A 
typical value is about 8 MeV per nucleon, but the variations seen in Figure E3.18 have important 
consequences, as we will explain later.
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a Use Figure E3.18 to estimate the average binding energy per nucleon of the nuclide 
carbon-12. 

b Calculate the total binding energy of the carbon-12 nuclide in:
i MeV ii joules. 

c One mole of carbon atoms has a mass of 12 g.
 Determine the total binding energy of that 12 g.

Answer
a 7.7 MeV/nucleon
b i 12 × 7.7 = 92 MeV (92.4 seen on calculator display)

ii (92.4 × 106) × (1.60 × 10−19) = 1.5 × 10−11 J (1.4784 × 10−11 J seen on calculator display)
c (1.4784 × 10−11) × (6.02 × 1023) = 8.9 × 1012 J
 This answer illustrates the truly enormous amount of nuclear energy associated with even 

a relatively small amount of matter. However, this energy is not usually accessible to us.

WORKED EXAMPLE E3.3

 ◆ Binding energy per 
nucleon (average) Binding 
energy of a nucleus divided 
by the number of nucleons 
it contains. It is a measure 
of the stability of a nucleus.

	■ Figure E3.18 A plot of 
binding energy per nucleon 
against number of nucleons

369917_22_IB_Physics 3rd_Edn_SEC_E_3.indd   558369917_22_IB_Physics 3rd_Edn_SEC_E_3.indd   558 04/01/2023   21:3604/01/2023   21:36



E.3   Radioactive decay 559

36 a Use Figure E3.18 to determine which nuclide is the most stable. 
b Estimate the binding energy per nucleon of that nuclide.

37 a Use Figure E3.18 to estimate the binding energy per nucleon of oxygen-16. 
b What is the total binding energy of the same nuclide?

38 If a nucleus of uranium-238 could be split in half to make two nuclei each of nucleon number 
119 (this fission does not occur), estimate the change in overall binding energy.

39 If two hydrogen-2 nuclei could be combined to make one helium-4 nucleus, estimate the 
change in overall binding energy.

	■ Nuclear fission and fusion
The last two questions illustrate two important types of nuclear reaction. Both of which can, under 
certain circumstances, release large amounts of energy from within a nucleus.

Nuclear fission is the splitting of a massive nucleus into two smaller nuclei.

Topic E.4 is about nuclear fission.

Nuclear fusion is the combination of two small nuclei to produce a more massive single nucleus.

Topic E.5 discusses the process of nuclear fusion in stars.

Mass–energy equivalence

One of the consequences of Einstein’s theory of special relativity was that particles (at rest) have 
intrinsic energy and that the amount of that energy, E, could be calculated from his famous equation:

E = mc2

Where m is the mass of the particle in kilogrammes and c is the speed of light in m s−1.

c2 is a constant, and mass and energy are equivalent to each other. As Einstein said (in a film he 
made in 1948 called ‘Atomic Physics’):

‘Mass and energy are both but different manifestations of the same thing.’

If energy is added to, or removed from, a system by any means (examples: in chemical reactions, 
by heating or cooling, by changing speed, by moving up or down, and so on) then there will be 
a corresponding change in mass. Mass should not be considered to be an absolute, unchanging 
property of particles.

Top tip!
The equation E = mc2 is being quoted here in its famous form. However, it may be more informative 
to express it as: ΔE = Δmc2, in order to stress that a change of energy, ΔE, is equivalent to a change in 
mass, Δm.

 ◆ Nuclear fission 
A nuclear reaction in which 
a massive nucleus splits 
into more stable smaller 
nuclei whose total binding 
energy is greater than 
the binding energy of the 
initial nucleus, with the 
release of energy.

 ◆ Nuclear fusion Nuclear 
reaction in which two low 
mass nuclei combine to 
form a more stable and 
more massive nucleus 
whose binding energy is 
greater than the combined 
binding energies of the 
initial nuclei, with the 
release of energy.

 ◆ Energy–mass 
equivalence Any mass 
is equivalent to a certain 
amount of energy, 
according to the equation  
E = mc2.

DB
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1.0 kg of water was raised in temperature by 10 °C. Calculate the corresponding change in 
mass. (Specific heat capacity of water is 4180 J °C−1 kg−1)

Answer
Q = mcΔT = 1.0 × 4180 × 10 = 4.18 × 104 J. This amount of energy has increased the kinetic 
energy of the water molecules.
Then, Q = E = mc2

4.18 × 104 = m × (3.00 × 108)2

Increase in mass = 4.64 × 10−13 kg
This is effectively unmeasurable and shows us that increases in masses involved in 
everyday activities are negligible. However, as we shall see, the changes in mass during 
nuclear reactions are significant.

WORKED EXAMPLE E3.4

Units of measurement for masses of atomic particles

The rest mass of a particle is its mass as would be measured by an observer who is moving with 
the same velocity as the particle. That is, the particle would seem to be at rest as seen by the 
observer. This is the same as our usual understanding of mass.

The SI unit for mass is the kilogramme, but this may be considered to be an inconveniently large 
unit when quoting the values of the masses of atomic particles, as the following examples show:
l The rest mass of an isolated electron is 9.110 × 10−31 kg.
l The rest mass of an isolated proton is 1.673 × 10−27 kg.
l The rest mass of an isolated neutron is 1.675 × 10−27 kg.

As an alternative to the kilogramme, the masses of nuclides and subatomic particles are more 
usually quoted in terms of the equivalent number of nucleons. The (unified) atomic mass unit, 
u, (amu) is intended to represent the mass of a proton or a neutron (which are very similar, as can 
be seen above), so that the oxygen-16 nuclide, which has 16 nucleons, would have a mass of 16 u. 
However, this is not accurate enough for most nuclear physics calculations, so that a more precise 
definition is needed, and the carbon−12 atom was chosen as the standard as follows. (The mass of 
oxygen-16 is then 15.994914 u, rather than 16.)

The atomic mass unit, u, is defined to be exactly one twelfth of the mass of an isolated 
carbon-12 atom, that is:

1 u = 1.661 × 10−27 kg

We can now restate the masses of electrons, protons and neutrons (using a large number of 
significant figures):
l The rest mass of an isolated electron is 0.000 549 u. 
l The rest mass of an isolated proton is 1.007 276 u.
l The rest mass of an isolated neutron is 1.008 665 u.

It is useful to know how much energy corresponds to a mass of 1 u:

E = mc2 = 1 u × c2 = (1.6605 × 10−27) × (2.9979 × 108)2 = 1.4924 × 10−10 J (using 5 significant figures)

Converting to eV: 
1.4924 × 10–10

1.6022 × 10–19 
 = 9.315 × 108 eV, or 931.5 MeV

 ◆ Rest mass Mass of an 
isolated particle that is at 
rest relative to the observer.

DB

 ◆ Atomic mass unit (amu), 
u Unit of mass widely 
used in atomic physics. 
Approximately equal to the 
mass of a single nucleon. 
Defined to be exactly  
1.660 539 066 60 × 10−27 kg.

DB

DB
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Summarizing, 1 u × c2 = 931.5 MeV, or:

1 u = 931.5 MeV c−2 

We now have a third way of expressing the masses of electrons, protons and neutrons:
l The rest mass of an isolated electron is 0.511 MeV c−2 (0.000549 u × 931.5 MeV c−2).
l The rest mass of an isolated proton is 938 MeV c−2.
l The rest mass of an isolated neutron is 940 MeV c−2

The rest mass of an alpha particle is 
6.644657 × 10−27 kg. Express this in:
a atomic mass units
b MeV c−2.

Answer

a 
6.644657 × 10–27

1.661 × 10–27  = 4.000 u

b 4.000 × 931.5 = 3726 MeV c−2

WORKED EXAMPLE E3.5

Nuclear reactions involve changes of mass

We have seen that any change of energy of a system is accompanied by an equivalent change in 
mass, but such changes of mass are immeasurably small in the events of everyday life. However, 
because the strong nuclear forces between nucleons are relatively large and involve small masses, 
all nuclear reactions will involve a significant change of mass.

If a nucleon system becomes more stable (which is the usual course of events), energy is 
released, total mass decreases and the total binding energy increases (because the nucleons 
have become harder to separate).

Consider the spontaneous decay of radium-226.
226

88Ra → 222
86Rn + 42α

After the decay, the nucleus has become more stable, so that the total binding energy has 
increased, and the two particles have gained kinetic energy.
Consider the masses on both sides of this equation:
l Rest mass of radium = 226.0254 u
l Rest mass of radon = 222.0176 u
l Rest mass of alpha particle = 4.0026 u
Calculate:
a the change of mass that occurs during this decay
b the total kinetic energy of the resulting particles (MeV).

Answer
a 222.0176 + 4.0026 − 226.0254 = – 0.0052 u
b 0.0052 × 931.5 = 4.84 MeV
 Most of this energy is carried by the smaller mass, the alpha particle.

WORKED EXAMPLE E3.6

DB

DB
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Mass defect

In our thought experiment, we have seen that energy (binding energy) would have to be supplied 
to completely separate all the nucleons in a nucleus. In total, the separated nucleons have more 
potential energy than when they were together in the nucleus. The equivalence of mass and energy 
informs us that the total mass of the separated nucleons must be more than their total mass when 
they were combined in the nucleus. In other words:

The mass defect of a nucleus is the reduction in mass that occurs when separated nucleons 
combine together to form a nucleus. The mass defect is equivalent to the binding energy.

Calculate the mass defect (in electronvolts) and binding energy of a helium-4 atom (mass 
4.00260 u). It consists of two protons (each of mass 1.007276 u), two neutrons (each of 
mass 1.008665u) and two electrons (each of mass 0.000549 u).

Answer
The total mass of the separate particles =  
(2 × 1.007 276) + (2 × 1.008 665) + (2 × 0.000     549) = 4.032 98 u
Mass defect = 4.032 98 − 4.002 60 = 0.030 38 u
ΔE = 0.030 38 × 931.5 = 28.30 MeV

WORKED EXAMPLE E3.7

A particular nucleus has a mass defect 
of 0.369 u. 
a Calculate its binding energy in MeV. 
b If it contains 40 nucleons, determine the 

average binding energy per nucleon.

Answer
a 0.369 × 931.5 = 344 MeV (343.72... seen 

on calculator display)

b 
343.72

40  = 8.59 MeV

WORKED EXAMPLE E3.8

40 The mass of a lithium-7 nucleus is 7.01600 u. Express 
this in:
a kilogrammes b MeV c−2.

41 An aluminium-27 nucleus has a mass of 26.9815 u.
 Determine:

a its total binding energy
b its binding energy per nucleon.

42 A nuclide of 197
79 Au has a mass of 196.9665 u. Determine 

its mass defect.

43 Thorium-232 decays to form radium-228. 
a What particle is emitted? 
b Thorium-232 has a nuclear mass of 232.0381 u and 

radium-228 has a nuclear mass of 228.03107 u. 

Determine the energy released in this decay. (Alpha 
particle mass = 6.6447 × 10–27 kg)

44 A plutonium-239 nucleus can be split into smaller nuclei 
by interaction with a neutron as follows:

 239
94 Pu + 1

0n → 134
54Xe + 103

40Zr + 31
0n

a Determine the energy released in this reaction in 
MeV (mass of Pu-239 nucleus = 239.0522 u, mass of 
Xe-134 nucleus = 133.9054 u, mass of Zr-103 nucleus 
= 102.9266 u). 

b State the form of this released energy.

45 The following equation represents one kind of nuclear 
reaction that occurs in stars.

 41
1H → 4

2He + 20
1e + 2v + 0

0γ

 Describe what is happening in this reaction.

 ◆ Mass defect The 
difference in mass between 
a nucleus and the total 
mass of its nucleons if they 
were separated. Equal to 
nuclear binding energy.

Common 
mistake
The term mass defect 
should only be used 
for the change in mass 
when all the nucleons 
are separated (equivalent 
to binding energy). For 
example, the decrease 
in mass which occurs 
during radioactive 
decay (see Worked 
example E3.6) should 
not be described as a 
mass defect.
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The strong nuclear force and nuclear stability

SYLLABUS CONTENT

 Evidence for the strong nuclear force.
 Role of the ratio of neutrons to protons for the stability of nuclides.
 Approximate constancy of binding energy curve above a nucleon number of 60.

We have seen that the existence of an attractive strong nuclear force is needed 
to explain why the protons in a nucleus are not forced apart by the repulsion that 
occurs between similar charges.

The Japanese physicist Hideki Yukawa (Figure E3.19) in 1935 proposed that the 
exchange of (as yet undiscovered) subatomic particles (called mesons) between 
nucleons was the cause of a strong nuclear force holding the nucleons together 
in a nucleus. His hypothesis was effectively proven when mesons were 
discovered in 1947.

In a stable nucleus, we can consider that the very short-range attractive strong 
nuclear forces are balanced by the longer range repulsive electric forces.

This is illustrated in Figure E3.20 with a nucleus which includes, as an example, 
four protons and three neutrons randomly arranged.

As can be seen in Figure E3.21, 74Li is a stable nuclide.

The stability of a nuclide depends on the ratio of neutrons to protons (N/Z) in 
its nucleus.

Figure E3.21 shows a small part (the beginning) of a chart of nuclides. Each box 
on the chart corresponds to a particular nuclide. The boxes highlighted in blue 
show stable nuclides. The others have been produced artificially. The boxes 
highlighted in green show well-known radionuclides. A full chart of nuclides 
may show the relative abundances of the nuclides and the way in which unstable 
nuclides decay. (These charts are sometimes drawn with the axes reversed from 
that shown in Figure E3.21.)

	■ Figure E3.19 Japanese physicist 
Hideki Yukawa in 1951

 ◆ Mesons Unstable 
subatomic particles 
involved with the strong 
nuclear force. 

+

+

+

+

repulsive
electric forces

strong attractive
nuclear forces

	■ Figure E3.20 Attractive and repulsive 
forces balance in a stable nucleus

Common 
mistake
Radioactivity is usually 
associated with the more 
massive nuclides, but 
Figure E3.21 illustrates 
the fact that all elements 
have radioisotopes.

N
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um
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N

11 B-16 C-17 N-18 O-19 F-20 Ne-21
10 Be-14 B-15 C-16 N-17 O-18 F-19 Ne-20
9 Li-12 B-14 C-15 N-16 O-17 F-18 Ne-19
8 He-10 Li-11 Be-12 B-13 C-14 N-15 O-16 F-17 Ne-18
7 He-9 Li-10 Be-11 B-12 C-13 N-14 O-15 F-16 Ne-17
6 He-8 Li-9 Be-10 B-11 C-12 N-13 O-14 F-15 Ne-16
5 He-7 Li-8 Be-9 B-10 C-11 N-12 O-13 F-14 Ne-15
4 He-6 Li-7 Be-8 B-9 C-10 N-11 O-12
3 He-5 Li-6 Be-7 B-8 C-9 N-10
2 H-3 He-4 Li-5 Be-6 B-7 C-8
1 H-2 He-3 Li-4
0 H-1

1 2 3 4 5 6 7 8 9 10
Proton number, Z

	■ Figure E3.21 A chart 
of the nuclides for Z ≤ 10
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Figure E3.22 shows the overall pattern seen on a full chart of nuclides. 

It is possible to identify several trends within the full chart of nuclides. 
Most importantly, from Figure E3.22, we can see that the neutron / proton 
(N/Z) ratio of a nuclide is a rough guide to its possible stability.208

82Pb is 
the nuclide with the largest nucleon number which is stable.

For nuclides with Z < 20, stable nuclides have N/Z ≈ 1; For larger 
nuclides N/Z gradually increases to a maximum of about 1.5.

The reason for the increasing N/Z ratio of stable nuclei is as follows. In 
smaller nuclei with fewer nucleons, the short-range attractive nuclear 
force from any particular nucleon will have some effect on all the other 
surrounding nucleons. However, in larger nuclei some nucleons will be 
far enough apart from each other that the nuclear forces between them 
become less significant. The longer range repulsive coulomb force 
between protons could then make the nucleus unstable. The addition 
of extra neutrons (affected by the attractive nuclear force, but not the 
repulsive coulomb force) results in stability.

Proton number, Z
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 n
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r, 

N

20

20

40

stable nuclides

60

80

100

120

0
0

N = Z

40 60 80 100

unstable
nuclides

unstable
nuclides

	■ Figure E3.22 Stable nuclei shown 
on a chart of the nuclides

Variations in binding energy per nucleon

Adding more nucleons to a nucleus clearly increases its total binding energy, but we need to have 
some understanding of why the average binding energy per nucleon (and nuclear stability) varies 
as seen in Figure E3.22.

Imagine adding a nucleon to a nucleus which only has a few nucleons: the strong nuclear force 
will act between the additional nucleon and its closest ‘neighbour’, but also the surrounding 
nucleons. The total binding energy will increase. Then, imagine another nucleon is added: the 
total binding energy will increase by more than the previous amount because the strong nuclear 
force is affecting more nucleons close to the new nucleon. In this way, the average binding energy 
per nucleon increases.

However, because of the short range of the strong nuclear force, its effect on nucleons that are not 
relatively close together is insignificant. This explains why:

adding neutrons to larger nuclei with A > about 60 increases the total binding energy, but has 
little effect on the binding energy per nucleon.

46 Calculate the N/Z ratios for the following stable nuclides: 
a 12

6C b 107
47Ag c 208

82Pb.

47 Estimate the number of nucleons in stable isotopes of the 
following elements: 
a boron (Z = 5)
b bromine (Z = 35)
c mercury (Z = 80).

48 Refer to Figure E3.21.
 Suggest why the following nuclides are unstable:

a carbon-14 
b nitrogen-12.

49 Explain why a more massive nucleus needs more 
neutrons per proton (than a less massive nucleus) in order 
to be stable.

50 Describe the variation of binding energy per nucleon 
shown in Figure E3.18.

51 a Use Figure E3.18 to estimate the binding energy per 
nucleon for nuclides with nucleon numbers 100, 150 
and 200. 

b Do you agree that your answers are 
‘approximately constant’? 

c Suggest why binding energy per nucleon shows much 
greater variation for smaller nuclei.
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What can we learn from the spectra of 
alpha, beta and gamma radiations?

SYLLABUS CONTENT

 The spectrum of alpha and gamma radiations provides evidence for discrete nuclear energy levels.
 The continuous spectrum of beta decay as evidence for the neutrino.

	■ Alpha particle spectrum
Many radionuclides which emit alpha particles, emit them with only one precise energy. However, 
some radionuclides can emit alpha particles with different energies as displayed in an alpha 
particle spectrum. This provides physicists with important information about energy levels 
within nuclei.

The spectrum of nuclear radiations emitted from an unstable nucleus describes the relative 
numbers of particles emitted with different energies.

For example, nuclei of americium-241 emit alpha particles in the process of decaying to nuclei of 
neptunium-237.

241
95Am → 237

93Np + 42α

An alpha particle emitted from americium-241 will have one of the following energies:
l 5.389 MeV (1.0%)
l 5.443 MeV (12.5%)
l 5.486 MeV (86.0%)
l 5.512 MeV (0.2%)
l 5.545 MeV (0.3%).

The spectrum is shown in Figure E3.23.

It is important to realize that the energy of any emitted alpha particle can only have one of these 
energies. The energies are discrete and the spectrum is not continuous. All alpha particles have 
discrete energies and all alpha particles from a particular radionuclide will have the same energies.

Alpha particles with different energies are possible because the nucleus of the daughter product 
(neptunium-237) can be left in its ground state, or in one of several discrete excited states (an 
energy state above the ground state). Figure E3.24 shows the emission of alpha particles of five 
different energies from americium-241 to various nuclear energy levels of neptunium-237. The 
total energy released from the Am-241 nucleus is always 5.545 MeV.

 ◆ Alpha particle 
spectrum The range of 
discrete energies possessed 
by alpha particles emitted 
from the same radionuclide.

 ◆ Excited state When 
a particle is at a higher 
energy level than its 
ground state.

Energy of alpha particle/MeV

not to scale
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	■ Figure E3.23 Spectrum of alpha particles
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some nuclear
energy levels
of Np
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93

	■ Figure E3.24 Energies of alpha particles emitted from americium-241
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	■ Gamma ray spectrum
Consider Figure E3.24 again. After the alpha decays, four excited states of the neptunium-237 
nuclide can be seen. Afterwards, when a nucleus changes from an excited state to a lower energy 
level, a gamma ray photon will be emitted. The nucleus cannot emit a continuous range of gamma 
rays. The discrete energies of the photons (as seen in a gamma ray spectrum) again provide 
evidence for discrete energy levels within nuclei.

Figure E3.25 shows another example, nuclear energy levels within the magnesium-24 nuclide after 
beta-negative decay from sodium 24 left the nucleus in an excited state. Five prominent transitions 
to lower energy levels have been shown.

The discrete energy levels of nuclei are the reason why alpha particles and gamma rays are 
emitted with discrete energies.

	■ Beta particle spectrum
The spectrum of beta particles emitted from a particular radionuclide is very different from 
alpha particles. See Figure E3.26 and compare it to Figure E3.23.

This range of beta particle energies was puzzling for physicists: why were beta particles different 
from alpha particles, which all have the same energy(s) from the same source? Without further 
information, it appeared that beta particle emission could break the laws of conservation of energy 
and momentum.

We now know that when scientists first detected the emission of beta-negative particles (1899), 
they were unaware of the undetected antineutrinos which were also emitted. It was more than 
thirty years, in 1930, before the Austrian physicist Wolfgang Pauli hypothesized the involvement 
of unknown particles in beta decay. See Figure E3.27, which shows possible relative motions of the 
three particles involved after the beta-negative decay of cobalt-60. The conservation of energy and 
momentum can only be explained by the emissions of two particles from the nucleus at varying 
angles. The energies of the beta particles will vary with the angles involved.
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recoil of nucleus

antineutrino electron

	■ Figure E3.26 Typical energy 
spectrum for beta decay

	■ Figure E3.27 Beta-negative decay

The still undiscovered particles were named neutrinos (and antineutrinos) because it was believed 
that they must be uncharged and have a very small mass – the reasons why they are very hard to 
detect. Their existence was not confirmed until 1956.

The emission of a beta particle involves another particle (an undetected neutrino or 
antineutrino). The particles may travel in random directions, so that a continuous range of beta 
particle energies is possible.

MeV

5.22

4.23
4.12

1.3685

ground 
state24

12Mg

	■ Figure E3.25 Excited 
energy levels within the 
magnesium-24 nuclide

 ◆ Gamma ray spectrum 
Range of discrete photon 
energies that may be 
emitted from a single 
radionuclide.

LINKING QUESTION
l How did 

conservation lead 
to experimental 
evidence of the 
neutrino? (NOS)

This question links 
to understandings in 
Topics A.2 and A.3.

 ◆ Beta particle spectra 
The continuous range of 
different energies possessed 
by beta particles emitted 
from the same radionuclide.
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 ATL E3C: Research skills 

Using search engines and libraries effectively
It is believed that neutrinos are the second most common type 
of particle in the Universe (after photons). It is estimated that 
over 1012 neutrinos pass through a fingernail every second. They 
usually pass through the entire Earth without being affected 
or detected.

Use the internet to learn about the Long Base-line Neutrino 
Experiment / DUNE, which is yet to be completed in the USA.

	■ Figure E3.28 The building at the top of the ‘ice cube’ neutrino 
detector, which is deep underground near the South Pole

TOK

Knowledge and the knower

Of course, scientists involved in research (for example, into 
subatomic particles such as the neutrino) will claim to be open-
minded and receptive to new ideas. Undoubtedly, this is a primary 
aim of all scientists, but to some extent we are all inevitably 
influenced and restricted by our previous experiences, and the 
culture of the society in which we live.

Expensive projects need to have specific aims (or governments 
would not provide funding), and these will focus and direct the 
thinking of the scientists involved. However, it is clear from the 
development of science over the centuries that it is in the nature 
of science and scientists to use their imagination to formulate 
new and original ideas. It is possible that no ‘single truth’ about 
neutrinos (in the sense of certain knowledge for all time) will 
emerge from the latest research, although it is to be hoped that our 
understanding of these elusive fundamental particles will expand.

52 Figure E3.29 shows four possible alpha particle decays 
for a plutonium-238 nuclide. 
a If the most energetic alpha particle has an energy of 

5.510 MeV, determine the energies of the other three.
b After an alpha decay, the daughter nuclide 

(uranium-234) is in an excited state.
 Calculate the highest frequency of gamma ray that 

could then be emitted.

E (MeV)

0.296

0.143

0.043

ground state
U

Pu

a a

a
a

	■ Figure E3.29 Four possible alpha particle decays 
for a plutonium-238 nuclide to uranium-234

53 a If an isolated neutron at rest decayed into a proton 
and an electron (an antineutrino is also emitted), 
estimate the energy (MeV) that would be released. 

b Explain why most of this energy will be transferred 
to the kinetic energy of the electron (beta-negative 
particle). 

54 Compare the magnitude of typical nuclear energy levels 
with typical electron energy levels.

55 The radionuclide 15
6C undergoes beta-negative decay. 

The excited state of the daughter product then emits a 
gamma ray as it moves down to its ground state.

 Sketch an energy level diagram to represent these changes.

56 Suppose that it is known that a particular nuclide emits 
gamma ray photons of energies 0.58 MeV, 0.39 MeV and 
0.31 MeV when transitioning to the ground state.

 Determine the energies of another three different photons 
that might be emitted from the same nucleus.
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Radioactive decay in more mathematical detail

SYLLABUS CONTENT

 The decay constant λ and the radioactive decay law as given by: N = N0e
–λt.

 The decay constant approximates the probability of decay in unit time only in the limit of sufficiently 
small λt.

 Activity as the rate of decay as given by: A = λN = λN0e
–λt.

 The relationship between half-life and the decay constant as given by T½ = 
ln 2
λ .

Earlier in this topic the concept of half-life was introduced as a way of representing the pattern 
of decreasing activity, or count rate, from a radioactive source. We now want to develop that idea 
so that we can determine values of activity, or count rate, at any time, not just for times which are 
whole number multiples of the half-life. For example, we may wish to know what the activity of a 
source, which has a half-life of 5.3 years, will be in a year’s time.

If a quantity, N, changes by an amount ΔN in a time Δt, the rate of change is ΔN/Δt. There are 
many examples in science, and in everyday life, where a rate of change at any time depends on the 
quantity at that time. If a rate of change is always proportional to the quantity, it is described as an 
exponential change:

ΔN
Δt

 ∝ N 

Putting in a constant, we get:
ΔN
Δt

 = λN 

For radioactive decay (an exponential decrease), ΔN will be negative, so that:

ΔN
Δt

 = – λN 

where λ (which is positive) is called the decay constant.

Decay constant, λ = – 
ΔN/N

Δt
 = probability of a nucleus decaying in unit time

SI unit: s−1 

For example, if N = 200 and in time Δt = 1 s, N decreases by 5, ΔN = −5, then:

λ = – 
ΔN/N

Δt
 = – 

–5/200
1

 = 0.025 s–1

However, we need to be careful when making calculations like this, because if  
ΔN
N

 (= –λΔt) is too 
large, it will vary significantly during time Δt.

Larger values of a decay constant correspond to quicker decreases and shorter half-lives.

We saw earlier in this topic that the activity, A, of a radioactive source is the number of nuclei 
decaying every second (unit: Bq). We can write this as:

A = 
ΔN
Δt

 

so that:

activity, A = λN

 ◆ Decay constant, λ, The 
probability of decay of 
an unstable nucleus per 
unit time: λ = (–ΔN/N)/Δt 
(SI unit: s−1).

DB
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The activity of a radioactive sample is 
2.5 × 105 Bq. The sample has a decay 
constant of 1.8 × 10–6 s−1. Determine the 
number of undecayed nuclei remaining in 
the sample at that time.

Answer
A = λN
2.5 × 105 = (1.8 × 10−6) × N

N =  
2.5 × 105

1.8 × 10–6

 = 1.4 × 1011 undecayed nuclei.

WORKED EXAMPLE E3.9

The radionuclide Tc-99 has a decay 
constant of 0.115 h−1.
Calculate the percentage of the nuclei that 
decay every:
a hour
b minute (assume the activity is constant 

over the hour). 

Answer

a  λ = – 
ΔN/N

Δt  

 0.115 = – 
ΔN/N

1.0  

 
–(ΔN

N ) = 0.115

 which is equivalent to 11.5 %

b 
11.5
60  = 0.192 %

WORKED EXAMPLE E3.10

	■ Solutions to the decay equation

Although the equation 
ΔN
Δt

 = –λN (the law of radioactive decay) defines the mathematics of 

radioactive decay, it does not directly provide us with what we are most likely to want to know – 
the value of N, A, or a count rate at any time, t. For that we can use the following equations, which 
may be described as solutions to the previous equation. You are not expected to understand the 
origin of these exponential decay equations.

number of undecayed nuclei, N = N0e
−λt

In this equation, N0 represents the number of undecayed nuclei in a source at the beginning of a 
time t, and N represents the number of undecayed nuclei at the end of time t. Similarly:

activity, A = A0e
−λt

where A0 represents the activity from a source at the beginning of a time t, and A represents the 
activity at the end of time t.

Since A = λN, the equation can also be expressed as:

activity, A = λN0e
−λt

The activity of a source is not easily determined, as is explained below. The count rate, C, (a non-
standard symbol) measured by a radiation detector in a laboratory is not directly measuring the 
activity of the source, but it will usually be proportional to the activity, so that we can also write:

C = C0e
−λt

 ◆ Law of radioactive 
decay The rate of decay is 
proportional to the number 
of undecayed nuclei,  
ΔN/Δt = –λN. 
Exponential decay 
equations N = N0e

−λt. N0 is 
the number of undecayed 
nuclei at the start of time 
t and N is the number 
remaining at the end of 
time t. Alternatively, 
equations of the same form 
can be used with activity, 
A, or the count rate. 
Activity is linked to the 
initial number of atoms by 
the equation A = λN0e

−λt.

DB

DB
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Figure E3.30 shows that a detector can only receive some of the total radiation from 
a source.

We could use the ratio X/4πr2 to determine a value for the fraction of the radiation 
emitted that arrives at the detector, but that would assume that:
l No radiation was absorbed between the source and the detector.
l The radiation was emitted equally in all directions.

Determining the activity of the source would also be difficult because not all of the 
radiation passing into the detector will be counted.

	■ Figure E3.30 A radiation detector 
receives only a fraction of the 
radiation emitted from a source

radioactive
source

r
area X

radiation
detector

Tool 3: Mathematics

Carry out calculations involving logarithmic 
and exponential functions

N = N0e
−λt

Suppose we are given N0 and λ and wish to find a value 
for N at a known time, t, later:

Take natural logarithms of both sides:

ln N = ln N0 − λt

Suppose we are given N0 and N at a known time, t, later, 
and wish to find a value for λ.

Divide both sides by N0:
N
N0

 = e–λt

Take natural logarithms of both sides:

ln ( N
N0

) = –λt or, ln (N0

N ) = +λt

The number of radioactive atoms in a source decays by 7/8 in 12 days. Predict the fraction 
of radioactive atoms remaining after 24 days.

Answer
This can be done in a straightforward way without using exponentials: the source passes 
through three half-lives to reduce to 1/8, so the half-life is four days. In 24 days, there are 
six half-lives, so the fraction reduces to 1/64 (1/26).
We could get the same answer using the exponential equation N = N0e

−λt.
After 12 days: N/N0 = 1/8 = e−λ(12)

8 = e12λ

ln 8 = 12λ
λ = ln 8/12 = 0.173
After 24 days: N/N0 = e−0.173(24) = 0.0157 = 1/64

WORKED EXAMPLE E3.11

The decay constant for a radioisotope is 
0.054 y−1. If the activity at the start of year 
2022 was 470 Bq, calculate the activity at 
the start of year 2026.

Answer
A = A0e

−λt

A2026 = 470 × e−0.054 × 4

ln A2026 = ln 470 − (0.054 × 4)
A2026 = 379 Bq

WORKED EXAMPLE E3.12
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57 A sample of radium-226 contains 6.64 × 1023 radioactive 
atoms. It emits alpha particles and has a decay constant 
of 1.38 × 10−11 s−1. Determine how many atoms of 
radium-226 are left after 1000 years.

58 A radioactive nuclide has a decay constant of 0.0126 s−1. 
Initially a sample of the nuclide contains 1.0 × 1010 nuclei. 
a Calculate the initial activity of the sample. 
b Predict how many nuclei remain undecayed 

after 200 s.

59 a The count rate from a radioactive source is measured 
to be 673 s−1 (adjusted for background count).

 If exactly three hours later the count rate has reduced 
to 668 s−1, determine a value for i the decay constant 
and ii the half-life.

b Explain why the value may be unreliable.

60 A source has an activity of 4.7 × 104 Bq.
 Assuming that the background count is negligible and the 

experiment is carried out in a vacuum, predict the count 
rate that could be recorded by a detector that has an 
effective receiving area of 0.85 cm2 if it was placed:
a 50 cm from the source 
b 5 cm from the source. 

61 The activity from a radioactive source is 8.7 × 105 Bq.
 If its decay constant is 6.3 × 10−6 s−1, calculate how many 

days will pass before the activity falls to 1.0 × 104 Bq.

62 A radioactive source of gamma rays, cobalt-60, is 
commonly used in school demonstrations.

 If the maximum allowable activity is 200 kBq, calculate 
the maximum mass of cobalt-60 in a school source. 
(Decay constant for cobalt-60 is 0.131 y−1. Molar mass of 
Co-60 is 59.93 g)

	■ Decay constant and half-life
The concept of the half-life of a radioactive nuclide was introduced earlier in this topic. Using the 
equation N = N0e

−λt, it is straightforward to derive an equation that relates the half-life, T½, to the 
decay constant, λ.

For any radioactive nuclide, the number of undecayed nuclei after one half-life is, by the 
definition of half-life, equal to N0/2, where N0 represents the original number of undecayed nuclei. 
Substituting this value for N in the radioactive decay equation at time t = T½ we get:

N0

2
 = N0e

–λT½

Dividing each side of the equation by N0:
1
2 

= e–λT½ or, 2 = eλT½

Taking natural logarithms

ln 2 = λT½

So that:

Connection between half-life and decay constant:

T½ = 
ln 2
λ

Alternatively, inserting a value for ln 2:

T½ = 
0.693

λ

DB
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A radioactive source gives a count rate of 100 s−1 at a certain instant of time. After 100 s the 
count rate drops to 20 s−1. The average background count rate is measured to be 1.5 s−1.
Calculate the half-life of the source. Assume that the count rate is a measure of the activity.

Answer
Initial count rate due to source = 100 – 1.5 = 98.5 s−1.
Count rate due to source after 100 s = 20 – 1.5 = 18.5 s−1.
C = C0e

−λt

18.5 = 98.5 × e–100λ

100λ = ln (98.5
18.5)

λ = 0.016 72
T½ = 0.693/0.016 72 = 41 s

WORKED EXAMPLE E3.13

63 Radioactive carbon-14 in a leather sample decays with a 
half-life of 5730 years. 
a Determine the decay constant of C-14. 
b Calculate the percentage of radioactive carbon 

remaining after 10 000 years.

64 At a certain time, a pure source contained 3.8 × 1015 
radioactive atoms. Exactly one week later the number of 
radioactive atoms had reduced to 2.8 × 1014.

 Calculate the half-life of this source.

65 The activity of an americium-241 source used in a school 
laboratory was 1.6 × 105 Bq. Am-241 has a half-life of 
432 years. 
a Show that the source contained about 3 × 1015 

americium-241 atoms. 
b Determine the mass of this number of 

americium atoms.

66 The half-life of strontium-90 is 28.8 years.
 Calculate how long it will take for the count rate from a 

sample to fall by: 
a 1%
b 99%.

67 A cobalt-60 source used in radiotherapy in a hospital 
needs to be replaced when its activity has reduced to 
about 40% of its value when it was purchased.

 If it was purchased December 2015 and replaced in 
November 2022, estimate its half-life.

68 The (adjusted) count rate from a radioactive source 
is 472 s−1.

 If its half-life is 13.71 minutes, predict the count rate 
exactly 1 hour later.

69 Uranium-238 is the most common isotope of uranium. It 
has a half-life of 4.47 billion years. The age of the Earth 
is 4.54 billion years. 

 Calculate the percentage (to 1 decimal place) of the 
original uranium-238 still present in the Earth’s crust. 

70 The radionuclide 40
19K has a half-life of 1.3 × 109 y. It 

decays into the stable nuclide 40
18Ar. Rocks from the Moon 

were found to contain a ratio of potassium to argon atoms 
of approximately 1:7. 
a Estimate the age of these rocks.
b Discuss whether the answer to part a is also a 

reasonable approximation for the age of the Moon. 
Explain your answer.

Experimental determination of half-life

If the count rate from a radioactive source is measured for more than one half-life, it is straightforward 
to determine a value for that half-life (as discussed earlier in this topic). We will now explain:
l how the calculation can be made more accurate
l how to determine the half-life of a radionuclide which is so long that no change in count rate 

can be detected.
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Radioisotopes with relatively short half-lives
This method is suitable if the count rate from a radionuclide decreases 
measurably over the time available for the experiment, but it is not 
necessary that the half-life is less than duration of the experiment.

The decay constant can be determined directly from the equation C = C0e
−λt,  

but a more accurate method involves plotting a graph of the natural 
logarithm of the count rate, C, against time, t. This should give a straight 
best-fit line (Figure E3.31).

Taking natural logarithms of C = C0e
−λt: ln C = ln C0 – λt. This equation can 

be compared to the equation for a straight line (y = mx + c), showing that 
the gradient is equal to −λ, from which the half-life can be calculated.

Inquiry 2: Collecting and Processing data

Processing data

Determination of half-life

Table E3.4 shows the results from a 2.5 h 
experiment to determine the half-life of 
radionuclide. The average background count 
was 0.20 every second.

Draw a graph of the natural logarithm of 
the adjusted count rate against time. Use the 
graph to determine a value for the half-life 
of the radionuclide. Discuss the accuracy of 
this experiment.

	■ Table E3.4 Results of half-life experiment

Time Count rate/min−1

9.30 am 96

10.00 am 88

10.30 am 81

11.00 am 75

11.30 am 69

12.00 pm 64

Radioisotopes with relatively long half-lives
If the count rate does not change during the course of an experiment (other than random variations), 
we cannot use the equation C = C0e

−λt to determine a decay constant (and half-life). Instead,

To determine the decay constant of radionuclides with long half-lives, we use the equation  
A = λN

We would need to measure the activity, A, (not the count rate) and the number of undecayed nuclei, 
N, in a sample. However, this is difficult and it will not be possible in a school laboratory.

The activity can be determined from the count rate and the geometry of the apparatus (see 
Figure E3.30). The number of undecayed atoms in a pure sample, N, can be determined from its 
mass, m.  

N = 
mNA

relative atomic mass 
(see Topic B.3)

0

gradient = –λ

t
0

In C In C0 

	■ Figure E3.31 A plot of the natural 
logarithm of the count-rate against time
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A radioactive source of cobalt-60 (only) is known to produce an activity of 4.37 × 108 Bq. 
Estimate (i) the decay constant for this radionuclide if its mass is 10.5 μg, and (ii) the half-
life of cobalt-60.

Answer
(i) First, we need to determine the number of atoms of cobalt-60:

N = 
mNA

relative atomic mass = 
(10.5 × 10–6) × (6.02 × 1023) 

60  = 1.05 × 1017

Then use A = λN
4.37 × 108 = λ × (1.05 × 1017)
λ = 4.1 × 10−9 s−1 (4.1619... × 10–9 seen on calculator display)
(ii) T 1

2
 = ln 2/λ = 1.67 × 108 s or 5.3 years

WORKED EXAMPLE E3.14

71 The cadmium-109 radioisotope has a half-life of 463 days.
 Predict the activity you would expect from a mass of 4.3 × 10−4 g of pure cadmium-109.

72 A pure radioisotope has a half-life of 49 hours and is producing a count rate of 81 every 
minute. The background count averages at 18 every minute.

 Discuss, using appropriate calculations, whether it would be possible to accurately confirm 
the half-life experimentally over the course of a morning in the laboratory.

73 A small rock of mass 214 g is known to contain 8.2% uranium-238 (by mass). U-238 has a 
half-life of 4.5 billion years. There are no significant amounts of any other radioisotope.

 What level of radioactivity will be emitted in this rock?
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E.4 Fission

• In which form is energy stored within the nucleus of the atom?
• How can the energy released from the nucleus be harnessed?

Guiding questions

Nuclear fission

SYLLABUS CONTENT

	 Energy	is	released	in	spontaneous	and	neutron-induced	fission.

Nuclear	fission	was	introduced	briefly	in	Topic	E.4,	we	will	now	look	at	it	in	more	detail.	Fission	
is	the	splitting	of	a	massive	nucleus	into	two	smaller	nuclei.

After	nuclear	fission	occurs,	the	resulting	nuclei	are	called	fission fragments.	Typically,	neutrons	
and	gamma	rays	are	also	released	during	the	fission.

Nuclear fission can sometimes be a spontaneous	(random,	without	cause)	form	of	radioactive	
decay	of	very	massive	nuclei.	The	following	fission	/	decay	of	californium-252	(a	nuclide	which	
does	not	occur	naturally)	is	an	example.

252
98Cf	→	14256Ba + 10642Mo	+	41

0n

As	we	saw	in	Topic	E.3,	a	detailed	analysis	of	the	masses	involved	in	nuclear	reactions	can	lead	to	
a	determination	of	the	energy	released.

More	important	than	spontaneous	fission,	fission	can	be	deliberately	induced in nuclei which 
would	not	otherwise	readily	split	into	fragments.	Most	commonly,	nuclear	fission	is	induced	by	
using slow-moving	neutrons.

See	Figure	E4.1,	which	shows	the	well-known	and	important	induced	fission	of	uranium-235.

impact by slow
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 ◆ Fission fragments The 
nuclei produced in a fission 
reaction.

	■ Figure E4.1 Fission	
of	uranium-235
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Uranium-235	is	the	world’s	only naturally occurring nuclide that is capable of sustained nuclear 
fission (it is said to be fissile).	There	are	other	fissile	nuclides	(plutonium-239,	for	example)	but	
they	are	not	found	naturally:	they	need	to	be	produced	in	nuclear	reactors.

1
0n + 23592U	→	[23692U]	→	14456Ba + 89

36Kr	+	31
0n	(+	gamma	ray	photons	and	antineutrinos)	 

+ about 180 MeV of energy

You	need	to	understand	this	equation,	but	you	do	not	need	to	remember	it.

In this	example,	the	fission	fragments	are	barium	and	krypton,	but	these	fragments	can	vary.	The	
number	of	neutrons	released	can	also	vary.

The	neutron	is	absorbed	by	the	uranium-235	nucleus,	becoming	uranium-236	which	very	quickly	
fissions	as	shown.

Three	further	neutrons	are	produced,	which	means	that	further	fission	may	be	possible	(see	later).

The	amount	of	energy	released	is	considerable	(≈	180	MeV	for	each	fission	reaction).

The	majority	of	the	energy	released	is	the	form	of	kinetic	energy	of	the	fragments.	Neutrons	
and	gamma	rays	also	transfer	significant	energy.

More energy is released later as the fragments decay radioactively and the neutrons and gamma 
rays	are	absorbed.	A	total	of	over	200	MeV	will	be	transferred	to	internal	energy	in	the	material	
containing	the	uranium-235.	This	is	the	energy	that	is	utilized	in	nuclear	reactors	which	generate	
electrical	energy.

 ◆ Fissile Capable of 
sustaining a nuclear fission 
chain	reaction.	

LINKING QUESTION
l In which form is 

energy released 
as a result of 
nuclear	fission?
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Nucleon number

fission of a large nucleus increases
the size of binding energy per
nucleon and releases energy

62

	■ Figure E4.2 Fission	increases	binding	energy	
per nucleon

	■ Changes of binding energy and mass during 
nuclear fission

For	nuclear	fission	to	occur,	the	fission	fragments	must	be	more	stable	than	
the	original	nucleus.	That	is,	the	fission	fragments	must	have	higher	values	
of	binding	energy	per	nucleon	than	the	original	nucleus	undergoing	fission.

Looking	again	at	Figure	E3.18	we	can	see	that	fission	will	only	be	
theoretically possible for nuclides which can split into two nuclides which 
have	a	greater	nucleon	number	than	(approximately)	nickel-62.	This	is	also	
represented	in	Figure	E4.2.

Returning	to	the	fission	of	uranium-235,	The	average	binding	energies	(MeV)	per	nucleon	
involved	are	uranium	235:	7.59;	krypton	89:	8.72;	barium	144:	8.27.
Determine	the	change	in	total	binding	energy	in	this	fission	process.

Answer
(89	×	8.72)	+	(144	×	8.27)	−	(235	×	7.59)	≈	183	MeV	(increase)

WORKED EXAMPLE E4.1

The	increase	in	binding	energy	calculated	in	the	Worked	example	E4.1	is	accompanied	by	the	
release	of	the	same	amount	of	energy	in	the	fission	process,	as	shown	in	the	equation	above.
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The release of energy from the nuclei must result in a decrease in mass (see mass–energy 
equivalence	in	Topic	E.3),	as	follows	for	the	fission	of	uranium-235:
l	 Rest	mass	of	each	neutron	=	1.008	665	u.
l	 Rest	mass	of	uranium-235	=	235.043	930	u.
l	 Rest	mass	of	barium-144	=	143.922	955	u.
l	 Rest	mass	of	krypton-89	=	88.917	836	u.
l	 Rest	mass	on	left-hand	side	of	the	equation	=	236.052	595	u.
l	 Rest	mass	on	right-hand	side	of	the	equation	=	235.866	786	u.
l	 Mass	difference	=	0.185	809	u.

This	mass	difference	is	equivalent	to	173	MeV	(0.185809	×	931.5),	which	is	in	reasonable	
agreement	with	the	180	MeV	quoted	above.

1 Consider the spontaneous fission:
 252

98Cf	→	14256Ba + 10642Mo	+	41
0n 

	 Use	the	internet	to	determine	the	relevant	masses,	and	
hence calculate a value for the total energy released in 
this	fission.

2	 Explain	why	a	nuclide	such	as	bromine-79	cannot	
undergo	nuclear	fission.

3 One possible induced fission of 23592U	produces	Xe-140	
(proton	number	=	54)	and	Sr-94,	after	the	uranium	
nucleus	captures	a	neutron.
a	 Write	a	nuclear	equation	for	this	process.	

b	 Determine	the	energy	released.	(mass	of	uranium-235	
=	235.044	u,	mass	of	xenon-140	=	139.922	u,	mass	of	
strontium-94	=	93.915	u).	

c	 The	mass	defect	of	the	xenon-140	nucleus	is	1.2461	u.	
What	is	its	binding	energy	per	nucleon	(MeV)?	

d Compare you answer to part c with the binding 
energy	per	nucleon	of	uranium-235	(use	the	internet	
for	data).

4	 The	following	is	a	possible	fission	of	a	plutonium	nuclide.
 1

0n + 23994Pu	→	???	→	13454Xe + ?
?Zr	+	31

0n 
	 Identify	the	5	question	marks.

Controlled release of nuclear 
energy in chain reactions

SYLLABUS CONTENT

	 The	role	of	chain	reactions	in	nuclear	fission	reactions.
	 The	role	of	control	rods,	moderators,	heat	exchangers	and	shielding	in	a	nuclear	power	plant.

We	have	seen	that	a	neutron	is	usually	needed	to	induce	nuclear	fission,	but	then	that	fission	
produces	further	neutrons.	These	neutrons	may	be	able	to	induce	further	fission	in	other	nuclei,	so	
that	there	is	the	possibility	of	continued	fissions	and	the	continual	release	of	energy,	as	is	needed	
in	a	nuclear	power	plant	(station).	(A	relatively	small	number	of	neutrons	are	emitted	randomly	in	
any	sample	of	uranium-235.)

If,	on	average,	the	neutrons	produced	in	each	nuclear	fission produce at least one further 
fission,	the	process	continues,	and	it	is	known	as	a	chain reaction.

After	each	U-235	fission,	two	or	three	neutrons	are	created	and	then	they	may	cause	further	
fission,	but,	as	we	will	explain,	sustained	fission	is	impossible	unless	we	arrange	for	suitable	
circumstances,	as	described	below.	Figure	E4.3	shows	an	example	of	a	chain	reaction	involving	
uranium-235,	in	which	a	variety	of	different	fission	fragments	can	be	seen.

 ◆ Chain reaction 
(nuclear) Self-sustaining 
nuclear fission because 
each fission causes further 
fission.
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Chain reactions will not	normally	occur.	To	understand	why	
not,	we	need	to	consider	the	following	inter-related	factors.
l	 Uranium-235	atoms	will	only	be	a	relatively	small	percentage	

of	all	the	uranium	atoms	in	the	material	being	used.
l Neutrons are penetrating particles and many will simply 

pass	out	of	the	material	without	interacting	with	any	nuclei.
l	 In	order	to	cause	fission,	the	neutrons	need	to	be	travelling	

relatively	slowly.
l	 Because	neutrons	are	uncharged,	some	of	them	will	be	

absorbed	into	uranium-235	and	(especially)	uranium-238	
nuclei	without	causing	fission.	We	say	they	are	‘captured’.	
(The	newly	formed	nuclides	will	probably	emit	gamma	rays.)

It is technically very difficult to produce the necessary 
conditions	for	sustained	and	controlled	chain	reactions,	and	
the	continual	release	of	energy.	The	following	sections	explain	
how	it	is	done.	It	was	famously	first	achieved	in	1942	at	the	
University	of	Chicago.	See	Figure	E4.4.

	■ Fuel enrichment
The	metal	uranium	occurs	throughout	the	Earth’s	crust	and	
is	said	to	be	a	lot	more	common	than	gold	(for	example).	The	
rocks	from	a	uranium	mine	(see	Figure	E4.5)	typically	contain	
less	than	0.1%	uranium.	The	isotopes	in	uranium	ore	that	is	
extracted	from	the	ground	are	approximately	in	the	ratio	99.3%	
uranium-238	and	0.7%	uranium-235	(with	traces	of	other	
isotopes).	All	the	isotopes	of	uranium	are	radioactive,	but	the	
half-life	of	uranium-238	is	very	long	(4.5	×	109 years),	similar	
to	the	age	of	the	Earth,	whereas	uranium-235	has	a	half-life	of	
7.0	×	108	years.

After the ore has been purified its appearance is as shown in 
Figure	E4.6.	It	is	often	known	as	‘yellowcake’.	The	isotope	
proportions	are	the	same	as	before.

90Sr38

89Kr36

96Rb37
90Sr38

96Rb37

144Ba56

137CS55

102Y39

235U92

235U92

235U92

235U92
137Cs55

144Ba56
235U92

235U92

89Kr36
235U92

144Xe54

131I53

144Xe54

n

n

n

n

n

n
n

n

n

n
n

n
n

n

n

n

n

n

n

n

	■ Figure E4.3 The principle of a chain reaction

	■ Figure E4.4	First	self-sustaining	nuclear	chain	reaction

	■ Figure E4.5	McClean	Lake	uranium	mine	in	Saskatchewan,	Canada 	■ Figure E4.6	Yellowcake
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For	a	chain	reaction	and	power	generation,	the	percentage	of	uranium-235	has	to	be	increased	
to	around	3%	to	5%,	although	higher	percentages	are	needed	for	specialized	reactors.	(Nuclear	
weapons require a much	higher	percentage.)	This	process	is	called	fuel enrichment.	Figure	E4.7	
shows a photograph of unused enriched uranium in the form of fuel rods.	Remember	that	naturally	
occurring radionuclides of solid uranium have very long half-lives and are not usually a significant 
health	hazard	if	handled	correctly.

Uranium-238	nuclei	can	absorb	/	capture	neutrons	without	causing	fission,	so	too	much	
uranium-238	will	also	discourage	a	chain	reaction.	Enrichment	cannot	be	done	chemically	
because	isotopes	of	the	same	element	have	identical	chemical	properties,	so	physical	processes	
need	to	be	involved	(for	example,	using	the	diffusion	of	gaseous	uranium	hexafluoride)	but	these	
are	difficult	and	expensive	technologies.	The	remaining	uranium	is	called	depleted	uranium;	it	has	
physical	properties,	especially	its	high	density,	which	have	made	it	useful	in	military	engineering	
but	this	has	been	controversial	(because	it	is	slightly	radioactive).

Critical mass

The ratio of volume to surface area of a solid increases as it gets larger (consider solid cubes of 
different	sizes).	This	means	that	the	more	massive	a	material	is,	the	smaller	the	percentage	of	
neutrons	that	will	reach	the	surface	and	escape.	That	is,	a	higher	percentage	may	cause	fission.	
The critical mass	of	a	material	is	the	minimum	mass	needed	for	a	self-sustaining	chain	reaction.	
(Uranium	that	contains	20%	of	uranium-235	has	a	critical	mass	of	over	400	kg,	which	is	equivalent	
to	a	sphere	of	radius	17	cm.)

The	critical	mass	can	be	reduced	by	surrounding	the	material	with	neutron	reflectors.

Moderator

The	neutrons	released	in	nuclear	fission	have	typical	energies	of	more	than	1	MeV,	which	means	
that	they	travel	very	fast.	This	is	usually	too	fast	to	initiate	another	fission	reaction.	The	slower	
a	neutron	travels,	the	higher	the	probability	it	has	of	causing	fission.	Therefore,	before	a	chain	
reaction	can	occur	the	neutrons	need	to	be	slowed	down	to	energies	of	less	than	1	eV.	They	are	
often then described as thermal neutrons,	meaning	that	they	have	average	kinetic	energies	similar	
to	that	of	the	surrounding	particles	at	the	same	temperature.

Reducing the speed of neutrons is called moderating and the material used is called a 
moderator.

In	order	for	the	fast	neutrons	to	lose	so	much	of	their	kinetic	energy,	they	need	to	collide	many	
times	with	the	nuclei	of	atoms.	In	general,	when	particles	collide	there	is	a	higher	rate	of	transfer	
of	kinetic	energy	between	them	if	they	have	approximately	the	same	mass	(see	Topic	A.2).	The	
mass	of	a	neutron	is	always	lighter	than	the	mass	of	a	whole	nucleus,	but	the	difference	is	less	for	
nuclei	with	low	mass.	This	is	why	atoms	with	nuclei	of	small	mass	are	preferable	for	this	process	
of	moderation,	but	it	is	also	important	that	the	nuclei	do	not	absorb	neutrons.	Commonly,	the	
hydrogen	atoms	in	water	molecules,	or	graphite	(carbon)	is	used	as	a	moderator.

	■ Essential features of a nuclear reactor
Figure	E4.8	shows	the	essential	features	of	one	type	of	nuclear	reactor.	In	this	type	of	reactor,	
water	is	the	moderator,	but	the	same	water	is	used	to	transfer	thermal	energy	from	the	reactor	
vessel	to	another,	separate,	water	system,	using	a	heat exchanger.	The	water	that	cools	the	fuel	
rods	is	in	a	tightly	sealed	system	and	none	of	it	leaves	the	concrete	containment.

 ◆ Fuel enrichment 
Increasing the percentage 
of	235-U	in	uranium	fuel	in	
order	to	make	it	of	use	in	a	
nuclear power station or for 
a	nuclear	weapon.

	■ Figure E4.7 
Uranium fuel rods

 ◆ Critical mass The 
minimum mass needed for 
a self-sustaining nuclear 
chain	reaction.

 ◆ Moderator Material 
used in a nuclear reactor 
to slow down neutrons to 
low energies and enable 
nuclear	fission.

 ◆ Heat exchanger 
Apparatus designed 
to efficiently transfer 
energy from one system 
to	another.
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	■ Figure E4.8	A	pressurized	water-cooled	reactor

Steam is generated by the thermal energy and this is used to drive a turbine and generate 
electricity,	as	shown	in	the	energy	flow	diagram	of	Figure	E4.9.

A	heat	exchanger	transfers	thermal	energy	from	the	reactor	to	the	water	and	steam	used	in	the	
separate	turbine	system.

Controlling the rate of fission

In	a	controlled,	sustained	chain	reaction,	on	average	each	fission	will	result	in	one	further	fission.

Control rods are	used	for	adjusting	the	rate	of	the	fission	reactions	by	absorbing	neutrons.

This	is	done	by	moving	the	rods	up	and	down,	into	or	out	of	the	system	as	necessary.	The	control	
rods	are	made	of	a	material,	boron	for	example,	which	is	excellent	at	absorbing	/	capturing	
neutrons.

As	a	safety	measure	(in	the	case	of	an	electricity	supply	failure,	for	example)	the	control	rods	will	
fall	under	gravity	all	the	way	into	the	core	and	quickly	shut	down	the	reactor.

Shielding

The	contents	of	the	nuclear	reactor	emit	large	quantities	of	alpha,	beta	and	gamma	rays,	as	well	
as	neutrons.	These	could	be	significant	health	hazards	and	people	in	the	surroundings	need	to	
be protected:
l during normal operation 
l	 in	the	event	of	an	accident.

Shielding	is	used	to	protect	people	from	the	dangers	of	nuclear	radiation.

The	air-tight	containment	building	is	typically	made	of	very	thick	concrete	(with	steel	
reinforcements)	to	absorb	nuclear	radiations	and	prevent	any	high-pressure	leaks	if	a	fault	
occurred	in	the	system	inside.	The	building	should	also	be	strong	enough	to	withstand	impact	
from	aircraft,	bombs	or	earthquakes.
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	■ Figure E4.9 Energy flow 
in a nuclear power station

LINKING QUESTION
l How is binding 

energy used to 
determine the rate of 
energy production 
in a nuclear 
power plant?

This	question	links	
to understandings in 
Topic	E.3.

 ◆ Control rods Used 
for adjusting the rate of 
fission reactions in nuclear 
reactors by absorbing 
more,	or	fewer,	neutrons.

 ◆ Shielding Protective 
barrier around a nuclear 
reactor designed to absorb 
and reflect dangerous 
radiations.
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Safety issues

It	is	fair	to	say	that	the	risks	of	nuclear	power	are	very	well	
understood	and,	as	a	result,	safety	standards	are	very	high.	But,	
for	many	people,	this	is	not	reassuring	enough,	because	no	matter	
how	careful	nuclear	engineers	are,	accidents	and	natural	disasters	
can	happen.	Safety	standards	do	vary	from	country	to	country,	
but the consequences of a nuclear accident anywhere could be 
really	disastrous.

The	world’s	worst	nuclear	accidents,	at	Chernobyl	in	Ukraine	in	
1986	and	Fukushima	(see	Figure	E4.10)	in	Japan	in	March	2011,	
remain	as	vivid	warnings	about	the	possible	risks	of	nuclear	power.

Since	the	Chenobyl	disaster,	modern	designs	and	safety	procedures	have	been	vastly	improved	
but	may	still	be	insufficient	in	the	face	of	an	extreme	natural	disaster.	The	radiation	leaks	and	
explosions	at	Fukushima	followed	the	damage	caused	by	a	tsunami.	Hundreds	of	thousands	of	
people	had	to	be	evacuated	because	of	these	incidents,	and	the	number	of	long-term	illnesses	and	
deaths	caused	by	them	will	take	many	years	to	be	confirmed.	A	thermal	meltdown is probably the 
most	serious	possible	consequence	of	a	nuclear	accident.	If,	for	some	reason	(for	example,	the	loss	
of	coolant	or	the	control	rods	failing	to	work	properly),	the	core	of	the	reactor	gets	too	hot	or	even	
melts,	the	reactor	vessel	may	be	badly	damaged.	Fires	and	explosions	may	happen	as	extremely	
hot	materials	are	suddenly	exposed	to	the	air.	Highly	concentrated	and	dangerous	radioactive	
materials	may	then	be	released	into	the	ground,	water	or	air	so	that	they	are	spread	over	large	
distances	by	geographic	and	weather	conditions.

When	considering	the	dangers	of	nuclear	power,	it	should	always	be	remembered	that	the	uses	
of	other	kinds	of	energy	resources	also	have	their	various	risks.	In	particular,	coal	mining	has	
been	responsible	for	an	extremely	high	number	of	serious	injuries,	long-term	health	problems	and	
deaths	over	the	past	200	years.

Nature of science: Science as a shared endeavour
Nuclear	power	plants	are	operating	in	32	different	countries,	producing	about	10%	of	the	world’s	
electricity.	It	is	believed	that	nine	countries	have	nuclear	weapons.	The	aim	of	the	International	Atomic	
Energy	Agency	(IAEA),	based	in	Vienna,	Austria,	is	‘to	promote	the	safe,	secure	and	peaceful	use	of	
nuclear	technologies’.	IAEA	is	reported	to	have	more	than	2000	multi	disciplinary	professional	and	
support	staff	from	over	100	different	countries.

	■ Figure E4.10 Fukushima	nuclear	reactor	after	
explosions	in	the	wake	of	the	tsunami	(2011)

 ◆ Nuclear waste 
Radioactive materials 
associated with the 
production of nuclear 
power that are no longer 
useful,	and	which	may	
have to be stored safely for 
a	long	period	of	time.

	■ Waste materials from nuclear reactors

SYLLABUS CONTENT

	 Properties	of	the	products	of	nuclear	fission	and	their	management.

After	fission	has	occurred,	the	various	fission	fragments	are	radioactive,	
and	maybe	the	nuclides	in	any	decay	series	from	them	are	too.	These	‘waste’	
radionuclides	can	have	a	wide	range	of	different	concentrations	and	half-lives,	
some	very	long.	This	makes	the	safe	storage	of	nuclear waste for the foreseeable 
future	very	important.	The	first	step	is	usually	storage	on	site	in	water	ponds	to	
allow time for the initial decrease in radioactivity and the dissipation of thermal 
energy.	See	Figure	E4.11.	■ Figure E4.11 Storage of nuclear waste
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High	level	nuclear	waste	is	often	secured	underground	in	strong	and	secure	containers.

Some	countries	prefer	to	store	hazardous	waste	securely	in	shielded	containers	on	the	same	site	as	
the	reactor.

It	is	also	possible	to	recycle	nuclear	fuel	after	the	percentage	of	fissile	material	decreases,	but	these	
processes	are	not	included	in	this	course.

5 Calculate the volume to surface area ratios for solid 
cubes	with	sides	of	10	cm,	20	cm	and	x	cm.

6	 The	critical	mass	of	a	pure	uranium-235	sphere	is	
reported	to	be	about	50	kg.	
a	 Explain	what	this	means.	
b Why is the critical mass of the uranium used in a 

reactor	larger	than	50	kg?

7	 Explain	why	isotopes	of	uranium	are	difficult	to	separate	
from	each	other.

8	 Calculate	the	speed	of	a	neutron	which	has	kinetic	energy	
of	1.0	MeV.

9 a	 Write	down	the	equation	(from	Topic	B.1)	which	
relates	the	average	kinetic	energy	of	particles	to	
the	temperature.	

b	 Calculate	the	average	kinetic	energy	of	particles	(J)	
at	300	°C	(the	approximate	temperature	inside	a	
nuclear	reactor).	

c Determine a typical value for the speed of thermal 
neutrons	at	this	temperature.

10	Explain	why	a	heat	exchanger	is	needed	in	a	
nuclear	reactor.

11	 Represent	the	energy	transfers	seen	in	Figure	E4.9	in	
a	Sankey	diagram	by	making	rough	estimates	for	the	
efficiency	of	each	transfer.

12 Outline the differences between the purposes of control 
rods	and	moderators	in	a	nuclear	reactor.

13 Discuss whether it is reasonable to claim that the longer 
the	half-life	of	a	radionuclide,	the	less	dangerous	it	is.	

14 a Use the internet to determine which countries of the 
world have the greatest percentage of their electricity 
generated	by	nuclear	fission.	

b Suggest possible reasons for the popularity of nuclear 
power	in	those	countries.

15	Radon,	22286Rn,	is	gas	produced	naturally	from	22688Ra in the 
uranium	decay	series.	
a	 Write	an	equation	for	this	decay.	
b	 Explain	why	radon	is	a	health	hazard	of	particular	

concern,	including	for	workers	in	uranium	mines.

16 Discuss the advantages and disadvantages of storing 
nuclear waste i deep underground and ii on the site of the 
nuclear	power	plant.

Energy density of nuclear fuels
In	Topic	A.3	we	met	the	concept	of energy density of	fuel	sources	(energy	from	unit	volume,	J	m−3).

It	is	one	of	the	major	advantages	of	nuclear	power	that	the	fuels	have	exceptionally	high-energy	
density,	as	in	shown	by	Worked	example	E4.2.

Common mistake
Energy density	(energy	transferred/volume)	is	often	confused	with	specific energy	(energy	transferred/mass).	 
Both	concepts	are	in	common	use.
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We	have	seen	that	a	typical	fission	of	one	uranium-235	nucleus	releases	about	200	MeV	
of	energy.	
a	 Determine	the	total	amount	of	energy	(J)	that	could	theoretically	be	released	from	

1.00	kg	of	pure	uranium-235.	
b	 The	density	of	uranium-235	is	very	high:	19.1	g	cm−3.	Show	that	your	answer	to	part	a 

corresponds to an energy density of about 1018	J	m−3.	
c	 The	energy	available	from	natural	gas	is	54.0	MJ	kg−1.	Compare	this	to	your	answer	to	

part a.

Answer
a	 235	g	of	uranium-235	contains	6.02	×	1023	atoms	(one	mole)

	 1000	g	of	uranium-235	contains	(1000
235 )	×	(6.02	×	1023)	=	2.5617	×	1024 atoms

	 2.5617	×	1024	atoms	×	200	MeV	per	atom	=	5.1234	×	1026 MeV
	 (5.1234	×	1026)	×	(106	×	1.60	×	10−19)	=	8.20	×	1013	J	 

(8.1974...	×	1013	seen	on	calculator	display)
b	 (8.1974	×	1013) ×	(19.1	×	103)	=	1.57	×	1018	J	m−3

c 
8.1974 × 1013

54.0 × 106 	=	1.52	×	106

	 The	energy	per	kilogramme	available	from	uranium-235 is more than a million times 
greater	than	from	natural	gas.

WORKED EXAMPLE E4.2

17	Using	data	from	Worked	example	E4.2:
a	 Calculate	the	mass	of	uranium-235	that	would	be	used	

every year in a nuclear power station which has an 
output	power	of	0.85	GW	and	operates	at	an	overall	
efficiency	of	33%.	

b Compare your answer to part a with a natural gas 
power	station	operating	at	the	same	output	power,	but	
with	an	overall	efficiency	of	52%.

18	Using	data	from	Question	17a,	determine	how	many	
fissions	of	U-235	are	occurring	in	every	kg	of	U-235	
every	second.

19 a If an individual uses electrical energy at an average 
rate	of	1	kW,	predict	their	annual	energy	consumption.

b	 Calculate	the	mass	of	uranium-235	atoms	that	has	to	
undergo fission to provide the energy needed for a 
year.	(Assume	35%	efficiency.)
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	■ Advantages and disadvantages of nuclear power
	■ Table E4.1 Some advantages and disadvantages of nuclear power

Advantages Disadvantages

extremely	high-energy	density
no greenhouse gases emitted during routine operation 
(some	scientists	think	that	nuclear	power	may	be	the	
only	realistic	solution	to	global	warming)
no chemical pollution during operation
reasonably large amount of nuclear fuels are still 
available
despite	a	few	serious	incidents,	statistically	over	the	
last	50	years,	nuclear	power	has	overall	proven	to	be	a	
reasonably safe energy technology

dangerous and very long-lasting radioactive waste 
products
expensive
efficiency	is	not	high	when	the	whole	process	is	taken	
into account
threat of serious accidents
possible target for terrorists
linked	with	nuclear	weapons
not a renewable source

 ATL E4A: Communication skills 

Practice active listening skills

Debating

In	groups	of	three	or	four,	prepare	arguments	in	advance	either	in	favour	of,	or	against,	the	following	
statement.

‘Nuclear	power	has	an	important	role	to	play	in	providing	energy	for	electricity	generation	for	the	
foreseeable	future	of	planet	Earth.’

Then	have	a	thirty-minute	debate,	with	students	from	other	subjects	invited	to	attend.	 
At	the	end	take	a	vote.

TOK

The natural sciences
l	 Should	scientific	research	be	subject	to	ethical	constraints	or	is	the	pursuit	of	all	scientific	knowledge	

intrinsically worthwhile?

Many	(most?)	people	probably	think	that	the	world	would	be	a	better	place	without	nuclear	power	plants	
and	nuclear	weapons.	However,	even	if	they	were	all	dismantled,	the	knowledge	needed	to	construct	
them	would	still	exist.	Fission	cannot	be	‘undiscovered’.

Are	there	any	scientific	discoveries,	or	technological	advances,	that	you	wish	had	never	happened?

Can	it	ever	be	possible	to	stop	the	ever-expanding	scientific	knowledge,	especially	into	areas	which	may	
(later)	be	considered	undesirable?	Would	we	want	to?

LINKING QUESTION
l	 To	what	extent	

is there a role for 
fission	in	addressing	
climate change? 
(NOS)

This	question	links	
to understandings in 
Topic	B.2.
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E.5 Fusion and stars

• How are elements created?
• What physical processes lead to the evolution of stars?
• Can observations of the present state of the Universe predict the future 

outcome of the Universe?

Guiding questions

Nuclear fusion
Nuclear fusion was introduced briefly in Topic E.3, we will now look at 
it in more detail. Nuclear fusion is the combination of two small nuclei to 
produce a more massive single nucleus.
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fusion of small nuclei increases
the binding energy per nucleon
and releases energy

	■ Figure E5.1 Fusion increases average 
binding energy per nucleon

Nuclear fusion involves changing to a more stable system, with an increase in binding energy and 
the release of energy, mostly in the form of kinetic energy.

Consider Figure E5.1, which is similar to E3.18. In principle, the creation of a new nucleus by 
fusion may be possible for nuclei that have neutron numbers less than approximately 62.
An example of fusion is between a hydrogen-2 nucleus and a hydrogen-3 nucleus. (Hydrogen-2 is 
known as deuterium, hydrogen-3 is known as tritium.) See Figure E5.2.

2
1H + 31H ⇒ 42He + 10n + energy

We can use changes in binding energy to determine a value for the energy released in this nuclear 
reaction, as shown in Worked example E5.1.

The binding energy per nucleon of hydrogen-2 is 1.11 MeV. The binding energy per nucleon of 
hydrogen-3 is 2.83 MeV. The binding energy per nucleon of helium-4 is much higher: 7.07 MeV.
Calculate:
a the energy released in the fusion reaction shown in the equation above
b the change in total mass of the nucleons.

Answer
a Binding energy of hydrogen-2 nucleus = 2 × 1.11 = 2.22 MeV
 Binding energy of hydrogen-3 nucleus = 3 × 2.83 = 8.49 MeV
 Binding energy of one helium-4 nucleus = 4 × 7.07 = 28.28 MeV
 The neutron has zero binding energy because it is a single particle.
 Difference in binding energies = energy released = 28.28 – 2.22 – 8.49 = 17.57 MeV.
b The mass of the system will reduce by as much as the energy that was released:

 
17.57
931.5 = 0.019 u

WORKED EXAMPLE E5.1

2H

3H

4H

n

	■ Figure E5.2 Fusion 
of two hydrogen nuclei

 ATL E5A :  
 Research skills 

Evaluating 
information 
sources for 
accuracy, bias, 
credibility and 
relevance
Use the internet to 
find out the latest 
developments in nuclear 
fusion research. Be sure 
to evaluate the sources 
you refer to – do they 
have a particular 
standpoint on nuclear 
energy research?
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For nuclear fusion to occur the nuclei must initially have sufficient kinetic energy to overcome 
the repulsive forces between the positive charges. This requires extremely high temperatures, 
more than 107 K.

If the nuclei can overcome the electric repulsion between positive charges, they can get very close 
to each other, and then the attractive nuclear forces pull them together and fusion may occur.

The principles are well understood and if nuclear fusion could be sustained, it would release 
enormous amounts of energy for electricity generation from plentiful raw materials, without 
significantly contributing to climate change, and without producing large quantities of radioactive 
waste (as occurs with nuclear fission). The prospect of plentiful energy from nuclear fusion has 
pre-occupied and excited scientists for much more than fifty years, but the technical problems 
seem as large as ever.

1 Calculate the repulsive electric force between two 
protons that are 1.0 × 10−15 m apart.

2 Use data from Worked example E5.1. 
a Determine how much energy (J) would be released 

from the fusion of one kilogramme of helium-4.
b How would you describe the energy density of 

this process?

3 Calculate the kinetic energy (eV) of a proton (hydrogen 
nucleus) at a temperature of 1.0 × 107 K.

4 The following is the simplest possible example of fusion. 
It occurs in stars.

 1
1H + 1

1H → 2
1H + 0

1e+ + 0
0v

a Using data (with a suitable number of significant 
figures) from the internet, determine:
i the change in mass that occurs in this fusion
ii the energy released (MeV) in this reaction.

b Explain why the fusion of each helium-4 nucleus 
releases much more energy than the fusion 
of hydrogen-2.

5 Explain why nuclear fusion is only possible with two 
nuclei which have relatively small numbers of nucleons.

Although nuclear fusion is a rare event here on Earth, we will now turn our attention to where it 
dominates: the rest of the Universe.

Formation of stars

SYLLABUS CONTENT

 The stability of stars relies on an equilibrium between outward radiation pressure and inward 
gravitational forces.

 Fusion is a source of energy in stars.
 The conditions leading to fusion in stars in terms of density and temperature.

The space between stars has evolved over billions of years to 
contain very low concentrations of particles, which are 
collectively known as interstellar matter, and commonly 
described as ‘dust and gas’. Hydrogen is, on average, about 
70% of all interstellar matter (by mass), helium has 28% and 
the remaining 2% is other elements (mainly remnants of 
exploded older stars). Depending on the circumstances, the 
gas particles may be molecules, atoms or ions. A nebula 
(Figure E5.3) is the name given to a distinct and identifiable 
giant ‘cloud’ of dust and gas in space.

	■ Figure E5.3 The Orion nebula

 ◆ Interstellar matter 
Matter that exists in 
the space between stars 
(usually at very low 
density).

 ◆ Nebula (plural: nebulae) 
Identifiable, diffuse ‘cloud’ 
of interstellar matter; 
mainly gases (mostly 
hydrogen and helium) 
and dust.

LINKING QUESTION
l How is fusion like – 

and unlike – fission?

This question links 
to understandings in 
Topic E.4.
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In places where there is an increased density of material (for whatever reason), gravitational forces 
will (very slowly) pull the particles closer together. This results in increasing kinetic energies of 
particles, which is equivalent to increasing temperature.

Eventually, the temperature and density of hydrogen will be great enough for nuclear fusion of 
hydrogen into helium to occur. Temperatures of at least 107 K are needed. At this temperature 
the hydrogen nuclei (protons) have enough kinetic energy to overcome the Coulomb repulsion 
between them. This is the dominant energy transfer occurring in all main sequence stars. 
(‘Main sequence’ stars are explained below. Most stars are main sequence stars.) There are two 
principal ways in which fusion can happen in main sequence stars, as explained below. At these 
temperatures, hydrogen exists simply as protons.

Only a very small fraction of interactions between protons results in fusion. The closer the protons 
are to each other (on average), the greater the frequency of interactions and the rate of fusion. In 
other words, a high density is needed to sustain nuclear fusion in stars.

Nuclear fusion at high temperatures and densities in main sequence stars combines four protons 
to form helium-4.

	■ Proton–proton cycle
The proton–proton cycle is also called the proton–proton chain.

This is the principal nuclear fusion process in main sequence stars which have a mass similar to 
the Sun, or less.

This is a 3-step process, which can be summarized as follows but the details do not need to 
be remembered:

41
1H → 42He + 20

1e + neutrinos + photons

The three separate reactions are:

1 Two protons fuse to make a 21H (deuterium) nucleus. In this process, one of the protons converts 
into a neutron in a beta-plus decay, also forming a positron and a neutrino.

1
1H + 11He → 21H + 01e+ + v

2 The deuterium nucleus fuses with another proton to make helium-3. In this process, a gamma 
ray photon is also emitted.

2
1H + 11He → 32He + γ

3 Two helium-3 nuclei combine to make helium-4. Two protons are released in this reaction.
3
2He + 32He → 42He + 21

1H

These three stages are illustrated in Figure E5.4.

The energy released in each 3-stage cycle is 27 MeV. This is transferred to the kinetic energy and 
electromagnetic energy of the products.

 ◆ Main sequence stars 
Stable stars which are 
fusing hydrogen into 
helium in their cores.

 ◆ Proton–proton cycle 
The simplest nuclear fusion 
process which converts 
hydrogen into helium, 
releasing large amounts 
of energy in medium 
and smaller-sized main 
sequence stars.
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	■ CNO cycle
This is the principal nuclear fusion process in main sequence 
stars which have a mass significantly greater than the Sun. 
This is because of the higher temperatures in the cores of the 
more massive stars.

CNO represents carbon, nitrogen, oxygen. These elements 
must be present in the core, but they are not changed by the 
process. (They act as catalysts.)

The CNO cycle is a complicated 6-step process (no details are 
needed), but in effect it still involves the fusion of four protons 
to one helium nucleus (similar to the proton–proton cycle) and 
releases about the same amount of energy (27 MeV).

	■ Stellar equilibrium
Energy is transferred from the core of the star, where it is 
hottest and where the fusion is happening, by radiation, 
conduction and convection to the surface. See Figure E5.5. 
Helium will accumulate at the centre of the core because of its 
greater density. From the surface, enormous amounts of 
energy are radiated into space in all directions. These fusion 
processes will continue as long as there is enough hydrogen in 
the core, at a high enough temperature.

Main sequence stars can remain in equilibrium for millions, 
or billions of years, under the following condition (see also 
Figure E5.6):

ν

γ

ν

γ

proton

neutron

helium

e+

e+

	■ Figure E5.4 The proton–proton cycle

helium accumulates
at the centre

hydrogen fusing
to helium

cooler outer layers
(no fusion)

	■ Figure E5.5 Internal structure of a main sequence star

radiation
pressure

force of
gravity

H      He
fusion

	■ Figure E5.6 Equilibrium 
in a main sequence star

In stellar equilibrium, the outward radiation (thermal) pressure is balanced by inwards 
gravitational forces.

This is a self-correcting (feedback) process: if the fusion rate was to increase slightly, the 
temperature would increase so that the outwards pressure rises. This would result in an 
expansion of the star, so that density and temperature decrease, and the fusion rate falls.

Nature of science: Patterns and trends

Feedback processes

Feedback is the name used to describe any response within an on-going system which affects 
the future behaviour of the same system. For example, if you are told that you are doing well 
in your physics studies, you may be encouraged, and then work harder. This would be called 
positive feedback.

Negative feedback can often help to stabilize a system, as in the example of stellar equilibrium.

Tool 3: Mathematics

Use of units whenever appropriate

In calculations related to the properties of stars, it becomes convenient to compare a 
star to our Sun: M⊙ = mass of Sun, L⊙ = luminosity of Sun, R⊙ = radius of Sun.

 ◆ CNO cycle Nuclear fusion 
process in larger main sequence 
stars which forms helium 
from hydrogen.

 ◆ Stellar equilibrium 
Main sequence stars are 
in equilibrium under the 
balanced effects of radiation 
pressure acting outwards 
against gravitational forces 
acting inwards.

 ◆ Feedback Occurs when 
a response within a system 
influences the continuing 
behaviour of the same system.
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	■ Lifetimes of main sequence stars
There will come a time when most of the hydrogen in the core of a star becomes depleted (already 
used, in fusion), so that the rate of fusion decreases to such an extent that it is no longer possible 
to maintain the equilibrium described above. This will be the end of the lifetime of the main 
sequence star and it will then change in ways which are described later in this topic. There will 
still be a significant amount of hydrogen outside of the core.

Main sequence stars will come to the end of their lifetimes when most of the hydrogen in their 
cores has been converted to helium.

It might be expected that more massive stars would have longer lifetimes because they contain 
more hydrogen, but the opposite is true.

The rate of fusion in more massive (hotter) stars is so much greater, that they have significantly 
shorter lifetimes.

This can be seen in Table E5.1 in the next section.

We can make a rough estimate for the future lifetime of a main sequence star as follows (using 
data for the Sun as an example). This lengthy and detailed calculation need not be remembered.

mass, M⊙ = 1.99 × 1030 kg

luminosity, L⊙ = 3.85 × 1026 W

Each proton–proton cycle releases 27 MeV (= 4.3 × 10–12 J) of energy.

We will assume that, when they are first formed, main sequence stars consist of approximately 
70% hydrogen, and that the Sun will end its main sequence lifetime when about 15% of its total 
hydrogen remains (mostly in the outer layers).

We can calculate an approximate value for its main sequence lifetime as follows:

amount of hydrogen that will be fused (‘burned’) during the main sequence lifetime = (100 − 15)% 
of 70 % of 1.99 × 1030 kg = 1.18 × 1030 kg

mass of hydrogen involved with each proton–proton cycle = 4 × (1.673 × 10–27) = 6.688 × 10–27 kg

number of proton–proton cycles during the main sequence lifetime = 
1.18 × 1030

6.688 × 10–27 = 1.76 × 1056

rate of proton–proton cycles = 
3.85 × 1026

4.3 × 10–12 = 8.95 × 1037 s–1 (average for the main sequence lifetime)

main sequence lifetime of our Sun = 
1.77 × 1036

8.95 × 1037 = 2.0 × 1018 s (≈ 6 × 1010 years)

This is just an approximation, but it is in broad agreement with the accepted value for the future 
lifetime of the Sun (≈ 1010 years).

We can also estimate the decrease in the mass of the Sun due to nuclear fusion reactions from  
E = mc2 (Topic E.3):

energy transferred during main sequence lifetime,  
E = power × time = (3.85 × 1026) × (2.0 × 1018) = 7.7 × 1044 J

E = mc2

7.7 × 1044 = m × (3.0 × 108)2

m = 8.6 × 1027 kg

This is equivalent to about four billion kilogrammes every second!

 ◆ Lifetime (of main 
sequence star) The 
duration for which a star 
is fusing hydrogen into 
helium, emitting radiation 
and maintaining stellar 
equilibrium.
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TOK

Knowledge and the knower

Too big or too small to comprehend?

More than any other area of knowledge, physics involves an appreciation of numerical values over 
enormous ranges: from subatomic particles to the size of the observable Universe.

However, the larger a number, the worse we are at really understanding what it represents. Similarly, very 
small numbers are difficult to comprehend, for example 10−15 m: the approximate radius of a nucleus. 
Clearly, ‘four billion kilogrammes’ (from last section), is a large number, but to begin to appreciate just 
how large, comparisons are usually helpful. We might say that 4 × 109 kg is about equal to the total mass 
carried by every person on Earth if they each had 0.5 kg. Or 4 × 109 kg is approximately equal to the 
mass of water in a reservoir of dimensions 1 km × 1 km × 4 m. However, such comparisons are less useful 
when much larger numbers are involved.

Suggest a comparison you could use to make 10−10 m (an approximate size of an atom) understandable for 
a 10 year-old child.

6 Discuss whether you would expect that most hydrogen 
in interstellar matter was in the form of ions, atoms or 
molecules.

7 Calculate the acceleration due to gravity of two protons 
separated by one metre.

8 Determine a value for the energy released (MeV) in the 
third stage of the proton–proton cycle, as described above. 
(Use the internet to determine relevant data.)

9 The CNO cycle needs carbon, nitrogen and oxygen in the 
core. Suggest where these elements have come from.

10 Explain what will happen if, for some reason, the fusion 
rate in a main sequence star was to decrease slightly. 

Assume that there is plenty of hydrogen available in 
the core.

11 a Using the same method and assumptions as shown 
in the calculation of the lifetime of the Sun (above), 
determine the lifetime of a main sequence star which 
has a mass ten times greater than the Sun’s and a 
luminosity three thousand times greater than that of 
the Sun.

b The relationship between the luminosity and mass of 
a main sequence star is:

 L ≈ L⊙ ( M
M⊙

)3.5

 (You do not need to remember this.)
 Show that this relationship confirms the approximate 

luminosity of the more massive star given in part a.

Comparing main sequence stars

SYLLABUS CONTENT

 The main regions of the Hertzsprung–Russell (HR) diagram and how to describe the main properties 
of stars in that region.

 How to determine stellar radii.

When we observe stars from Earth, they all appear as point sources of light with different 
apparent brightnesses and slightly different colours. Direct observation provides no more 
information, except their positions relative to each other, which enables star maps to be drawn. 
Although stars move at high speeds, the distances between them are so great that no changes in 
these positions are apparent to observers on Earth, even over hundreds of years. (But note that 
some stars, which are relatively close to the Earth, show small repeated movements (on a star map) 
during the course of every year. This is called stellar parallax, and it is explained later.)
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The same nuclear fusion processes are occurring in all main sequence stars, but astronomers 
have calculated that these stars have different masses, radii and temperatures (core and surface). 
As a rough guide, our Sun may be considered to be an ‘average’ main sequence star, other stars 
have radii which are up to 1000 × greater or smaller than the Sun’s, with an even wider range of 
luminosities: from 10 000 × less to 1 000 000 × greater.

The differences between main sequence stars are not random. There is a very clear pattern (see 
Table E5.1), because the rate of fusion depends on the masses of the stars.

Main sequence stars of greater mass have greater radii, greater rates of fusion, higher 
temperatures, greater luminosities and shorter lifetimes.

This pattern is apparent in the data shown in Table E5.1.

	■ Table E5.1 Properties of main sequence stars (figures are approximate)

Mass/M⊙ Luminosity/L⊙ Effective temperature/K Radius/R⊙ Lifetime/y

0.10 3 × 103 2900 0.16 2 × 1012

0.50 0.03 3800 0.6 2 × 1011

1.0 1 5800 1.0 1 × 1010

3 60 11 000 2.5 2 × 108

5 600 17 000 3.8 7 × 107

10 10 000 22 000 5.6 2 × 107

25 80 000 35 000 8.7 7 × 106

60 790 000 44 500 15 3 × 106

The ‘effective temperature’ is the name given to the surface temperature calculated assuming the 
star behaves as a perfect black body.

Clearly, there is no need to remember any of the data seen in Table E5.1, but the trends are 
important and are probably easier to understand as shown graphically in Figure E5.7, Figure E5.8 
and Figure E5.11.

Mass has a considerable effect on luminosity. For example, if star A has twice the mass of star B 
it will have approximately ten times the luminosity. This general trend is indicated in Figure E5.7.

This pattern is shown in more detail in Figure E5.8, which is known as a Hertzsprung–Russell 
(HR) diagram.
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	■ Figure E5.7 Linking mass, temperature 
and luminosity for main sequence stars
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	■ Figure E5.8 Hertzsprung–Russell diagram (incomplete) with colours enhanced

 ◆ Hertzsprung–Russell 
(HR) diagram Diagram 
that displays order in the 
apparent diversity of stars 
by plotting the luminosity 
of stars against their 
surface temperatures.
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Figure E5.8 is an important diagram and it should be well understood. Note, in particular:
l For historical reasons, the temperature scale is reversed, with lower temperatures on the right.
l The differences in stars’ luminosities and temperatures are so great that logarithmic scales 

are used.
l The luminosity scale is shown relative to the Sun’s luminosity, L⊙ (= 3.8 × 1026 W).
l The dotted lines represent constant radius. R⊙ = radius of Sun (7.0 × 108 m).

The connection between surface temperature and colour was explained in Topic B.1.

Other types of stars (non-main sequence) will be added to the HR diagram after they have 
been explained.

Top tip!
Reminders from Topic B.1:

Stars can be considered to be perfect black bodies and the radius of a star can be determined from 
L = σAT4, by using surface area, A = 4πr2. The temperature of a star’s surface is sometimes called the 
star’s effective temperature. (This is because a value for T is often calculated from knowledge of L and A, 
assuming that the star is acting as a perfect black body.)

The surface temperature, T, of a star can be determined from λmaxT = 2.9 × 10−3 m K, where λmax is the 
peak wavelength of the black-body spectrum emitted.

The large, bright star Canopus has a 
luminosity = 10 700 L⊙ and a surface 
temperature of 7400 K.
Determine a value for its radius.

Answer
L = σAT4 = σ(4πr2)T4

10 700 × (3.85 × 1026 W) 
= (5.67 × 10-8) × 4 × πr2 × 74004

r = 4.39 × 1010 m

WORKED EXAMPLE E5.2

The main sequence star Vega has a surface 
temperature of 9600 K. 
a Determine the peak wavelength in its 

spectrum. 
b Estimate the luminosity of this star.

Answer
a λmaxT = 2.9 × 10−3

 λmax = 
2.9 × 10–3

9600  = 3.0 × 10−7 m

b From Figure E5.8, L ≈ 50 L⊙

WORKED EXAMPLE E5.3

LINKING QUESTIONS
l How can the 

understanding of 
black-body radiation 
help determine the 
properties of stars?

l How do emission 
spectra provide 
information about 
observations of 
the cosmos?

These questions link 
to understandings in 
Topics B.1 and E.2.
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12 A main sequence star has a radius of approximately 10R0 
and a luminosity of (2 × 104)L⊙.
a Use Figure E5.8 to estimate its surface temperature. 
b State the colour you would expect this star to be.

13 Estimate the luminosity of a main sequence star which 
has a surface temperature of 15 000 K.

14 A main sequence star is observed to be slightly blue in 
colour. Suggest possible values for its luminosity, radius 
and surface temperature.

15 A star has a radius of 100 R0 and a luminosity 
of 10 000 L⊙.
a Explain why you can be sure that this is not a main 

sequence star. 
b Estimate its surface temperature.

16 The main sequence star Altair has a radius which is 
approximately twice the radius of the Sun and surface 
temperature of about 7500 K. 
a Use Figure E5.8 to estimate its luminosity:

i as a multiple of L⊙ ii in W. 
b Use an equation for luminosity to determine a more 

accurate value for Altair’s luminosity.

17 a Use Figure E5.8 to estimate how much greater the 
luminosity of a star of radius 100R0 is compared to a 
star of radius 10R0.

b Explain why the larger star has a much greater 
luminosity.

18 A main sequence star has a peak wavelength of 
9.7 × 10−8 m. 
a Determine its surface temperature. 
b Estimate its luminosity.

Evolution of stars

SYLLABUS CONTENT

 The effect of stellar mass on the evolution of a star.
 The main regions of the Hertzsprung–Russell (HR) diagram and how to describe the main properties 

of stars in these regions.

The term stellar evolution is being used here to describe what happens to stars after the depletion 
of hydrogen in their cores. That is, what happens to them after the end of their main sequence 
lifetimes. The core begins to contract because, once the rate of fusion is reduced, the inward 
gravitational forces are greater than the outward radiation pressure. Gravitational potential energy 
is then again transferred to kinetic energy of the nuclei in the core, so that the temperature rises 
significantly. This causes fusion of hydrogen outside of the core (in a ‘shell’ around the core).

The rate of fusion in the shell is greater than in the core when it was a main sequence star. So, a 
star will spend more time on the main sequence than afterwards.

The resulting increased radiation pressure produces a significant expansion of the star. The radius 
could be as much as one thousand times greater, which would result in a one million times greater 
surface area. The overall effect is a reduction in surface temperature and therefore a change in 
colour to become redder. These changes are represented by the name of the type of star formed: a 
red giant. Or, if sufficiently large, a red super giant. Only a small percentage of main sequence 
stars will evolve to become red super giants.

Red giant stars (and super giants) are formed by the increased rate of nuclear fusion that occurs 
because of the greater temperatures created in the collapse of main sequence stars at the end of 
their lifetimes.

All but the very smallest main sequence stars will become red giants or super giants after the 
hydrogen in their core has been depleted. What happens after that depends (again) on their masses, 
as seen in Figure E5.9.

 ◆ Evolution (stellar) 
Describes the changes 
that occur in a star during 
its ‘lifetime’.

 ◆ Giant (and super giant) 
stars Usually relatively 
cool stars, so they are 
yellow / red in colour; 
their luminosity is high 
because of their large size. 
Most stars will become 
red giants (or red super 
giants) at the end of their 
time on the main sequence.
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After all fusion has finished in a red giant, gravitational forces will cause the star to collapse 
inwards. The outer layers are ejected to form a relatively short-lived diffuse cloud of ionized gas 
called a planetary nebula, leaving behind a very dense core. Red super giants evolve differently, 
as discussed below.

The remaining core has enough internal energy to continue to emit radiation at low luminosity, for 
a very long time and its surface temperature is high enough that it appears white: this explains the 
name of this type of star: white dwarf. See Figure E5.10.

A white dwarf star is formed from a red giant star after all nuclear fusion has stopped.

A white dwarf star can remain stable for a long time because of a process called electron 
degeneracy (no details required).

white dwarfmain sequence

red giant
    

	■ Figure E5.10 Evolution of most main 
sequence stars (our Sun, for example)

Red super giants do not evolve into white dwarfs. The electron degeneracy pressure is insufficient 
to resist the gravitational forces and the gravitational potential energy released is so high that there 
are dramatic changes in the core that result in an enormous explosion called a supernova. Here 
again, the result depends on the mass involved. If the original mass of the star was between 8 and 
20 solar masses, the remaining core after the supernova will form a neutron star. If the mass was 
greater, a black hole is formed. (Further details are not required.)

	■ Figure E5.9 Evolution of 
stars of different masses (the 
numbers shown represent the 
approximate mass limits of 
the stars as multiples of the 
current mass of the Sun)

Common 
mistake
Planetary nebula is 
a misleading term. It 
has nothing to do with 
planets.

 ◆ Planetary nebula 
Material emitted from 
the outer layers of a red 
giant star at the end of its 
lifetime. The core then 
becomes a white dwarf star.

 ◆ White dwarf stars 
Relatively hot stars, so that 
they are blue / white in 
colour, but their luminosity 
is low because of their 
small size. They are 
formed after the end of the 
lifetime of smaller main 
sequence stars. 

 ◆ Electron degeneracy 
Process occurring within 
white dwarf stars that 
keeps them stable and stops 
them collapsing.

 ◆ Supernova Sudden and 
very luminous explosion of 
a massive star, resulting in 
a neutron star or black hole.

 ◆ Neutron stars Very 
dense stars formed after a 
supernova.

 ◆ Black hole Extremely 
dense remnant of a 
giant star formed after a 
supernova. Gravitational 
forces are so great that 
even light cannot escape.
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A supernova is an ‘explosion’ of a red super giant, creating a neutron star or a black hole.

	■ Evolution on a HR diagram
Figure E5.11 shows a more detailed HR diagram with other types of stars included (not just main 
sequence stars).
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	■ Figure E5.11 Detailed HR diagram

When a main sequence star expands to a red giant, or a red super 
giant, its luminosity and surface temperature change and this, and 
subsequent changes, can be tracked on an HR diagram. It is known 
as a star’s evolutionary path. Typical evolutionary paths of 
low-mass and high-mass main sequence stars are shown in 
Figure E5.12.

The instability strip on the HR diagram (seen in Figure E5.11) 
contains stars at an intermediate stage between being main 
sequence stars and being super giants or more massive red giants. 
These stars will be in the instability strip for relatively short 
times. They pulsate because their outer layers are unstable: their 
luminosities vary periodically.

The changes to stars which happen after the end of their main 
sequence lifetimes can be tracked on an HR diagram.

m
ain sequence

Temperature

white dwarf

red giant

red supergiant

supernova
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	■ Figure E5.12 Evolutionary path of stars 
after they leave the main sequence

 ◆ Evolutionary path The 
evolution of a star as drawn 
on a Hertzsprung–Russell 
diagram.

 ◆ Instability strip A 
region of the Hertzsprung–
Russell diagram containing 
pulsating, variable stars.
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19 Outline the process by which a main sequence star can 
evolve into a red giant star.

20 Explain the difference between a red giant star and a red 
super giant star.

21 A red giant has a higher rate of fusion than the main 
sequence star from which it was formed.

 Explain why it has a lower surface temperature.

22 Outline what is meant by the term ‘planetary nebula’.

23 a Explain what the colour of a white dwarf star tells us 
about its surface temperature. 

b Explain why, despite their temperatures, white dwarfs 
can be difficult to observe.

24 Sketch the axes of a HR diagram and add a line to 
indicate main sequence stars. 
a Draw the future evolutionary path of the Sun. 
b Draw the evolutionary path of a massive main 

sequence star that eventually forms a red super giant, 
after spending time in the instability strip.

25 Use the internet to learn about supernovas that have been 
detected on Earth.

Distances from Earth to stars

SYLLABUS CONTENT

 The use of stellar parallax as a method to determine the distance, d, to celestial bodies as given by:

 d(parsec) = 
1

p(arc-second) 

In Topic B.1 it was explained that, if we know the luminosity, L, of any star, the equation b = 
L

4πd2 

can be used to determine its distance from Earth, d, if we measure its apparent brightness b.

The problem is that, for most stars, we have no direct way of knowing their luminosities.

However, importantly, astronomers have identified a few ‘standard candles’. These are stars which 
have known luminosities wherever they are located (including a type of supernova and some stars 
in the instability strip). You are not expected to have knowledge of these methods.

The HR diagram can also be used to obtain an approximate distance to a main sequence star, as 
shown in the following example.

The surface temperature of a main sequence 
star was determined to be 17 000 K. 
a Explain how this value was 

calculated using information from the 
star’s spectrum. 

b Use the HR diagram to estimate the 
luminosity of the star (W). 

c Determine an approximate distance 
between this star and Earth if its 
apparent brightness was measured on 
Earth to be 3.1 × 10−9 W m−2 in:
i metres ii light years.

Answer
a By using Wien’s law:  

λmaxT = 2.9 × 10−3 m K
b 1200 L⊙ = 1200 × 3.8 × 1026 ≈ 4.6 × 1029 W

c i b = 
L

4πd 2

 3.1 × 10–9 =
 
4.6 × 1029

4 × π × d2

 d = 3.4 × 1018 m ≈ 3 × 1018 m
ii In light years this is:

 
3.4 × 1018

9.46 × 1015 ≈ 4 × 102 ly

WORKED EXAMPLE E5.4

LINKING QUESTION
l HR diagrams have 

been helpful in the 
classification of stars 
by finding patterns 
in their properties. 
Which other areas 
of physics use 
classification to help 
our understanding? 
(NOS)
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E.5   Fusion and stars 597

	■ Distances to ‘nearby’ stars
We are able to calculate the distance to ‘nearby’ stars using simple geometry.

Although stars are moving very quickly, we can draw star maps to show the positions of stars 
(relative to other stars) because their relative positions show no significant changes over very long 
periods of time. This is because of the enormous distance between the stars (and Earth). However:

if very precise measurements are made of ‘nearby’ stars, their positions (relative to other stars) 
are observed to move very slightly (forwards and backwards) during the course of a year. This 
is called stellar parallax.

This repeated apparent movement is represented in Figure 5.13, but the the movement has been 
exaggerated for clarity.

This nearby star
seems to change
position during

the year

fixed 
pattern 

of distant 
stars

    

Inquiry 3: Concluding and evaluating

Evaluating

Parallax

Parallax is the difference in the apparent position of an 
object (when compared to other objects in the background 
behind it) when an object is viewed along two different 
lines of sight. This is shown in Figure E5.14. The closer 
the object is to the observer, the greater the parallax. 
The simplest everyday example is seen when observing 
your finger held in front of your face, first with one eye, 
then the other.

A numerical value for parallax can be represented by half 
the angle between the two dotted lines in Figure E5.14.

Identify how parallax error can lead to misreading the 
scales of some measuring instruments.

viewpoint A

viewpoint A

viewpoint B

viewpoint B

object

distant background

	■ Figure E5.14 Parallax

 ◆ Parallax error Occurs 
when reading a scale from 
the wrong position.

Because of the limits to measuring very small angles accurately, stellar parallax can be only 
detected with stars which are less than about 300 ly from Earth. These ‘nearby’ stars are all within 
our own galaxy (The Milky Way, which has a diameter of about 105 ly.) and include some stars 
which are visible from Earth without a telescope. In Figure E5.15 and Figure E5.16 the parallax 
angles have been greatly exaggerated for the sake of clarity.

Using telescopes, astronomers measure the parallax angle, p, between, for example, observations 
of the star made in December and June.

 ◆ Stellar parallax 
Method of determining the 
distance to a nearby star 
from measurement of its 
parallax angle.

 ◆ Parallax The 
displacement in the 
apparent position of an 
object (compared to its 
background) viewed along 
two different lines of sight.

TH
E IB LEARNER PRO

FILE

	■ Figure E5.13 A nearby star’s apparent 
movement due to parallax
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	■ Figure E5.15 Parallax angle six months apart
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	■ Figure E5.16 The geometry of the parallax angle

Tool 3: Mathematics

Use of units whenever appropriate

In Figure E5.16, the distance between the Earth and the Sun has been labelled as 1 AU. The 
Earth’s orbit around the Sun is almost circular and the radius varies only by about 3%. The 
AU, astronomical unit is used in calculations concerning our Solar system. It is defined to be 
exactly 1.495 978 707 00 × 1011 m, but we will use 1.50 × 1011 m in calculations.

The stellar parallax of even the closest stars is very small because of the long distances involved 
and this means that the parallax angles are so tiny that they are measured in arc-seconds. (There 
are 3600 arc-seconds in a degree.)

Once the parallax angle has been measured, simple geometry can be used to calculate the distance 
to the star (Figure E5.16):

parallax angle, p (rad) = 
1.50 × 1011

d (m)

Note that the distance from the Earth to the star and the distance from the Sun to the star can be 
considered to be equal for such very small angles. That is, we can assume that p (rad) = sin p = tan p.

Calculate the distance, d, to a star if its parallax angle is 0.240 arc-seconds. (Reminder: 
there are 57.3 degrees in one radian.)

Answer

0.240 arc-seconds = (0.240
3600) × ( 1

57.3) = 1.16 × 10–6 rad

 p(rad) = 
1.50 × 1011

d(m)  

 d = 
1.50 × 1011

1.16 × 10–6 = 1.29 × 1017 m (= 13.7 ly)

WORKED EXAMPLE E5.5

 ◆ Arc-second An angle 
which is 1/3600 of one 
degree.
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Tool 3: Mathematics

Use of units whenever appropriate

Calculations similar to Worked example E5.5 are common, but it is much easier to use the 
angle directly as a measure of distance rather than making calculations in SI units. However, 
this is an inverse relationship – larger parallax angles mean smaller distances.

The parsec (pc) – short for parallax of one arc-second – is another unit of distance used 
by astronomers. Its use is not restricted to stars which exhibit parallax, and it is the most 
widely used unit of distance in astronomy. A parsec is defined as the distance from the Sun 
(or Earth) to an object that has a parallax angle of one arc-second.

 ◆ Parsec, pc Unit 
of distance used by 
astronomers; equal to the 
distance to a star that has 
a parallax angle of one 
arc-second.

distance, d (parsec) = 
1

p(arc-second)

For example, a star with a parallax angle, p, of 0.25 arc-seconds will be 1/0.25 = 4 pc distant 
from Earth.

Table E5.2 shows the relationship between parallax angle and distance.
	■ Table E5.2

Parallax angle/arc-seconds Distance away/pc

0.10 10.0

0.25 4.0

0.50 2.0

1.00 1.0

Summary of the non-SI units used in astronomy

1 parsec (pc) = 3.26 ly
	■ Table E5.3 Summary of distance units commonly used in astronomy

Unit Metres/m Astronomical units/AU Light years/ly

1 AU 1.50 × 1011 – –

1 ly 9.46 × 1015 6.32 × 104 –

1 pc 3.09 × 1016 2.06 × 105 3.26

The parallax angle for the star Alpha Centauri is 0.751 arc-seconds.
Calculate its distance from Earth in:
a parsec b metre c light years d astronomical units.

Answer
a distance in parsec = 1/p(arc-second) = 1/0.751 = 1.33 pc
b 1.33 × 3.09 × 1016 = 4.11 × 1016 m
c 1.33 × 3.26 = 4.34 ly
d 1.33 × 2.06 × 105 = 2.67 × 105 AU

WORKED EXAMPLE E5.6

DB

DB
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26 a Use the HR diagram to estimate the luminosity of a 
main sequence star which has a surface temperature 
of 3000 K. 

b Estimate the radius of this star from the 
same diagram. 

c Compare your answer to a value of the radius 
determined from using L = σAT 4. 

d If the apparent brightness of this star is 
4.2 × 10−11 W m–2, estimate its distance from Earth. 

27 Explain why stars can be shown in fixed positions on star 
maps, even though they are moving very fast.

28 a Calculate the total distance travelled in ten years by 
the Earth as it orbits the Sun. Give your answer in AU. 

b The distance between the Sun and Pluto is 
approximately six billion kilometres.  
Express this in AU.

29 Convert an angle of 1 arc-second to: 
a degrees
b radians.

30 The parallax angle for Barnard’s star is measured to be 
0.55 arc-seconds. How far away is it from Earth in: 
a pc b m c ly?

31 Calculate the parallax angles for three stars at the 
following distances from Earth:
a 2.47 × 1015 km
b 7.90 ly
c 2.67 pc.

32 If the upper limit to parallax measurements is for stars 
which are 300 ly away, calculate the smallest parallax 
angle that can be measured accurately.

33 Star A is a distance x pc from Earth and has a parallax 
angle of θ.

 Determine the parallax angle for a star B which is x/2 
from Earth.

34 A star is 50 pc from Earth. 
a What is this distance in light years? 
b Will astronomers be able to detect stellar parallax 

with this star? Explain your answer.

LINKING QUESTION
l In which ways has technology helped to collect data from observations of distant stars? (NOS)

	■ The age of an expanding Universe
We saw in Topic C.5 that the speed of stars and galaxies away from Earth (recession speeds) can 
be determined from the Doppler shifts of radiation received from them on Earth. Combining that 
information with the latest data about their distances from Earth leads us the important graph 
shown in Figure E5.17. (A simpler version was shown in Topic C.5.)

Assuming that all the stars began moving at the time of the Big Bang, an 
estimate for the age of the Universe can be determined from the gradient of 

this graph, by a straightforward use of velocity = 
distance

time
:

1 × 104 km s−1 = 
140 Mpc

time
Converting to SI units:

107 = 
140 × (3.09 × 1022)

t

t = 4.3 × 1017 s (1.4 × 1010 y)
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	■ Figure E5.17 Variation of recession speeds 
of galaxies with their distances from Earth
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The creation of different elements
We have explained the fusion of hydrogen to form helium, now we will briefly outline how other 
chemical elements can be created in fusion processes called nucleosynthesis. (Details need not be 
remembered.) Basically:

Higher temperatures (particles with greater kinetic energy) are needed for nucleosynthesis, and 
these exist in the cores of red giants and super giants.

l For red giant stars formed from main sequence stars of mass less than 4 M⊙, the core 
temperature can reach 108 K and this is large enough for the nucleosynthesis of carbon and 
oxygen. (Helium is still produced in an outer layer.)

 ◆ Nucleosynthesis 
Creation of new nuclides 
(elements) from existing, 
less massive, nuclei.

 ◆ Neutron capture 
Nuclear reaction in which 
a neutron is absorbed by 
a nucleus to form a more 
massive nucleus.

l For larger red giant stars (formed from main sequence stars with masses 
between 4 M⊙ and 8 M⊙), the core temperature exceeds 109 K and this is large 
enough for the nucleosynthesis of neon and magnesium. (Helium, carbon and 
oxygen are still produced in the outer layers.)

l For red super giant stars (formed from main sequence stars with 
masses greater than 8 M⊙), the core temperature is large enough for the 
nucleosynthesis of elements as heavy as silicon and iron. (The lighter 
elements are still produced in the outer layers.) See Figure E5.18.

From Topic E.3 we know that the nucleus of iron is one of the most stable 
(it has one of the highest binding energies per nucleon). This means that 
there would have to be an energy input to create heavier nuclides. Heavier 
elements are created by neutron capture, but that process is not included in the 
IB Physics course.

Fe

Si
Mg
Ne
O

C
He
H

	■ Figure E5.18 The layers of a red super giant

We saw in Topic E.1 that the elements present in a star can be identified from measurements 
made of line spectra.

35 Explain how an element in the outer layers of a star can be identified from the spectrum 
received from the star.

36 Explain:
a why very high temperatures are needed to create the more massive nuclides
b why those higher temperatures are found in more massive stars.

37 Outline why the interior of a red super giant star is composed of different layers.

TOK

Knowledge and the knower

Stardust

All the particles in our body existed for billions of years before we were born. They will continue to exist 
for billions of years after we die. They originated in nuclear reactions in stars and, ultimately, they will 
be scattered throughout space.

We are all made of stardust.
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a.c. see alternating current
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equations of motion   17–18
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adiabatic processes   263, 264, 266
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air resistance   19, 20, 26–7, 29

see also drag

air travel   49
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fields   547–8
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penetrating power   545

alpha particle scattering experiment   
508–10, 521

alpha particle spectra   565

alternating current (ac)   283, 284

a.c. generators   504–5

ambiguities   176
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amount of a substance   236–8
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amplitude of an oscillation   315, 316

amplitude of a wave   338

analogies   117, 270, 288, 316, 447

angle of incidence   356

angle of reflection   356

angular acceleration   122–3, 123

angular displacement   121

angular frequency (w)   316, 330

angular impulse   134–5

angular momentum (L)   132

conservation of   133–4

angular velocity (w)   78, 121–2

annihilation   545

anode   473

anomalous values   249, 265

anthropogenic climate change   215

antimatter   545

antineutrinos   545, 566

antinodes   384

in pipes   389–90

on strings   386

antiparticles   545

apparent brightness of a star   199

Archimedes’ principle   36

arc-seconds   598

areas under a graph   13, 16, 260

PV diagrams   267–8

Aristarchus   414

Aristotle   54

artificial satellites   423, 426

changing orbits   440

energies   439–40

astronomical distances, determination of   
202

astronomical unit (AU)   413, 599

astronomy

early astronomers   414

use of Doppler effect   407–8

see also galaxies; planets; stars

‘at a distance’ forces   32

atmosphere

carbon dioxide levels   228–9

energy flow through   224–5

atmospheric pressure   236

atomic energy levels   515–16

evidence for   517

of hydrogen   524

transition between   518–20

atomic mass unit (u)   560

energy equivalent   560–1

atomic structure   281

Bohr model of the hydrogen atom   
523–7

Geiger–Marsden–Rutherford 
experiment   508–11, 521

historical views   508

isotopes   514

nuclear density   522

nuclear model   511–13

nuclear notation   513–14

nuclear radii   522

plum pudding model   507

average speed   3

average values   249

Avogadro constant   236

axioms   143

axis of rotation   116

B
back-emf   506

background radiation   543

balanced forces   53
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banked tracks   75–6
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batteries   94, 284, 288

internal resistance   301–3, 302

properties of different types   302–3

becquerel (Bq)   551

beta-negative particles   545–6, 547

deflection in magnetic and electric 
fields   547–8

beta particles   544

beta particle spectra   566

beta-positive particles   546, 547

Big Bang model   408

binding energy   557–8

changes during nuclear fission   576

binding energy per nucleon   558, 564

black bodies   193–6

black-body emission spectra   193, 194

black holes   594

blue shift   407

Bohr model of the hydrogen atom   523–7

boiling   209, 210

boiling points   210
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Boltzmann constant (kB)   183, 253

boundary conditions, standing waves   385

Boyle’s law   239–41
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braking distance   15
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buoyancy (upthrust)   35–8
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caloric fluid   185
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carbon dating   555
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as a greenhouse gas   226

carbon isotopes   514

car jacks   102

Carnot cycle   269–70

entropy   279

cathode   473

Cavendish, Henry   417

cells, electric   284

Celsius scale   180

centre of mass   32

centripetal acceleration   80–1

centripetal force   75–6

calculation of   80–1

vertical circular motion   83–4

Cepheid variable stars   202

CERN   473, 481

chain reactions   577–9

charge   281–2, 442

charging and discharging   443–5

conservation of   282

dangers of static electricity   445–6

lightning   456

Millikan’s experiment   455–6

charge carriers   283

charged particles

magnetic force on   474–6

motion in both an electric and a 
magnetic field   479–80

motion in uniform electric fields   
471–3

motion in uniform magnetic fields   
474–8

charge to mass ratio (q/m)   480–1

charging

by contact   444

by electrostatic induction   444–5

by friction   443–4

Charles’ law   243–4

chart of nuclides   549, 563–4

chemical potential energy   90

circuits, electrical see electrical circuits

circuit symbols   285

circular motion

centripetal acceleration   77

centripetal force   75–6

connection to simple harmonic motion   
315–16

horizontal, non-uniform   84

mathematics of   77–81

vertical   83–4

climate change

COP meetings   233

enhanced greenhouse effect   227–30

ethical issues   231

possible solutions   230–1

climate models   228

clocks   322

clock synchronization   153–4

closed systems   258

CNO cycle   588

coefficients   44

coefficients of friction   43–4

coherent waves   366

collaboration   228

collisions   64–8

in two dimensions   69–70

colours   346

perception of   347

combined gas laws   244–6

compasses   458

plotting   459

components of a vector   22–3, 51, 52

compression forces   34

compressions (waves)   337

Compton scattering   539–40

computer predictions   222

condensation   210

conduction, thermal   186–9

conductors, electrical   289

conservation laws   92

conservation of angular momentum   
133–4

conservation of charge   282

conservation of energy   91

mechanical systems   105–6

conservation of momentum   63

conservative forces   105
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constants   44

constructive interference   367, 368

occurrence in diffraction   377

contact forces   31, 34–5

continuous variables   282

contour lines   432–3

control rods   580

convection   190–2

conventional current   284

cooling   204

Copernicus, Nicolas   414

correlation   228, 229

coulomb (C)   281, 442

Coulomb, Charles Augustin de   447

Coulomb constant   447

Coulomb’s law   446–7

count rate (radioactivity)   542

couples   119

crest of a wave   337, 338

critical angle   361

critical damping   395

critical mass   579

current see electric current

current–p.d. graphs   291

cycle (of an oscillation)   315

D
damping   329, 394–5, 397, 398

databases   216

data logging   325

data processing   265

daughter products   541

Davisson–Germer experiment   537

d.c. see direct current

de Broglie’s hypothesis   535

evidence for   536–8

decay constant (l)   568–70

experimental determination of   572–4

relationship to half-life   571–2

decay series   550

deceleration   7

see also acceleration

decibel scale   343

deformation   34, 38–9

delocalized electrons   283

delta (D) symbol   4

density   35, 177–8

nuclear   522

optical   361

of planets   421

derived units   289–90

deriving equations   80, 95

destructive interference   367–8

occurrence in diffraction   377

dielectric constant (relative permittivity)   
448

differentiation   16

diffraction   363–4

of electrons   537–8

examples of   364–5

modulation by single-slit diffraction   
381

multiple slits   378

occurrence of interference   376–8

and resolution   376

single-slit diffraction of light   373–5

Young’s double-slit interference 
experiment   368–70

diffraction gratings   378–9

observing spectra   379–80

diffusion   514

dimensional analysis   250

diodes   291–2

dipoles   457

direct current (dc)   283, 284

d.c. motor   484

direct proportionality   129

discharging   444

discrete variables   282

displacement   2, 3, 6

angular   121

equations of motion   17–18

in simple harmonic motion   330–1, 
332

from a velocity–time graph   13–14

displacement–time graphs   8–9

gradients of   10

for simple harmonic motion   325–6

dissipated (degraded) energy   92, 105

distance   2, 3

universality of   143

distance–time graphs   9, 10

distance travelled   13

Doppler effect   400–1

for electromagnetic waves   404–5

in light from stars   406–8

for sound waves   401–3, 409–10

drag   26, 46–8

see also air resistance

driving frequency   396–7

dynamic friction   42, 43

dynamics   116

dynamos   300

E
Earth

energy balance   215–16, 220–1

energy flow through the atmosphere   
224–5

intensity of thermal radiation from Sun   
217–18

magnetic field   459

radiation emitted by   223–4

‘weighing’   417

earthing (grounding)   444

earthquakes   339

eddy currents   501

effective temperature of a star   591–2

efficiency   111–13

Carnot cycle   269–70

of heat engines   268–9

Einstein, Albert   140

energy–mass equivalence   559–60

theory of special relativity   147

Einstein model, photoelectric effect   
529–31

experimental testing of   532–3

elastic and inelastic collisions   66–7
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elastic behaviour   38

elastic limit   38, 41

elastic potential energy   90, 102

energy transfers   106

equations and calculations   103

elastic restoring forces   38–41

electrical circuits   284

circuit symbols   285

potential-dividing   307–8

safety, ethical and environmental 
issues   288

series and parallel connection   296–8

electrical energy   90

sources of   300

electrical power   309–11

transmission of   494

electrical resistance (R)   288–9

determination of   290

influencing factors   294

internal   301–3

Ohm’s law   291

potentiometers   306

resistors   293, 297–8

variable resistors   305

electrical resistivity (r)   293–5

electric charge see charge

electric current (I)   283–4

conventional   284

current–p.d. graphs   291

heating effect of   310

in series and parallel circuits   297, 298

electric current-carrying conductors, 
forces on   482–5

electric field lines   465

electric fields   449–50

deflection of nuclear radiations   547–8

equipotential surfaces (or lines)   465

mapping   465

motion of charged particles in   471–3, 
479–80

resultant   453–4

under a storm cloud   456

electric field strength   451–2, 468

around a point charge   453

electric forces   449

Coulomb’s law   446–7

electric potential   464

combining potentials   466

electric potential difference   467–8

electric potential–distance graphs   468–9

electric potential energy   90, 462–3

electric potential gradient   468

electrodes   465

electromagnetic fields   457

electromagnetic induction   496

a.c. generators   504–5

by a conductor moving across a 
magnetic field   487–9

energy transfers   501–2

equation for induced emf   489–90

Faraday’s law   497–500, 503

induction cookers   501

Lenz’s law   502

by moving a magnetic field across a 
conductor   491–2

mutual   500

self-induction   506

without physical movement   492–3

electromagnetic radiation (electromagnetic 
waves)   336, 347–8

Compton scattering   539–40

Doppler effect   404–5

first artificial production of   349

see also gamma rays; infrared 
radiation; light; microwaves

electromagnetic shielding   466

electromagnetic spectrum   347

electromagnets   460

electromotive force (emf, e)   300–2

back-emf   506

electromagnetic induction   487–9

equation for   489–90

electron degeneracy   594

electron diffraction   537–8

electron gun   473, 477

electrons   281, 511, 512

beta-negative decay   546

charge   442

Compton scattering   539–40

delocalized   283

rest mass   560, 561

electronvolt (eV)   452, 516

electrostatic effects   443

electrostatic induction   444–5

elementary charge (e)   281, 442

elementary particles   513

elements, creation of   601

ellipses   412

emission spectra   517

emissivity   196, 218–19

empirical science   245

energy   88–9

conservation of   91, 105–6

dissipated   92

forms of   89–90

internal   176, 184–5

mechanical   94–5

see also elastic potential energy; 
gravitational potential energy; 
kinetic energy

nuclear potential energy   557–8

energy balance of a planet   215–16, 220–1

energy consumption   232

energy density   114

of nuclear fuels   582–3

energy levels   515–16

evidence for   517

of hydrogen   524

transition between   518–20

energy–mass equivalence (E = mc2)   
559–60

energy resources   231–2

non-renewable   228

nuclear power   577–84

energy transfers   89, 90–1

in collisions   66–7

efficiency   111–13
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during electromagnetic induction   
501–2

mechanical   105–6

in a nuclear power station   580

in radioactive decay   544

regenerative braking   109

Sankey diagrams   93

in simple harmonic motion   327–9, 
333–4

thermal   179–80, 182, 205–8

see also thermal conduction; thermal 
convection; thermal radiation

enhanced greenhouse effect   215, 227–30

entropy (S)   275

in the Carnot cycle   279

in macroscopic systems   276

mathematical representation   276–8

second law of thermodynamics   
275–80

entropy change   278

equation of state for an ideal gas   246

equations of motion   17–18

for angular acceleration   123

equilibrium   53

rotational   119

stellar   588

thermal   179–80

three forces in   55

translational   54

equilibrium position   314

equipotential surfaces (or lines)

electric   465

gravitational   432–4

errors   98, 99, 597

escape speed   437–8

estimation   97

ethical issues

air travel   49

climate change   231

in scientific research   282, 584

scientific responsibility   304

transportation   115

evaporation   209, 210

cooling effect of   211–12

events   140

simultaneous   143

evolutionary path of a star   595

excitation   517

excited states   565

explosions   64, 68–9

in two dimensions   69–70

exponential change   552, 568

exponential decay equations   569–70

extended objects   116

extrapolation   40

F
falling objects   54

terminal speed (velocity)   27

Faraday, Michael   496

law of electromagnetic induction   
497–500, 503

Faraday’s cage   466

feedback processes   588

Fermi radius   522

ferromagnetic materials   457

field forces   49

fields   49, 418

electromagnetic   457

radial   449

see also electric fields; gravitational 
fields; magnetic fields

first harmonic

in pipes   389–92

on strings   385–8

first law of thermodynamics   260–1

fissile nuclides   576

fission fragments   575, 576

Fleming’s left-hand rule   474–5

floating   37

fluid resistance   26

see also air resistance

fluids   26

fluorescent lamps   291

flywheels   127

force–distance graphs   87

forced vibrations   396

force–extension graphs   39, 40, 41

force meters   33

forces   31

buoyancy   35–8

centripetal   75–6, 80–1

conservative   105

contact   34–49

on current-carrying conductors   482–5

elastic restoring forces   38–41

electric   446–7

electromotive (emf)   300

field forces   49

free-body diagrams   50

friction with air and liquids   46–8

fundamental   449

gravitational   416

impulses   72–3

magnetic   457, 458, 474–6

Newton’s first law   53–5

Newton’s second law   56–60, 63, 
129–30

Newton’s third law   60–2, 71–2

normal   34–5

between nucleons   512, 523, 563

resistive   110

surface friction   42–6

types of   31–2

weight   32, 33, 34

force–time graphs   73

fossil fuels   227, 228, 231–2

Foucault’s pendulum   82

Franklin, Benjamin   282

free (delocalized) electrons   283

free-body diagrams   31, 50, 52

free fall, acceleration of   19–20

free vibration   395

freezing   209, 210

frequency

angular   316, 330

circular motion   78

driving   396–7
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natural   393–4

resonant   396

frequency of an oscillation   315, 316

frequency of a wave   338

frequency of light   346

frequency–response curves   396–7

friction

with air and liquids   46–8

see also air resistance; drag

charging by   443–4

on curved paths   75

between surfaces   42–6

tyres and road safety   45

fuel enrichment   578–9

Fukushima nuclear accident   581

fundamental (basic) units   289–90

fundamental constants   44, 519

fundamental forces   449

fusion   209, 210

specific latent heat of   213

G
galaxies, recession speeds   407–8

Galilean relativity   144–6

Galilean transformation equations   145–6

Galileo Galilei   30, 36, 145, 414

galvanometers   488

gamma (g) rays   347, 348, 546–7, 547

behaviour in magnetic and electric 
fields   547–8

gamma ray spectra   566

gas behaviour, mathematical model for   
249–51

gases   177, 234

pressure in   236

pressure–volume diagrams   247

real, comparison with ideal gases   
255–6

state of   259

thermodynamic processes   263–4

see also ideal gases

gas expansion (or compression), work done 
by   258–9

gas laws   234

Boyle’s law   239–41

Charles’ law   243–4

combined   244–6

pressure law   241–2

gas pressure

ideal gases   250

relationship to volume   239–41

variation with temperature   241–2

gas volume, variation with pressure   
239–41

Geiger, Hans   508–10

Geiger–Muller tube   542

generators   300

geostationary orbits   426

geosynchronous orbits   426

global positioning system (GPS)   143

global warming   227–30

possible solutions   230–1

gradients   204, 531

of displacement–time graphs   10

of velocity–time graphs   12

graphs

acceleration–time   15–16

areas under   13, 16, 260

current–p.d.   291

displacement–time and distance–time   
8–10

electric potential–distance   468–9

extrapolation and interpolation   40

force–distance   87

force–extension   39, 40, 41

force–time   73

frequency–response curves   396–7

gradients   204, 531

gravitational potential–distance   
435–6

heating and cooling curves   204

intercepts   531

linearizing   200–1, 319

logarithmic   342–3

proportional relationships   57

PV diagrams   247, 267–8

of rotational motion   125

of simple harmonic motion   324–6

torque–time   135

uncertainty bars   57–8

velocity–time and speed–time   11–14

of waves   339–40

gravitation, Newton’s universal law of   
416

gravitational fields   418

equipotential surfaces (or lines)   432–4

escape speed   437–8

field lines   419, 433–4

gravitational field strength   32, 419–21

of combined gravitational fields   422

variations in   321–2

gravitational force   416, 449

gravitational potential   430–1, 433

gravitational potential difference   434–5

gravitational potential–distance graphs   
435–6

gravitational potential energy   90, 427–9

energy transfers   105, 106

equation for   429–30

equations and calculations   101

of orbiting satellites   439–40

gravitational potential gradient   435

gravity   75

acceleration due to   19–20

greenhouse effect   215, 399

enhanced   227–30

greenhouse gases   225–6

greenhouses   223

grounding (earthing)   444

ground state   516

H
half-life   162, 552–3

experimental determination of   553–4, 
572–4

relationship to decay constant   571–2

harmonics

in pipes   389–92

on strings   385–8
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Harrison, James   322

heat   176

heat engines   257

efficiency   268–9

heat exchangers   579–80

heating   204

calorimetry   208

specific heat capacity   205–6

thermal capacity   207

heating effect of a current   310

heat pumps   271–2

helical paths   477–8

hertz (Hz)   78

Hertz, Heinrich   349

Hertzsprung–Russell (HR) diagram   591, 
595

Hooke’s law   39–40

humidity   212

Huygens, Christiaan   322

hydrogen atom, Bohr model of   523–7

hydrogen isotopes   514

hypotheses   535

I
ideal gases   248–9

changes in internal energy   261

comparison with real gases   255–6

internal energy of   252–5

pressure of   250

ideal gas law   246

ideal meters   284, 287

imagination   26

immersion heaters   205, 206

impulses   72–3

angular   134–5

incandescent lamps   291

inclined planes   51–2

induced magnetism   459

induction cookers   501

inertia   60

moment of (I)   125–7

inertial observers   153

inertial reference frames   141–2

infinity   427

information sources   348

infrared radiation   192, 347, 348

infrared thermometers   195

inquiry process   xii

inspiration   26

instability strip, HR diagram   595

instantaneous speed   3

insulators

electrical   289

thermal   187, 189, 206

integration   13

intensity of a wave   338, 352–3

intensity of radiation   199–200

interactions   31

intercepts of a graph   531

interference of waves   366

constructive and destructive   367–8

microwaves   371

single-slit diffraction of light   373–5

sound waves   371

Young’s double-slit experiment   368–70

interference patterns (fringes)   366, 369, 
376–8

internal energy   90, 176, 184–5

of an ideal gas   252–5

internal energy changes, ideal gases   261

internal resistance   301–3

interpolation   40

interstellar matter   586

intuition   26

invariant quantities   148

inverse proportionality   129–30

inverse square laws   199, 200, 353

forces between point charges   447

Newton’s universal law of gravitation   
415–17

ionization   282

ionization energy   516

ionizing ability of nuclear radiation

alpha particles   545

beta particles   545

gamma rays   547

irreversible processes   273–4

isobaric change   258

isobaric processes   263, 264, 266

isochronous events   313, 315

isolated systems   63

isothermal processes   263

isotopes   514, 541

isovolumetric processes   263, 264

I-V characteristics   290–1

J
jet engines   71

joule (J)   85

K
Kelvin scale (absolute temperature scale)   

180

Kepler, Johannes   411

laws of planetary motion   411–13

kilowatt hour (kWh)   311

kinematics   1

kinetic energy   90

calculations   97, 99–100

in collisions   66–7

energy transfers   105–6, 109

equations   95

examples of   95

of orbiting satellites   439–40

of particles   183, 184, 253

rotational   136

kinetic theory of matter   176–8

and temperature   182–3

L
lagging   206

Large Hadron Collider   481

lasers   364

latent heat   213

law of radioactive decay   569

law of reflection   356

learning goals   312

Leavitt, Henrietta Swan   202

Leibniz, Gottfried Wilhelm   16
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length contraction formula   161

length contraction in space–time diagrams   
174

Lenz’s law   502

levers   102

light

diffraction   364, 365, 368–70, 373–5

dispersion into a spectrum   363

Doppler effect   404, 406–8

interference of   368–70

nature of   365

wavelength determination   369–70

light, speed of   346

as a constant   148

Michelson–Morley experiment   147

light clock   156

light-dependent resistors (LDRs)   293, 308

light-emitting diodes (LEDs)   291, 292, 
535

light gates   4

lighting, types of   291

lightning   456, 466

light waves   345

light-year (ly)   151, 203, 599

limit of proportionality   39, 41

linearizing graphs   200–1, 319

linear relationships   8

lines of action   117–18

line spectra   380

of stars   406–7

liquids   177

live wire   505

logarithmic graphs   342–3

longitudinal waves   337

Lorentz factor (g)   150–2

Lorentz transformations   149–52

lost volts   301

loudness   342

luminosity   195, 197–8

of a star   591–2

M
magnetic field lines   458

magnetic fields   457

around currents in wires   460

deflection of nuclear radiations   547–8

detection of   459

Earth’s   459

electromagnetic induction   487–93

forces on current-carrying conductors   
482–5

motion of charged particles in   474–80

magnetic field strength (B)   461–2

magnetic flux (f)   495–7

magnetic flux density   495

magnetic flux linkage   496, 497

magnetic forces   457, 458

on a charged particle   474–6

magnetic permeability   461

magnetic poles   457–8

magnetic potential energy   90

magnetic resonance imaging (MRI)   399

magnetism, induced   459

magnets   457–8

electromagnets   460

mains electricity (utility power)   300, 505

main sequence stars   587

comparisons   590–2

lifetimes   589

mapping   476

Marsden, Ernest   508–10

mass   32, 33

changes in nuclear reactions   561, 
576–7

determination of   33–4

energy–mass equivalence   559–60

Newton’s second law   56–60

of a star   591

mass defect   562

mass–spring systems   317–20, 328, 329

matter

wave nature of   535–8

wave–particle duality   538–9

Maxwell, James Clerk   147

Maxwell–Boltzmann distribution   254

mean values   249

measurements

observer effect   287

uncertainties   98–100

mechanical energy   90

conservation of   105–6

mechanical waves   336

models of   336

transverse and longitudinal   337

medical tracers   555

medium of a wave   335

melting   209, 210

melting points   209, 210

mesons   563

metal detectors   506

metals

conduction of electricity   289

conduction of heat   186

delocalized electrons   283

ferromagnetic   457

photoelectric effect   528–31, 534

resistivity   295

work functions   530, 534

methane   226

Michelson–Morley experiment   147

microstates   277

microwaves   347, 348

diffraction   364–5

interference   371

radar   404

Millikan’s experiment   455–6

modelling   313

computer predictions   222

limitations   256

simulations   216

visual models   512

moderator   579

modulation by single-slit diffraction   381

molar mass   237–8

mole (mol)   236–8

molecular speeds, relationship to 
temperature   254

moment of a force   118

moment of inertia (I)   125–7
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momentum   62–3

angular (L)   132

collisions   65–70

conservation of   63

explosions   68–70

impulses   72–3

and Newton’s second law   63

propulsion   71–2

monochromatic light   364

motion

equations of   17–18

image analysis   314–15

Newton’s first law   53–5

orbital   423–6

projectile   22–7

upwards and downwards   21

video analysis   28

see also circular motion; relativistic 
motion; rotational motion; simple 
harmonic motion

motor effect   484

muon-decay experiment   162–4

in space–time diagrams   172–4

musical instruments   387, 389, 399

mutual induction   500

Muybridge, Eadweard   314

N
natural frequencies of vibration   393–4

natural philosophy   54

natural satellites   423

nebulae   586

negligible effects   20, 29

neutral wire   505

neutrinos   545, 566, 567

neutron capture   601

neutron number (N)   513

neutron / proton (N/Z) ratio   564

neutrons   281, 282, 511, 512–13

induction of nuclear fission   575

rest mass   560, 561

neutron stars   594

newton (N)   31

Newton, Isaac   16, 345, 411, 414, 508, 535

postulates concerning time and space   
143–4

universal law of gravitation   415–17

newton meters   33

‘Newton’s cannonball’   30

Newton’s laws of motion

first law   53–5

second law   56–60, 63, 129–30

third law   60–2, 71–2

nitrous oxide   226

nodes   384

in pipes   389–90

on strings   386

non-ohmic behaviour   291

non-renewable energy resources   228, 
231–2

normal forces   34–5

nuclear density   522

nuclear equations   544

nuclear fission   559, 575–6

binding energy and mass changes   
576–7

chain reactions   577–8

critical mass   579

energy release   576–7

fuel enrichment   578–9

moderator   579

rate control   580

nuclear fuels, energy density   582–3

nuclear fusion   559, 585–6

CNO cycle   588

creation of different elements   601

proton–proton cycle   587–8

nuclear model of the atom   511–13

nuclear notation   513–14

nuclear potential energy   90, 557–8

nuclear power, advantages and 
disadvantages   584

nuclear radiations

deflection in magnetic and electric 
fields   547–8

spectra of   565–6

see also alpha particles; beta-negative 
particles; beta-positive particles; gamma 
(g) rays

nuclear radii   522

nuclear reactions, changes of mass   561

nuclear reactors   579–80

safety issues   581

nuclear waste   581–2

nucleon number (A)   513

nucleons   512

see also neutrons; protons

nucleosynthesis   601

nucleus of an atom   281, 509, 511–12

forces in   512, 523

mass defect   562

nuclides   513

chart of   549, 563–4

stability of   563–4

O
observer effect   287

ohm (W)   289

Ohm, Georg   292

Ohm’s law   291

opaque media   352

optical density   361

optical fibres   361–2

orbital motion   423–6

orbital speed   424–5, 438

orbital time period   425, 439

orbit changes   440

orbits   6

Kepler’s laws of planetary motion   
411–13

polar and geostationary   426

ordered and disordered energies   273–4

order of a spectrum   380

orders of magnitude   96–7, 590

oscillations   313

damping   329, 394–5, 397, 398

energy of   397

forced vibrations   396
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natural frequencies of vibration   
393–4

phase difference   326, 330

resonance   396–9

terminology   314–15

see also simple harmonic motion; 
waves

outliers   249, 265

P
parabolic trajectories   23–5

paradigm shifts   149

parallax   597

stellar   597–9

parallax error   597

parallel circuits   297–8

parallel currents, forces between   484–5

parsec (pc)   599

particle accelerators   481

particle beams, motion in uniform electric 
fields   473

pascal (Pa)   234

path differences   367

peer review   34, 292

pendulum clocks   322

pendulums, simple   320–2, 328

penetrating power of nuclear radiation   
547

alpha particles   545

beta particles   545

gamma rays   547

percentage difference and percentage 
change   126

permanent magnets   457

permeability of free space   461

permittivity   448

phase angle (f)   331

phase changes   209–10

boiling and evaporation   210

latent heat   213

phase difference   326, 330

phases of matter   209

photoelectric effect   528–9

Einstein model   529–31

investigating photoelectric currents   
533–4

stopping voltage   533

testing the Einstein model   532–3

photoelectric equation   530

photoelectrons   528

photons

Compton scattering   539–40

energy carried by   518–19

photovoltaic cells   300, 312

pipes, standing wave patterns   389–92

pistons   246

work done   258–9

pitch   342

Planck’s constant (h)   518–19

determination of   535

planetary motion, Kepler’s laws   411–13

planetary nebulae   594

planets, gravitational field strength   420–1

plane waves   351

plotting compasses   459

plum pudding model of the atom   507

point particles and masses   50

polarity of a magnetic field   460

polar orbits   426

pollution, and temperature inversion   192

population growth   227

positrons   546

postulates, Newton’s   143–4

postulates of special relativity   148

potential difference (p.d.)   286

current–p.d. graphs   291

electric   467–8

gravitational   434–5

gravitational analogy   288

measurement   287

in series and parallel circuits   297

terminal   301

potential-dividing circuits   307–8

potential energy   89–90

of particles   184–5

potentiometers   293, 306

power   109–10

electrical   309–11

precision   98–9

pressure   234–5

atmospheric   236

in gases   236

of an ideal gas   250

pressure law   241–2

pressure–volume (PV) diagrams   247, 
267–8

principal quantum number   524

principle of moments   118

prisms   358

dispersion of light   363

processed data, uncertainties   131

projectile motion   22–5

ballistics   29–30

effect of air resistance   27

propagation of a wave   335

proper length   161

proper time interval   159

proportional relationships   57, 129–30

propulsion   71–2

proton number (Z)   513

proton–proton cycle   587–8

protons   281, 511, 512–13

charge   442

rest mass   560, 561

pulleys   102

pulses   340

Pythagoras   389

Q
quanta   518

quantized values   282

quantum mechanics   527

quantum physics   348, 528

Compton scattering   539–40

photoelectric effect   528–34

wave nature of matter   535–8
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R
radar (RAdio Detection And Ranging)   

404

radial fields   449

radial rays   351

radians   77

radiation, thermal   192–200

radiation energy   90

radioactive decay (radioactivity)   509, 541

alpha particles   544

background radiation   543

beta-negative particles   545–6

beta-positive particles   546

changes of mass   561

chart of nuclides   549

decay constant   568–72

decay series   550

exponential decay equations   569–70

gamma rays   546–7

half-life   552, 571–2

half-life determination   533–4, 572–4

investigations   542–3

law of   569

nuclide stability   563–4

random and spontaneous nature   551

safety issues   542

spectra of nuclear radiations   565–6

radioisotopes (radionuclides)   541

activity of   551–2

practical uses of   555–6

radio waves   347, 348

random events   252, 551

range of a projectile   23–5

rarefactions (waves)   337

ratemeters   542

rates of change   4

raw data   131

ray diagrams   356

rays   351

reaction times   3, 15

recession speed   407–8, 600

recoil   68–9

red giant (and super giant) stars   593

red shift   407

reference frames   140–1

inertial   141

reflection   355–7

refraction   358–63

critical angle   361

dispersion of light   363

Snell’s law   359–60

total internal reflection   361–2

refractive index   359

refrigerators   211

regenerative braking   109

relative permittivity (dielectric constant)   
448

relativistic motion

Galilean relativity   144–6

reference frames   140–2

see also special relativity

renewable energy resources   231

reservoirs (thermal)   258

resistance see electrical resistance

resistive forces   110

resistivity (r)   293–5

resistors   293

light-dependent (LDRs)   308

potentiometers   306

in series and parallel circuits   297–8

thermistors   308

variable   305

resolution   376

resolving vectors   22–3, 51, 52

resonance   396–9

rest, objects at   5

rest mass   560

restoring force   40

resultant electric fields   453–4

resultant forces   51

reverberation   357

reversible processes   273–4

revolution   116

rheostats   305

right-hand grip rule   460

rigid bodies   116

ripple tank   350–1

road safety, tyres   45

rocket engines   71

rolling   136–7

rotation   116

rotational equilibrium   53, 119

rotational kinetic energy   136

rotational motion

angular acceleration   122–3

angular displacement   121

angular impulse   134–5

angular momentum (L)   132–4

angular velocity (w)   121–2

comparison with linear motion   117

graphs   125

Newton’s second law for   129–30

rolling   136

torque   117–20

Rutherford, Ernest   508–10

Rutherford scattering   522

S
safety issues

electricity   288

nuclear power   581

radioactivity experiments   542

road safety   45

Sankey diagrams   93

satellites   423–4, 426

changing orbits   440

speeds and energies   437–40

scalars   1

scattering   218

scientific notation   64

scientific research

ethical issues   282, 584

pure   349

scientific responsibility   304

second law of thermodynamics   275

self-induction   506

semiconductors   289

sense perception   184
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sensors   4, 181

measuring temperature   182, 195

series circuits   296–8

shielding (from nuclear radiation)   580

short circuits   304

signal generators   371

significant figures   64, 97, 297

processed data   131

simple harmonic motion (SHM)   313

conditions leading to   324

connection to circular motion   315–16

damping   329

defining equation   324

displacement   330–1, 332

energy changes   327–9, 333–4

graphs of   324–6

mass–spring systems   317–20

phase angle   331

phase difference   326, 330

simple pendulum   320–2

terminology   314–15

velocities   331–2

simple machines   102

simulations   216

simultaneous events   143, 154–5

in space–time diagrams   172

single-slit diffraction   373–5

modulation by   381

sinusoidal waveforms   325

Sirius   198

SI system of units   283

fundamental and derived units   
289–90

skills   ix–xii

sliding   136

slipping (wheels)   136

slopes, rolling down  137–8

smoke detectors   556

Snell’s law   359–60

solar (photovoltaic) cells   300, 311

solar constant   217

solar system

early models   414

planetary motion, Kepler’s laws   
411–13

solenoids, magnetic fields around   460

solids   177

sonar   345

sonic booms   403

sound   340–1

decibel scale   343

definition of   344

diffraction   364

Doppler effect   401–3, 409–10

interference   371

pitch and loudness   342

reflection   357

speed of   341

space–time   149, 165

space–time diagrams   167–70

adding another frame of reference   
168–9

length contraction   174

lines of constant space–time interval   
171

simultaneity   172

time dilation   172–3

visualization of events   172

worked examples   169–70

world lines   167–8

space–time interval   165–6

special relativity   147

clock synchronization   153–4

length contraction   160–1

Lorentz transformations   149–52

muon-decay experiment   162–4

postulates   148

simultaneity   154–5

space–time   165–74

time dilation   158–60

velocity addition transformations   
156–7

specific energy   114

specific heat capacity   205–6

specific latent heat   213

spectra

emission and absorption   517

line   380, 406–7

of nuclear radiations   565–6

order of   380

spectroscopy   408, 517

spectrum of white light   346, 379

speed   2–3, 6, 338

determination of   4

orbital   424–5, 438

of a wave   338

speed of light   346

as a constant   148

Michelson–Morley experiment   147

speed of sound   341

speed–time graphs   11

areas under   13

spontaneous events   551

spreadsheets   15

spring balances   33

spring constant (k)   39, 318

springs

extension of   39–41

mass–spring systems   317–20, 328, 
329

standard candles   202, 596

standing waves   383–4

boundary conditions   385

comparison with travelling waves   385

nodes and antinodes   384

in pipes   389–92

on strings   385–8

stars

apparent brightness and intensity   
199–200, 202

comparison of main sequence stars   
590–2

creation of different elements   601

determination of distance from Earth   
202

distances from Earth   596–9

equilibrium   588

evolution of   593–5

formation of   586–7
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lifetimes of main sequence stars   589

line spectra   407

luminosity   197–8, 202

nuclear fusion   587–8

surface temperature and luminosity   
591–2

static electricity

dangers of   445–6

see also charge

static friction   42, 43

stationary objects   5

Stefan–Boltzmann constant (s)   194

Stefan–Boltzmann law   194–5

stellar equilibrium   588

stellar evolution   593–5

stellar parallax   590, 597–9

Stokes’s law   47–8

stopping distances   15

stopping voltage   533, 534

streamlining   49

strings, standing wave patterns   385–8

stroboscopic pictures   23

strong nuclear force   512, 523, 563

subatomic particles   507

see also electrons; neutrons; protons

Sun

main sequence lifetime   589

radiation emitted by   224

solar constant   217

superconductors   481

supernovae   594

superposition of waves   365–6, 383

supersonic flight   403

surface friction   42–6

surroundings   63

sweating   211, 212

synchronizing clocks   153–4

systematic errors   98, 99

systems   63

T
temperature

effect on resistivity   295

macroscopic understanding   179–80

measurement   182, 195

microscopic understanding   182–3

relationship to kinetic energy of 
particles   183, 253

relationship to molecular speeds   254

and sense perception   184

of a star   591–2

variation of gas pressure with   241–2

variation of gas volume with   243–4

temperature inversion   192

temperature scales   180–1

tension forces   34

terminal potential difference   301

terminal speed (velocity)   27

terminology   503, 541

tesla (T)   461

test masses   419

theories   185, 365

thermal capacity   207

thermal conduction   186–9

thermal conductivity   187, 188–9

thermal contact   179

thermal convection   190–2

thermal energy   90, 176

thermal energy transfer   179–80, 182, 185, 
205–8, 276

conduction   186–9

convection   190–2

first law of thermodynamics   260–1

radiation   192–5

thermal equilibrium   179–80

thermal insulators   187, 189, 206

thermal radiation   192

good absorbers and good emitters   
193–6

stars   197–200

Wien’s displacement law   196

thermionic emission   473

thermistors   293, 308

thermodynamic cycles   267

thermodynamic processes   263–6

thermodynamics   257–8

first law   260–1

second law   275–80

thermometers   182

thermostats   308

thinking distance   15

thought experiments   30

three forces in equilibrium   55

threshold frequency ( f0)   529

time

clock synchronization   153–4

implications of special relativity   148

universality of   143–4

time dilation   158–60

in space–time diagrams   172–3

time dilation formula   160

time measurements   3, 322

time period of an oscillation   315

time period of a wave   338

time period of circular motion   78

tools   x–xi

torque   117–20

Newton’s second law   129–30

torque–time graphs   135

torque wrench   118

total internal reflection   361–2

tracers, radioactive   555

trajectories   23–5

effect of air resistance   27

transducers   345

transformers   493, 494

translational equilibrium   53, 54–5

transmission of waves   352

transmutation   541

transverse waves   337

travelling waves   335

comparison with standing waves   385

trough of a wave   337, 338

tuning forks   391

turbines   505

turbulence   47

twin paradox   159

tyres   45
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U
ultrasound   340

Doppler effect   402

ultraviolet (UV)   347, 348

uncertainties   98–100, 132, 297

in processed data   131

uncertainty bars   57–8

universal (molar gas) constant (R)   245

universal gravitational constant (G)   416

determination of   417

Universe

age of   600

expansion of   407–8

upthrust (buoyancy)   35–8

uranium, fuel enrichment   578–9

uranium-235

chain reaction   577–8

energy density   583

nuclear fission   576–7

uranium-238, decay series   550

V
vaporization   209

specific latent heat of   213

variable resistors   293, 305

variables, continuous and discrete   282

vectors   1

addition and subtraction   51

forces   31

resolving   22–3, 51

velocity   5–6

angular (w)   78, 121–2

and displacement–time graphs   9, 10

equations of motion   17–18

initial and final   7

in simple harmonic motion   331–2

velocity addition

in Galilean relativity   145–6

in special relativity   156–7

velocity–time graphs   11

areas under   13–14

gradients   12

for simple harmonic motion   325–6

vertical circular motion   83–4

vertical motion   21

vibrations

forced   396

free   395

natural frequencies   393–4

viscosity   47–8

viscous drag   47–8

visualization   351

volt (V)   286, 468

voltage   286

of mains electricity   505

voltmeters   287

W
wavefronts  350

reflection   356

refraction   358

wavelength (l)   338

of light   369–70

wave nature of matter

de Broglie’s hypothesis   535–6

evidence for   536–8

wave–particle duality   538–9

wave pulses   340

waves   335–6, 337–8

diffraction see diffraction

Doppler effect see Doppler effect

electromagnetic   347–9

graphical representation   339–40

intensity   338, 352–3

interference   366–71

light   345–6

path differences   367

reflection   355–7

refraction   358–63

ripple tank   350–1

sound   340–4

standing see standing waves

superposition of   365–6, 383

terminology   337–8

transmission   352

transverse and longitudinal   337

weber (Wb)   495

weight   32

determination of   33, 34

wheels, rolling   136–7

white dwarf stars   594

white light, spectrum of   346

Wien’s displacement law   196, 217

wind generators   300

work done

by constant forces   85–7

by expansion or compression of gases   
258–9

and gravitational potential difference   
434–5

macroscopic and microscopic   88

in PV diagrams   267–8

by varying forces   87

work function   530, 534

working substances   267

world lines   167–8

X
X-ray diffraction (crystallography)   365, 

537, 538

X-rays   347, 348

Y
Young, Thomas   345

Young’s double-slit interference 
experiment   368–70

Yukawa, Hideki   563

Z
zero-offset error   98, 99
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